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Abstract

Few-shot learning (FSL) has historically been studied via episodic
supervised tasks with gradient-based meta-learning, metric learning,
or transfer learning. In the 2026 foundation-model era, adaptation is
no longer a single knob: practitioners can use in-context learning (ICL)
with retrieved demonstrations, parameter-efficient finetuning (PEFT)
such as low-rank adapters, or full finetuning—each with distinct la-
tency, energy, and reliability tradeoffs, especially under cross-domain
shift. Inspired by recent survey taxonomies that unite classic FSL with
emerging ICL and hybrid settings, we formalize a cost-regularized few-
shot adaptation problem in which an algorithm chooses per task (i)
which demonstrations to retrieve and place in context and (ii) whether
to apply a constrained PEFT update. We analyze a clean special
case—linear prediction in a pretrained embedding with task-dependent
domain shift—where ICL corresponds to kernel/ridge regression in a
fixed representation and PEFT corresponds to learning a low-rank
correction to representation or readout. Our main results character-
ize the error–cost Pareto frontier: we give an explicit hybrid policy
that is provably near-Pareto-optimal (up to logarithmic factors) over
a broad class of adaptation policies, and we provide matching lower
bounds showing when ICL-only must fail under shift. We outline how
these guarantees motivate a practical gating algorithm and propose
experiments on cross-domain FSL benchmarks (Meta-Dataset/Meta-
Album/BSCD-FSL) and multimodal few-shot tasks, reporting cost-
aware metrics (tokens, updated parameters, wall-clock) alongside ac-
curacy.
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1 Introduction and Motivation

Few-shot learning, as it was commonly operationalized in the episodic meta-
learning literature, treated adaptation as a fixed protocol: a learner observes
a small support set ST for a task T , performs a prescribed update (explicit or
implicit), and is evaluated on queries QT drawn from the same task environ-
ment. By 2026, the practical locus of adaptation has shifted. Rather than
committing to a single mechanism, practitioners deploy adaptation menus
built around foundation models: one may (i) keep parameters fixed and rely
on in-context learning (ICL) with a carefully chosen set of demonstrations
CT drawn from a retrieval corpus M; (ii) perform parameter-efficient fine-
tuning (PEFT) by fitting a constrained update ∆T (e.g. rank-r adapters)
using the few labeled examples in ST ; or (iii) combine the two. Each op-
tion has a distinct performance profile and a distinct resource footprint. It
is therefore no longer adequate to report accuracy (or loss) alone; one must
reason about accuracy jointly with adaptation cost, including context length,
retrieval overhead, and training compute.

A second shift is equally decisive: in cross-domain deployments, the main
obstacle is not statistical scarcity per se but the mismatch between the pre-
trained representation and the test domain. When the backbone induces an
embedding ϕ : X → Rd, one should not assume that the same linear head in
the ϕ-space is appropriate for all tasks in qtest. Instead, we expect a task-
specific distortion of the representation, which we model by an unknown
operator AT acting on embeddings. Concretely, we analyze tasks where

y = ⟨wT , ATϕ(x)⟩ + ξ,

with ξ sub-Gaussian and AT not revealed at test time. The magnitude of
shift can be quantified by δ := supT ∥AT − I∥op. This model is intentionally
simple: it isolates the phenomenon that, even if ϕ is strong, the effective
features at test time may deviate from those for which the backbone is
well aligned. In such regimes, additional demonstrations can reduce esti-
mation error but cannot in general eliminate the representation mismatch;
conversely, a small amount of parameter updating can explicitly correct the
mismatch but introduces nontrivial compute cost and potential instability.

These observations motivate a cost-aware and shift-aware formulation of
adaptation. For each task T , an admissible policy chooses a demonstration
set CT ⊆ M with |CT | ≤ L and optionally fits a constrained update ∆T of
rank at most r using at most s steps. We associate a per-task resource cost

Cost(T ) = αL + βrs + γ Retr(L),

where α weights context length, β weights PEFT compute, and γ weights
system-level overhead such as approximate nearest neighbor lookup time.
The central objective is then the cost-regularized risk

ET∼qtest

[
LT (f̂T )

]
+ λET∼qtest

[
Cost(T )

]
,
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or, equivalently, the constrained-risk problem that traces the error–cost Pareto
frontier. The regularization parameter λ > 0 plays a dual role: it encodes
an external budget preference, and it induces a principled tradeoff between
performance and adaptation overhead.

Within this framework, the relevant algorithmic question is not “which
method wins?” but rather “how should we allocate a limited adaptation
budget across heterogeneous tasks?” We address this question by studying a
hybrid policy that computes from ST an observable shift or uncertainty score
uT , retrieves a candidate pool from M, selects a bounded demonstration set
CT , and then gates between ICL-only and PEFT (or hybrid) depending on
whether the estimated shift is small or large. The gating is designed to
approximate the per-task oracle decision that would compare the marginal
reduction in expected loss to the marginal increase in cost. Importantly, this
view treats retrieval and PEFT as two competing ways to spend adapta-
tion budget: additional context principally decreases estimation error in a
fixed feature space, whereas PEFT principally decreases the shift penalty by
modifying the effective representation.

Our first contribution is an explicit risk decomposition in a linearized
regime that makes this distinction quantitative. When ICL is modeled as
ridge regression in the frozen ϕ-space using K+L labeled examples (support
plus demonstrations), the excess risk admits an upper bound of the form

O

(
σ2 d

K + L
+ δ2∥wT ∥2

)
,

where the first term is an estimation effect and the second term is an irre-
ducible penalty induced by representation shift. When PEFT is modeled as
fitting a rank-r correction to the representation (equivalently a low-rank cor-
rection to the effective feature map), the shift penalty becomes compressible
and scales as O(δ2∥wT ∥2/r), up to estimation terms depending on K. This
formalizes a central qualitative fact: increasing L cannot, in general, remove
an O(δ2) mismatch term if parameters remain frozen, whereas increasing r
can.

Our second contribution is a competitive guarantee for cost-aware hybrid
gating over a natural restricted policy class Π that includes ICL-only, PEFT-
only, and hybrid actions with explicit resource constraints. For each λ, we
exhibit a threshold rule (based on statistics computable from ST ) whose
achieved cost-regularized objective is within an O(log d) factor of OPT(λ),
the best value attainable by any policy in Π. The role of the factor is to
absorb uncertainty in estimating uT and to account for the discrete choice
among actions; the resulting statement is best interpreted as near-Pareto
optimality for a broad family of deployment-relevant adaptation strategies.

Our third contribution consists of matching lower bounds that clarify
when ICL cannot suffice and when low-rank PEFT is information-theoretically
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necessary. In particular, there exist task families for which any ICL-only pol-
icy, regardless of the number of demonstrations retrieved, suffers worst-case
excess risk Ω(δ2) under frozen ϕ. Moreover, any method restricted to rank-
r corrections cannot improve the shift term beyond Ω(δ2/r) in a minimax
sense, demonstrating the essential tightness of the rank tradeoff. Finally, we
address the computational dimension by showing that optimal demonstra-
tion selection is NP-hard in general, while standard greedy selection yields
constant-factor approximations when the chosen surrogate utility is mono-
tone submodular. Together, these results justify treating domain shift and
cost as first-class objects and motivate hybrid policies that allocate adapta-
tion resources in a task-dependent manner.

2 Related Work and Positioning

The classical meta-learning literature framed few-shot learning as learning an
adaptation algorithm from a meta-training distribution qtrain and deploying
it on qtest, typically under an episodic protocol with support–query splits
????. In contrast, transfer learning emphasized representation learning by
large-scale pretraining followed by task-specific fitting of a lightweight head,
with little or no explicit meta-objective ??. In contemporary foundation-
model deployments, this dichotomy is partly dissolved: pretraining provides
a strong ϕ, while adaptation is selected from a menu that mixes prompting,
retrieval, and parameter updates. Our contribution is positioned at this
interface, treating the choice among adaptation mechanisms as a decision
problem constrained by explicit resource costs.

A second strand concerns the “meta-learning vs. transfer learning” debate
in the cross-domain regime. Empirically, methods optimized for within-
domain episodes often degrade when qtest departs from qtrain, while strong
pretrained backbones can dominate even without sophisticated meta-training
??. This has prompted a shift from learning fast adaptation dynamics to
modeling and correcting representation mismatch ??. Our formalization
makes this focus explicit by introducing a task-dependent shift acting on
embeddings; the relevant question becomes not only whether adaptation
helps, but which form of adaptation is justified under domain shift and under
budget.

Theoretical work on in-context learning (ICL) provides several comple-
mentary explanations for why demonstration-conditioned prediction can im-
plement nontrivial learning without parameter updates. One line interprets
transformers as approximate Bayesian inference engines over latent task vari-
ables, thereby viewing the prompt as conditioning data ??. A second line
establishes connections to implicit gradient descent or to the simulation of
iterative algorithms within the forward pass ??. A third line, most directly
aligned with our analysis, shows that in simplified or linearized settings ICL
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recovers kernel or (regularized) linear regression in an induced feature space,
with the demonstrations serving as training data for an implicit estimator
??. These results justify modeling ICL as ridge regression in fixed features
ϕ, and they also clarify a limitation: if the effective test-time representation
differs from the one encoded by ϕ, additional demonstrations can improve
estimation but cannot, in general, eliminate misspecification.

Retrieval-augmented prompting and demonstration selection address the
fact that, for ICL, which examples appear in-context can matter as much as
how many ??. Retrieval-augmented generation (RAG) and related memory-
augmented methods typically retrieve semantically similar items from a cor-
pus and condition the model on them ??. For ICL specifically, work has
studied nearest-neighbor retrieval in embedding space, diversity-promoting
selection, and learned retrievers optimized end-to-end for downstream task
loss ??. From our perspective, retrieval is not a free improvement: it in-
troduces system costs (indexing, latency) and consumes context length, mo-
tivating the explicit Retr(L) and αL terms in the cost model. Moreover,
the known hardness of optimal selection motivates surrogate objectives (e.g.
information gain or facility-location utilities) for which greedy algorithms
provide approximation guarantees ?.

Parameter-efficient fine-tuning (PEFT) offers a complementary axis of
adaptation by modifying the model with a constrained number of trainable
parameters. Techniques include adapters, prefix/prompt tuning, and low-
rank updates such as LoRA, as well as various gating and sparsity variants
???. Empirically, PEFT can match or approach full fine-tuning while sig-
nificantly reducing memory footprint and sometimes improving stability in
low-data regimes ??. Conceptually, PEFT is the natural counterpoint to ICL
in our setting: it expends compute (rs updates at rank r for s steps) to mod-
ify the effective representation, thereby targeting representation mismatch
rather than purely reducing estimation error.

Few-shot PEFT intersects with earlier work on fast adaptation and linear-
probe baselines. In vision and language, strong results can be obtained by
freezing the backbone and fitting a linear classifier, especially when ϕ is pre-
trained at scale ??. However, under cross-domain shift, linear probing can be
brittle, motivating partial adaptation (e.g. tuning only normalization param-
eters or low-rank components) ??. Our analysis abstracts this phenomenon
by treating PEFT as a constrained correction to the representation; the rank
parameter becomes a quantitative knob controlling how much shift can be
compensated per unit cost.

Cross-domain few-shot learning (CDFSL) and domain generalization pro-
vide additional context for our shift-aware framing. CDFSL benchmarks and
methods emphasize transfer from source domains to target domains with
limited labeled target data, often combining meta-learning with domain-
invariant representation learning or feature normalization ??. The central
obstacle is that the test tasks may deviate in both label semantics and input
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distribution, so that performance is governed by the interaction between fea-
ture geometry and task-specific decision boundaries. Our model isolates one
tractable aspect of this interaction—a task-dependent linear operator act-
ing on embeddings—which permits explicit upper and lower bounds on the
residual error induced by shift, and thus a principled comparison between
adding context and updating parameters.

We also position the present framework with respect to recent calls for
improved evaluation methodology in few-shot and prompting-based systems.
Standard reporting of accuracy at a fixed K and a fixed prompting protocol
obscures the performance–resource tradeoffs that determine deployability ??.
In particular, retrieval introduces latency and operational complexity; longer
context increases inference cost and may reduce throughput; and PEFT
introduces training compute and, in some settings, additional storage for per-
task adapters. By incorporating these components into a unified objective,
we align evaluation with the decision faced by a practitioner: selecting an
adaptation strategy subject to budgets.

Finally, the proposed cost-regularized view speaks directly to open prob-
lems at the intersection of domain shift and “Green AI” considerations ?.
When performance gains can be purchased by longer context, heavier re-
trieval, or more gradient steps, it becomes necessary to quantify marginal
improvements per unit resource and to identify regimes where additional
spend is provably ineffective (e.g. ICL under irreducible shift). Our tax-
onomy therefore treats adaptation not as a monolithic algorithm but as a
portfolio of actions, and it motivates studying Pareto frontiers rather than
single operating points. This positioning sets up the formal problem defini-
tion in the next section, where we make the objective and admissible policy
class explicit.

3 Formal Problem: Cost-Regularized Few-Shot Adap-
tation (CR-FSA)

We formalize test-time few-shot adaptation as a per-task decision problem
in which a deployed foundation model provides a fixed embedding map ϕ :
X → Rd, and the system may additionally spend resources on retrieval,
context, and parameter-efficient updates. Our goal is to compare, within
a single objective, adaptation mechanisms that (i) consume inference-time
context (ICL), (ii) consume training-time compute and parameters (PEFT),
and (iii) may be composed (hybrid).

Tasks, episodes, and evaluation. A task T specifies an input–output
relationship over X × Y together with a query distribution on (x, y). At
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meta-test time we draw T ∼ qtest and observe an episodic support set

ST = {(xi, yi)}Ki=1 ∼ TK ,

followed by queries (x, y) ∼ QT on which we evaluate a loss ℓ(f̂T (x), y). We
write the expected query risk of an adapted predictor f̂T as

LT (f̂T ) := E(x,y)∼QT

[
ℓ(f̂T (x), y)

]
,

and the meta-test risk as ET∼qtest [LT (f̂T )]. We treat ST as the only labeled
information about T ; any additional data (e.g. retrieved items) must be
obtained without using QT labels.

External memory and retrieval. We assume access to a corpus (mem-
ory) M, consisting of candidate demonstrations (e.g. labeled examples, instruction–
response pairs, or short worked solutions). Given a task T , the system may
query an indexed data structure over M using keys computed from ST (and,
in some deployments, from the query x, but never from its label). The re-
sult is a candidate pool PT ⊆ M, from which we choose a demonstration
set CT ⊆ M to include in context. We impose a context-length constraint
|CT | ≤ L, where L abstracts the token budget as an upper bound on the
number of examples that can be inserted into the prompt.

Adaptation actions: ICL, PEFT, and hybrid. For each task T , an
adaptation procedure may take one of the following forms.

1. ICL-only: select demonstrations CT with |CT | ≤ L and produce pre-
dictions using a fixed backbone (no parameter updates). Operationally,
the predictor f̂T is computed by conditioning on ST ∪ CT as context;
our later analysis will identify a special case in which this corresponds
to a regularized linear estimator in the feature space induced by ϕ.

2. PEFT-only: choose a parameter-efficient update ∆T (e.g. adapters,
LoRA) from a constrained family and apply it to the base model at
test time, fitting ∆T using ST for at most s optimization steps. We
constrain the update to have rank at most r, reflecting that only O(dr)
degrees of freedom are permitted.

3. Hybrid: select CT and fit ∆T jointly, using both additional context
and a parameter update.

In all cases, we emphasize that f̂T must be measurable with respect to the
information available at adaptation time: ST , the retrieved candidates from
M, and any randomness internal to the policy.
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Policies. An adaptation policy π ∈ Π is a (possibly randomized) mapping
that, given ST and oracle access to retrieval over M, outputs an action tuple

π(ST ) =
(
CT ,∆T , f̂T

)
,

with |CT | ≤ L and ∆T lying in the admissible PEFT family (rank ≤ r,
at most s steps). The policy class Π may encode additional restrictions,
such as forbidding hybrid composition, fixing L, or limiting the form of the
demo-selection rule.

Cost model. We associate to each task T an adaptation cost that captures
the dominant controllable resources. We take

Cost(T ) := α |CT | + β rs + γ Retr(|CT |), (1)

where α prices context length (prompt tokens or examples), β prices PEFT
optimization effort (rank times steps, standing in for backprop and optimizer
overhead), and γ prices retrieval-system overhead. The function Retr(L)
abstracts the scaling of retrieval latency and/or compute with the requested
number of items, and may reflect the behavior of an approximate nearest
neighbor index or a multi-stage retriever. We allow Retr to be sublinear,
linear, or superlinear, depending on system design; the subsequent results
will not require a specific functional form beyond monotonicity.

Cost-regularized and constrained objectives. We consider two equiv-
alent ways to pose the design problem. The first is a Lagrangian (regularized)
objective: for λ > 0,

Objλ(π) := ET∼qtest

[
LT (f̂

π
T )

]
+ λET∼qtest

[
Costπ(T )

]
, (2)

and we seek infπ∈ΠObjλ(π). Here λ is interpretable as a conversion rate
between error and resource expenditure; varying λ traces different operating
points.

The second formulation is a constrained risk minimization problem. Given
a budget B ≥ 0, we seek

inf
π∈Π

ET∼qtest

[
LT (f̂

π
T )

]
subject to ET∼qtest

[
Costπ(T )

]
≤ B. (3)

Under standard regularity conditions (e.g. convexity in relaxed policy spaces),
(2) is the Lagrangian relaxation of (3); in any case, both objectives provide
a principled mechanism to trade off predictive performance against deploy-
time resources.
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Pareto frontier and the role of hybridization. We define the error–
cost Pareto frontier induced by Π as the set of achievable pairs(

ET [Cost
π(T )], ET [LT (f̂

π
T )]

)
for π ∈ Π,

restricted to those pairs that are not jointly dominated. In this language,
ICL-only, PEFT-only, and hybrid policies correspond to different subsets
of Π, and the central question is whether hybrid policies yield strictly bet-
ter frontiers once domain shift and system costs are accounted for. The
remainder of the paper develops a special-case model in which we can (i) up-
per bound the risk contributions that can be reduced by additional context
versus those that require representation correction, (ii) show that optimal
or near-optimal policies can be realized by explicit gating rules, and (iii)
identify regimes where additional spend is provably futile for certain policy
subclasses.

4 A Clean Special-Case Model: The Linearized Foundation-
Model Regime

We now isolate a special case in which the interaction between in-context
demonstrations and parameter-efficient updates can be studied analytically.
The purpose of the model is not to capture the full behavior of a transformer,
but to provide a regime in which (i) we can write an explicit query risk, (ii)
we can separate estimation effects from representation-shift effects, and (iii)
PEFT admits a clean interpretation as a constrained correction to the feature
map.

Data model and notation. Fix a pretrained backbone inducing an em-
bedding map ϕ : X → Rd, and write z = ϕ(x). For each task T , we posit
a task-specific linear predictor wT ∈ Rd together with an unknown task-
specific shift operator AT ∈ Rd×d. Labels are generated by

y = ⟨wT , AT z⟩ + ξ, (4)

where ξ is mean-zero sub-Gaussian noise with parameter σ2. The Bayes
(noise-free) target for task T is therefore the linear function

f∗
T (x) := ⟨wT , ATϕ(x)⟩.

We measure shift magnitude by the operator norm deviation from identity,

δT := ∥AT − I∥op, δ := sup
T

δT , (5)

and we will be primarily interested in the regime δ ≪ 1 (small but non-
negligible representation shift).
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Feature and covariance assumptions. We assume that, for each task
T , the (marginal) embedding distribution has uniformly well-conditioned
covariance: if z ∼ PT denotes the embedding of a random task input, then

ΣT := E[zz⊤] satisfies µI ⪯ ΣT ⪯ MI (6)

for absolute constants 0 < µ ≤ M < ∞, and z is sub-Gaussian. This is
a standard sufficient condition for ridge-regression generalization rates with
dimension dependence Õ(d/n). We emphasize that (6) is imposed on ϕ, not
on the unknown shifted features AT z; the latter may be ill-conditioned even
if ΣT is benign when δ is moderate.

Retrieval as additional (possibly imperfect) labeled samples. To
focus on the statistical tradeoffs rather than the combinatorics of selecting
demonstrations, we introduce an idealized retrieval model. We assume that
querying the memory M with keys derived from ST returns a candidate
pool PT containing (at least) m labeled examples distributed as i.i.d. draws
from the same task mechanism (4), possibly mixed with irrelevant items.
Concretely, one may view PT as samples from a mixture (1 − η)T + ηR,
where R is a background distribution and η ∈ [0, 1) quantifies retriever
noise. In the cleanest subcase (which we will use when deriving rates), we
take η = 0 so that selecting L demonstrations is equivalent to obtaining L
additional labeled samples from T . In later sections we will return to the
algorithmic question of selecting CT ⊆ PT under |CT | ≤ L when η > 0 and
when selection is computationally constrained.

ICL as ridge regression in fixed features. We specialize to squared
loss and linear predictors in the ϕ-feature space. Given any labeled dataset
D = {(zi, yi)}ni=1 (in our setting D will be the concatenation of ST and CT ,
hence n = K + L), define the ridge estimator

û(D) := arg min
u∈Rd

1

n

n∑
i=1

(
yi − ⟨u, zi⟩

)2
+ ρ∥u∥22, (7)

and the corresponding predictor f̂D(x) := ⟨û(D), ϕ(x)⟩. In the linearized-
foundation-model literature, there are settings in which the in-context com-
putation of a transformer provably implements (or closely approximates) a
ridge-type estimator in a fixed feature space; we take (7) as our analytic
proxy for ICL-only adaptation.

Under (4), the ridge model ⟨u, z⟩ is generally misspecified relative to
the shifted target ⟨wT , AT z⟩ unless the shift can be represented within the
fixed feature geometry without altering the embedding map. A convenient
way to formalize the resulting irreducible component is to define the best

12



approximation within the frozen-feature class,

u†T := arg min
u∈Rd

E
[
(⟨u, z⟩ − ⟨wT , AT z⟩)2

]
, (8)

so that the excess query risk of any frozen-feature method decomposes into
an estimation term (how well we estimate u†T from finitely many labels)
plus an approximation term (how far ⟨u†T , z⟩ is from f∗

T ). Under (5)–(6),
the approximation term can be bounded on the order of δ2T ∥wT ∥22 (up to
conditioning factors), while the estimation term for (7) scales as Õ(σ2d/(K+
L)). This is precisely the regime in which adding demonstrations reduces
variance but cannot remove the part of the error attributable to the shift
operator.

PEFT as a low-rank correction to the effective feature map. We
model PEFT as introducing a task-specific linear correction to the embedding
map. Specifically, we take the adapted feature map to be

ϕ∆T
(x) := (I +∆T )ϕ(x), (9)

where ∆T ∈ Rd×d is constrained to have rank at most r. This abstraction
captures, in the linearized regime, the effect of rank-r adapter families (e.g.
LoRA-style updates) on the final representation, while keeping the analysis
at the level of the embedding space. Given ST , the PEFT-only estimator
fits ∆T (and, optionally, a linear readout) using at most s gradient steps; in
the quadratic model, this corresponds to a regularized least-squares fit over
O(dr) free parameters.

The key analytic point is that ∆T allows us to approximate the unknown
shift AT by a low-rank operator. Writing AT = I + ET , the best rank-r
approximation ET,r (in spectral norm or in the geometry induced by ΣT )
yields a residual ∥ET − ET,r∥2op that, for worst-case shifts, scales as δ2T /r.
Consequently, after fitting a rank-r adapter, the shift-induced component of
the excess risk can be reduced from order δ2T ∥wT ∥22 to order (δ2T /r)∥wT ∥22,
at the expense of paying estimation error from using only K labeled points
and the optimization cost of fitting ∆T . This is the formal mechanism by
which PEFT trades additional compute/parameters for robustness to repre-
sentation shift.

Taken together, the frozen-feature (ICL) estimator (7) and the adapted-
feature (PEFT) model (9) provide a minimal setting in which we can reason
about when additional context is statistically useful, when it is provably in-
sufficient, and how rank-constrained correction yields the error–cost tradeoffs
that will be exploited by the hybrid algorithms in the next section.
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5 Algorithms: Hybrid Adaptation via Cost-Aware
Gating

We now describe (i) an analytic hybrid policy in the clean special case of Sec-
tion 4, and (ii) a practical policy template that instantiates the same decision
logic under realistic retrieval noise and strict per-task budgets. The common
structure is: from the support set we compute a cheap shift/uncertainty score
uT , we use retrieval to assemble a small pool of candidate demonstrations,
we select CT under |CT | ≤ L, and we decide whether to incur the additional
cost of fitting a rank-r update ∆T .

5.1 An analytic hybrid policy in the clean retrieval subcase

We first consider the idealization in which retrieval returns i.i.d. samples
from the same task mechanism, so that choosing |CT | = L is equivalent to
observing L additional labeled samples. In this regime, the upper bounds
of Thm 1 directly induce a per-task proxy objective for each action. Writ-
ing Cost(T ) = αL + βrs + γ Retr(L), we define the following bound-driven
surrogates:

UBICL
T (L) := c1 σ

2 d

K + L
+ c2 uT , (10)

UBPEFT
T (r) := c1 σ

2 d

K
+ c3

uT
r
, (11)

UBhyb
T (L, r) := c1 σ

2 d

K + L
+ c3

uT
r
, (12)

for absolute constants ci > 0. Here uT is any statistic computed from ST that
upper bounds (up to constants and conditioning factors) the shift-induced
term δ2T ∥wT ∥22; we will provide concrete estimators below. Given λ > 0,
the analytic policy chooses the action minimizing the corresponding cost-
regularized proxy:

(LT , rT ,modeT ) ∈ arg min
0≤L≤Lmax
0≤r≤rmax

{
min

(
UBICL

T (L) + λ(αL+ γ Retr(L)), UBPEFT
T (r) + λ(βrs), UBhyb

T (L, r) + λ(αL+ βrs+ γ Retr(L))
)}

.

(13)

In the clean case where Retr(L) is nondecreasing and L, r are small enough
to allow enumeration, (13) is computationally trivial. More importantly, it
makes explicit that the gating is determined by the single scalar uT : for
fixed (K, d, σ2, λ) and fixed system costs (α, β, γ), the preference ordering
among ICL, PEFT, and hybrid changes at thresholds proportional to uT .
For example, comparing (10) and (11) yields a sufficient condition of the
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form

uT ≳
σ2d
1
r − 0

+ λ
(
βrs−αL−γ Retr(L)

)
=⇒ prefer PEFT to ICL,

(14)
with constants suppressed. In words: if the inferred shift is large enough that
the uT /r correction dominates the additional estimation term, then PEFT is
worth paying for; if uT is small, additional context is preferred since it reduces
only the estimation component. The hybrid mode becomes favorable when
K is small (so σ2d/K is large) and uT is non-negligible (so some correction
is needed), exactly matching the qualitative behavior of Thm 1.

5.2 A practical gating policy template

We now give a deployable template that approximates (13) while respect-
ing the “no leakage” constraint (adaptation uses only ST and corpus items
independent of query labels).

Step 1: compute a shift/uncertainty score uT . We require uT to be
cheap and monotone in representation mismatch. Three concrete choices
are:

1. Residual-based score. Fit the frozen-feature ridge estimator on ST ,
obtaining ûT . Define

uT :=
1

K

∑
(xi,yi)∈ST

(
yi − ⟨ûT , ϕ(xi)⟩

)2 − σ̂2,

clipped at 0. In the well-specified case this concentrates near 0; under
shift it captures systematic error beyond noise.

2. Geometry-based score. Maintain corpus-level source statistics (µ̂0, Σ̂0)
for embeddings. Let z̄T be the mean support embedding and let Σ̂T

be the empirical covariance on ST . Define

uT := ∥Σ̂−1/2
0 (z̄T − µ̂0)∥22 + ∥Σ̂−1/2

0 (Σ̂T − Σ̂0)Σ̂
−1/2
0 ∥2F.

This detects domain shift even when labels are scarce or noisy.

3. Influence/condition score. Use the ridge design matrix Z ∈ RK×d with
rows z⊤i . Set uT := tr

(
(Z⊤Z+KρI)−1

)
, which proxies predictive vari-

ance; large values indicate the frozen representation is poorly aligned
with the task-relevant directions.

Any of these can be computed in one pass over ST (and possibly with pre-
computed corpus statistics).
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Step 2: retrieve a candidate pool and select demonstrations. Given
a pool PT = Retrieve(M, ST ,m), we choose CT ⊆ PT by maximizing a
monotone submodular surrogate under |CT | ≤ L. A canonical choice consis-
tent with ridge-risk reduction is log-determinant information gain:

U(C) := log det
(
I + 1

ρ

∑
(x,y)∈ST∪C

ϕ(x)ϕ(x)⊤
)
, (15)

for which greedy selection attains a (1− 1/e)-approximation when submod-
ularity conditions hold. In practice, we evaluate marginal gains using incre-
mental Cholesky updates in a low-dimensional sketch (e.g. random projec-
tions of ϕ(x)) to keep selection cost sublinear in d.

Step 3: decide ICL vs. PEFT vs. hybrid under a budget. We imple-
ment a two-threshold gate. First, we choose LT by trading off αL+γ Retr(L)
against the marginal reduction in an uncertainty proxy (e.g. the drop in
tr((Z⊤Z + ρI)−1) after adding candidates). Second, we decide whether to
train an adapter by comparing uT to a learned or calibrated threshold τ(λ,B)
derived from (14). Concretely:

uT ≤ τ ⇒ ∆T = 0 (ICL-only), uT > τ ⇒ fit rank-r adapter for s steps.

When a strict per-task budget B is imposed, we choose the largest feasible
LT and (rT , sT ) satisfying αLT + βrT sT + γ Retr(LT ) ≤ B, and we apply
the gate within that feasible set; equivalently, we run the Lagrangian form
with λ tuned so that the realized average cost matches B.

This template mirrors the analytic policy while isolating all implemen-
tation dependence into: (i) the design of uT , (ii) the retrieval and selection
heuristic for CT , and (iii) the calibration of τ and the mapping from budget
to (L, r, s). In Section 6 we will upper bound the resulting excess risk by
combining (a) estimation terms controlled by K and L and (b) shift terms
controlled by uT and the chosen rank r, and we will relate the gate to near-
Pareto optimality within the restricted policy class.

6 Upper Bounds: Generalization and Cost–Error
Tradeoffs

We now turn the bound-driven surrogates of Section 5 into explicit excess-
risk guarantees and an error–cost characterization. For a task T , we write
the excess query risk of an adapted predictor f̂T as

ET (f̂T ) := E
[
LT (f̂T )

]
− LT (f

∗
T ),

where the expectation is over the support/query sampling and the noise ξ,
and f∗

T denotes the Bayes-optimal predictor within the assumed linearized
model.
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A three-term decomposition. In the linearized regime y = ⟨wT , ATϕ(x)⟩+
ξ, the dominant contributions to ET separate into:

1. Estimation due to finite labeled data used by the final linear predictor
in feature space;

2. Shift due to using the unshifted representation ϕ when the task is
realized through ATϕ;

3. Approximation/optimization due to constraining the adaptation mech-
anism (e.g. rank-r adapters and s optimization steps).

Concretely, if f̂ ICL
T is ridge regression in frozen features ϕ using K+L labeled

examples (support plus demonstrations), standard sub-Gaussian generaliza-
tion bounds yield

ET (f̂ ICL
T ) ≤ O

(
σ2 d

K + L

)
+ O

(
∥(AT − I)⊤wT ∥22

)
, (16)

where the first term is the familiar d/n rate (up to logs and covariance
conditioning), and the second term is a shift penalty which in particular is
bounded by O(δ2∥wT ∥22) under ∥AT − I∥op ≤ δ. This makes precise the
qualitative limitation: increasing L suppresses only estimation, not shift.

If instead we fit a rank-r adapter, we may view it as learning a rank-r
correction to the effective feature map. In the idealized convex setting (linear
ridge over adapted features), we obtain

ET (f̂PEFT
T ) ≤ O

(
σ2 d

K

)
+ O(Tailr(T )) + OptErr(s), (17)

where Tailr(T ) measures how well the shift direction can be corrected by
a rank-r update. Under the isotropic truncation model used in Thm 1,
Tailr(T ) = O(δ2∥wT ∥22/r). More generally, if (σj)j≥1 are singular values of
AT−I, then one may take Tailr(T ) proportional (up to covariance factors) to∑

j>r σ
2
j ∥wT ∥22, emphasizing that low-rank PEFT is effective precisely when

the shift is concentrated on a low-dimensional subspace. Finally, OptErr(s)
captures imperfect fitting with s steps; for strongly convex objectives and
appropriate step size, one may take OptErr(s) ≤ (1−ηµ)s ·OptErr(0), while
for stochastic optimization it is standard to obtain OptErr(s) = O(1/s) up
to variance terms.

The hybrid predictor f̂hyb
T , which uses both demonstrations and an adapter,

inherits the improved estimation term O(σ2d/(K + L)) and the improved
shift term Tailr(T ), plus the same optimization residual:

ET (f̂hyb
T ) ≤ O

(
σ2 d

K + L

)
+ O(Tailr(T )) + OptErr(s). (18)
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Cost–error optimization and parameter dependence. We now con-
nect (16)–(18) to the cost model

Cost(T ) = αL+ βrs+ γ Retr(L).

For a fixed task T , if we temporarily ignore Retr(L) and discretization effects,
the minimizers of the cost-regularized surrogates exhibit explicit scaling. For
ICL-only, minimizing c σ2d/(K + L) + λαL yields

L∗
T ≈

(√
c σ2d
λα −K

)
+
,

illustrating that (i) larger λ forces shorter context, (ii) larger d or σ2 makes
additional demonstrations more valuable, and (iii) when K is already large,
the optimal incremental context quickly drops to zero. For PEFT-only with
Tailr(T ) ≍ uT /r (as in Thm 1), minimizing c′uT /r + λβrs yields

r∗T ≈
√

c′uT
λβs ,

so that large inferred shift uT justifies higher rank, whereas expensive adap-
tation (large β or s) pushes toward smaller rank. Hybrid choices combine
these scalings, with L responding primarily to the estimation term and r
responding primarily to the shift term. The dependence on δ enters through
uT : in the worst case uT ≍ δ2∥wT ∥22, and hence the best achievable shift
penalty under rank-r correction scales as δ2/r up to constants.

When retrieval is imperfect, we may add an explicit retrieval bias term
εretr(m,L) to (16) and (18) capturing the discrepancy between the distribu-
tion of retrieved items and the true task distribution; in the clean subcase
εretr = 0. This term increases with aggressive selection from a small or mis-
matched corpus and is the point at which system design (indexing, filtering,
diversity constraints) enters the statistical guarantee.

Near-Pareto optimality among restricted policy classes. We finally
relate the gating policy to the cost–error Pareto frontier. Consider the re-
stricted policy class Π of per-task choices among ICL-only, PEFT-only, and
hybrid, each with bounded (L, r, s) as in Section 5. For λ > 0, define the
cost-regularized value of a policy π ∈ Π by

Vλ(π) := ET∼qtest

[
LT (f̂

π
T )

]
+ λET∼qtest

[
Costπ(T )

]
.

Thm 2 asserts that an explicit threshold rule using observable statistics from
ST achieves

Vλ(πgate) ≤ O(log d) · inf
π∈Π

Vλ(π).

The proof compares (task by task) the upper bounds (16)–(18) plus costs,
and uses concentration to show that the estimated shift score uT is suffi-
ciently accurate to select the same mode as the oracle minimizer up to log-
arithmic slack. By standard Lagrangian duality, varying λ traces a Pareto
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frontier between expected loss and expected cost; thus, within Π, the gating
policy is near-Pareto optimal up to the same O(log d) factor in the regular-
ized objective, and hence attains (up to logarithmic degradation) the best
achievable error at any prescribed average cost level.

In summary, the upper bounds separate the roles of K, L, r, s, and δ:
context primarily combats estimation through K + L, adapters primarily
combat shift through rank r (and are limited by optimization budget s), and
the gate selects the least costly mechanism whose bound is competitive for
the observed task statistics.

7 Lower Bounds and Impossibility

The upper bounds of Section 6 are only meaningful insofar as they are un-
avoidable: we now show that the dependence on the shift magnitude δ can-
not, in general, be eliminated by frozen-representation adaptation, and that
the 1/r improvement afforded by rank-r correction is essentially optimal (up
to logarithmic factors and conditioning constants). Throughout we empha-
size minimax and worst-case statements, since the goal is to delineate what
cannot be achieved uniformly over a class of cross-domain tasks.

ICL-only cannot uniformly eliminate representation shift. We for-
malize “ICL-only” as any policy that, upon observing (ST , CT ), outputs a
predictor whose dependence on inputs x is mediated solely through the fixed
embedding ϕ(x); in particular, the policy may be arbitrarily powerful com-
putationally and may choose demonstrations CT adaptively, but it performs
no parameter update that changes the effective representation seen at test
time. Thm 3 states that this restriction alone implies an irreducible shift
floor: there exists a task family with ∥AT − I∥op = δ for which every such
policy suffers excess risk Ω(δ2) in the worst case.

A convenient way to see why such a phenomenon occurs is to construct
two hypotheses T0, T1 whose induced distributions over the observable ran-
dom variables (ST , CT ) are (nearly) indistinguishable, but whose Bayes pre-
dictors differ on the query distribution by a fixed amount. Concretely, we
choose a feature distribution for ϕ(x) supported on a low-dimensional sub-
space U ⊂ Rd on which AT0 and AT1 act identically, while ensuring that
the query distribution has nontrivial mass on another subspace U⊥ where
the two shift operators differ. Since an ICL-only predictor is a measurable
function of (ST , CT ) and ϕ(·), it cannot infer which of the two tasks it is
facing (the observations are the same), and hence must incur error on one of
them. In the simplest Gaussian instantiation, one may take ϕ(x) ∼ N (0, Id)
for queries but ϕ(x) ∼ N (0, PU ) for the labeled information available to
the policy (support plus any admissible retrieved demonstrations), and then
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choose
AT0 = I, AT1 = I + δ uv⊤,

with u ∈ U⊥, v ∈ U⊥, ∥u∥2 = ∥v∥2 = 1, and wT aligned with u. The two
tasks agree on all labeled observations (since those live in U), yet differ on
the query labels through the component v⊤ϕ(x) which is invisible during
adaptation. A standard Le Cam two-point argument then yields

inf
ICL-only π

sup
T∈{T0,T1}

ET (f̂π
T ) ≳ δ2,

where the constant depends only on the signal/noise normalization. This is
the content of Thm 3: even with arbitrarily many demonstrations (L → ∞)
drawn from an arbitrarily large corpus, if the policy cannot change the rep-
resentation used at test time, there exist shifts that are statistically unde-
tectable from the adaptation information and hence cannot be corrected.

Retrieval does not circumvent the lower bound without representa-
tion correction. The same indistinguishability perspective explains why
optimizing CT cannot, by itself, eliminate the worst-case shift penalty. If
the retrieval mechanism is constrained to return demonstrations whose em-
beddings lie in the same “observable” sigma-algebra (for example, governed
by the same corpus distributional support), then there exist shifts that are
orthogonal to every piece of information the policy can condition on. In
such cases, increasing L improves estimation in the accessible subspace but
leaves a bias term whose magnitude is controlled by ∥AT − I∥op, yielding
precisely the kind of δ-dependent floor highlighted in Section 6. This clarifies
the logical role of PEFT in our framework: it is not merely a data-efficiency
device, but a mechanism for changing the effective hypothesis class so that
previously unidentifiable shift directions become representable.

A rank requirement: no method with rank-r correction can beat
δ2/r in general. We next justify the rate in the PEFT shift term by
showing that low-rank correction has an inherent approximation barrier.
Thm 4 asserts that for a suitable family of shifts, any method constrained to
a rank-r correction incurs minimax excess risk Ω(δ2/r). One may view this as
a spectral “packing” statement: if the unknown shift AT−I spreads its energy
across Θ(r) nearly orthogonal directions, then any rank-r update must leave
a nontrivial tail, and the resulting uncorrected component produces error
proportional to that tail energy.

A concrete construction is to take AT−I to be a random sign combination
of m orthogonal rank-one directions,

AT − I =
δ√
m

m∑
j=1

εj ujv
⊤
j , εj ∈ {±1},
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with {uj}mj=1 and {vj}mj=1 orthonormal families, and choose m ≍ r (or
larger). Any rank-r approximation can capture at most r directions, leaving
residual operator norm and Frobenius mass on the remaining components.
When wT has nontrivial projection on the affected subspace, the induced er-
ror behaves like the squared magnitude of the uncorrected shift component,
which yields a lower bound of order δ2/r after averaging over the random
signs (or taking a worst-case realization). Technically, one couples this ap-
proximation argument with a minimax lower bound for estimating a low-rank
matrix from K samples, producing the stated dependence on δ and r up to
universal constants.

Tightness and interpretation. Taken together, Thm 3 and Thm 4 show
that the qualitative behavior in Thm 1 is essentially sharp: frozen-feature
adaptation cannot remove worst-case shift (Ω(δ2)), whereas allowing rank-r
representation correction yields the best possible uniform improvement fac-
tor r in the shift-induced term (Θ(δ2/r)). In particular, the upper bound
ET (f̂PEFT

T ) ≲ σ2d/K + δ2∥wT ∥22/r cannot be improved in its (δ, r) depen-
dence without strengthening assumptions on the task family (e.g., stronger
structure on AT , alignment between wT and the top singular directions of
AT − I, or access to additional supervision that reveals the hidden shift
directions).

Finally, these lower bounds justify the design of a cost-aware hybrid
gate: when the estimated shift is small, PEFT is unnecessary because the
δ-dependent term is dominated by estimation; when the shift is large, ICL-
only is information-theoretically insufficient in the worst case, so spending
budget on rank (and steps) is the only route to uniformly improved error.
Having established what is statistically achievable, we next turn to what
is computationally achievable: even when additional demonstrations would
help, selecting them optimally is, in general, intractable, motivating the
approximation-oriented retrieval and selection procedures analyzed in the
next section.

8 Computational Complexity and Hardness

We now account for the computational resources required by hybrid adap-
tation and clarify why, even when additional demonstrations are statis-
tically beneficial, selecting them optimally is generally intractable. This
complements the statistical lower bounds of Section 7 by separating what
is information-theoretically impossible from what is computationally pro-
hibitive.

Per-task resource model. Recall that an admissible policy, upon observ-
ing the support set ST of size K, may (i) embed inputs via ϕ, (ii) query a
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retrieval structure over M to obtain a candidate pool, (iii) select a context
set CT with |CT | ≤ L, and (iv) optionally fit a rank-r adapter ∆T for at
most s steps. In our RAM-style abstraction, the dominant costs decompose
into forward embedding evaluations, retrieval and selection overheads, and
(if enabled) adapter optimization. Writing Tϕ for the time of one backbone
forward pass, the embedding stage costs O((K + L)Tϕ) once we have com-
mitted to a context of size L; if embeddings for M are precomputed, then
retrieval need only operate in Rd.

A typical retrieval pipeline first returns a pool PT of size m (often m ≫ L)
using an approximate nearest-neighbor (ANN) index. We keep this cost
abstract as Retr(m), since it depends on the data structure (HNSW, IVF-
PQ, LSH) and on the desired recall. Once a pool is obtained, selecting L
elements from PT can range from trivial (top-L by similarity) to expensive
(solving a combinatorial optimization).

Finally, if we run PEFT, the update ∆T has O(dr) degrees of freedom
(e.g., LoRA-style low-rank factors) and is optimized for s steps using only
ST . Ignoring constant factors from backpropagation, a crude but informative
bound is O(sdr) arithmetic operations for adapter-only updates; the full
wall-clock cost depends on the implementation (activation checkpointing,
batch size K, and whether multiple layers are adapted), but the scaling in
(s, d, r) captures the essential tradeoff.

Hardness of optimal demonstration selection. Even in the linearized
regime where ICL corresponds to ridge regression in fixed features, the prob-
lem

min
C⊆PT : |C|≤L

E
[
LT (f̂

ICL
T (ST ∪ C))

]
is computationally difficult in general. Thm 5 formalizes this by showing
NP-hardness of selecting a size-L subset C that optimizes downstream risk
(or equivalently maximizes a natural notion of improvement). The reduction
is standard in spirit: one encodes a Max-Cover or Facility-Location instance
into a set of candidate demonstrations, and defines a task-dependent utility
such that including a demonstration corresponds to “covering” an element (or
opening a facility) in the underlying instance. Any algorithm that solved the
demonstration selection problem exactly in polynomial time would therefore
solve an NP-hard combinatorial problem, implying P = NP .

We emphasize that this hardness is not an artifact of exotic loss functions
or nonconvex training. It persists even when the downstream predictor is
a closed-form ridge solution in fixed features: the combinatorial difficulty
arises from the interaction between subset choice and the geometry of the
resulting design matrix in Rd.

Submodular surrogates and greedy approximation. Given NP-hardness,
we must either restrict the instance family or adopt approximation algo-
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rithms. A common and analytically convenient approach is to replace the
true risk objective by a surrogate utility that is (approximately) monotone
submodular. Concretely, let Z(C) ∈ R|C|×d be the matrix whose rows are
embedded features ϕ(x) of candidates in C, and consider the information-
gain objective

U(C) := log det
(
I + 1

ηZ(C)⊤Z(C)
)
,

for some η > 0. Under mild conditions, U is normalized, monotone, and
submodular as a set function of C. Intuitively, the marginal gain of adding
a new demonstration decreases as the selected set already spans the relevant
directions in feature space. When such a surrogate is used (possibly with
task-dependent reweighting based on ST ), the classic Nemhauser–Wolsey
theorem yields that greedy selection achieves a (1 − 1/e)-approximation to
the optimal U(C) subject to |C| ≤ L. This is precisely the approximation
guarantee cited in Thm 5.

From an implementation perspective, greedy selection requires evaluat-
ing L rounds of marginal gains over a pool of size m, leading to O(Lm)
utility evaluations. When U admits incremental updates (e.g., via the ma-
trix determinant lemma and maintaining a Cholesky factor of I + 1

ηZ
⊤Z),

each marginal gain can be computed in O(d2) time naively or faster with
low-rank structure and cached inverses; in practice one often operates in a
reduced dimension or uses diagonal/structured approximations to keep the
per-evaluation cost small. Abstractly, we summarize this as O(Lmcu), where
cu is the per-candidate marginal-gain cost.

Overall per-task complexity and dominant regimes. Putting the
pieces together, a representative per-task time bound is

O
(
(K + L)Tϕ + Retr(m) + Lmcu + sdr

)
,

where the last term is incurred only if the gate triggers PEFT. This decom-
position highlights the regimes in which different components dominate:

• Large corpus / high recall: retrieval dominates. When |M| is large
and high recall is demanded, Retr(m) and subsequent selection over
a large pool m can dominate, even if r and s are modest. In such
cases, reducing m, using cheaper similarity keys derived from ST , or
replacing greedy with lighter heuristics can provide substantial savings
with limited accuracy loss.

• Large drs: adapter optimization dominates. When we allow higher-
rank adapters or multiple steps, the sdr scaling can exceed retrieval
costs, particularly when the backbone is large and the adapter back-
propagation is not fully optimized. This is the regime in which the
cost term βrs is an accurate proxy for wall-clock time, and the gate
meaningfully trades compute for reduced shift penalty (cf. Thm 1).
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• Small m and small r: embedding evaluation dominates. If retrieval is
lightweight (small m) and PEFT is either off or very small, then the
repeated forward passes (K +L)Tϕ may be the bottleneck, motivating
embedding caching and careful batching.

Thus, the cost-aware design is not merely a modeling convenience: the same
parameters (L, r, s) that control statistical error also control computational
feasibility, and the hybrid gate can be interpreted as a mechanism for allo-
cating time across retrieval, selection, and optimization in a task-adaptive
manner.

9 Extensions Beyond the Special Case

Our analysis above is stated in a squared-loss linear model on fixed em-
beddings, with PEFT modeled as a low-rank correction that reduces rep-
resentation shift. We now indicate several extensions in which the same
error–cost tradeoffs and gating logic persist, albeit with modified technical
tools. Throughout, we maintain the episodic protocol: the policy observes
only ST (and a retrieval corpus M), produces an adapted predictor f̂T , and
is evaluated on QT .

Classification via logistic/softmax linearization. For binary classifi-
cation, suppose that conditional on x the label satisfies a logistic model

P(y = 1 | x, T ) = σ
(
⟨wT , ATϕ(x)⟩

)
, σ(t) = 1

1+e−t ,

and we evaluate the expected logistic loss ℓ(y, t) = log(1 + exp(−yt)) with
y ∈ {±1}. In the regime where the logits remain in a bounded range on
the support and query distributions (a standard condition ensuring strong
convexity of the empirical risk), ridge logistic regression in the fixed embed-
ding behaves similarly to ridge least squares, with the substitution of the
feature covariance by the Hessian-weighted covariance. Concretely, letting
HT denote the Hessian of the population logistic risk at the task optimum,
we may treat

√
HT ATϕ(x) as the effective feature map; estimation error

scales as O( d
K+L) up to condition numbers, while the shift penalty depends

on ∥AT − I∥op through perturbation bounds for HT .
For multi-class classification with N classes, we similarly consider a

softmax model with class weight vectors wT,1, . . . , wT,N ∈ Rd and logits
⟨wT,c, ATϕ(x)⟩. One convenient reduction is to linearize the softmax cross-
entropy around a reference point w0 (e.g., the pretrained head or a meta-
learned initialization) and analyze the local quadratic approximation given
by the Fisher information. This yields, on a per-task basis, a generalized
ridge problem in a feature space of dimension d(N − 1) with a block struc-
ture. In this view, ICL corresponds to fitting a linearized classifier in frozen
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features using K +L examples, while PEFT again acts by modifying the ef-
fective features through a low-rank correction. The resulting bounds inherit
the same qualitative structure as Thm. 1: an estimation term controlled by
the number of labeled examples used by the in-context procedure, and a
shift term that PEFT reduces at a rate governed by the rank r, now with
constants depending on softmax curvature and class separability.

Partially labeled and semi-supervised support sets. In many few-
shot episodes, only a subset of support points carry labels. Let Sℓ

T denote Kℓ

labeled examples and Su
T denote Ku unlabeled examples, with Kℓ+Ku = K.

In the linearized regression regime, unlabeled points can improve adaptation
in two distinct ways. First, they provide a better estimate of the task-
specific feature covariance under the shifted representation ATϕ(x). If we
perform ridge regression with a covariance preconditioner estimated from Su

T

(or use a whitening transform derived from unlabeled embeddings), then the
sensitivity of the predictor to shift directions can be reduced even before
invoking PEFT. Second, unlabeled points can be used transductively: one
may choose CT and/or ∆T to minimize a supervised objective on Sℓ

T plus
an unsupervised regularizer on Su

T (e.g., entropy minimization or consistency
under small perturbations in embedding space). In the linear model, a nat-
ural regularizer is

∑
x∈Su

T
∥ŵ⊤ϕ(x)∥2, which biases toward predictors stable

on the task marginal.
From the standpoint of our hybrid policy, unlabeled data also sharp-

ens the gating statistic uT . A shift score based only on Kℓ labeled points
can be noisy; incorporating Su

T allows us to estimate dispersion and out-of-
domain distances in Rd with variance shrinking like 1/K. This reduces the
probability of choosing the wrong action (ICL-only versus PEFT-enabled)
and hence improves the competitive ratio analysis implicit in Thm. 2. Impor-
tantly, using Su

T does not alter the cost accounting except through additional
embedding computations (already present in our model), so the same cost
regularizer αL+ βrs+ γ Retr(L) applies.

Federated clients as tasks and communication cost. A practically
salient instantiation of qtest is a federated population, where each task T
corresponds to a client domain with its own support set ST (often non-IID
across clients). In this setting, adaptation can be executed locally, while
retrieval and model parameters may be hosted centrally. The hybrid frame-
work extends by augmenting the per-task cost with a communication term.
For example, if the policy transmits an adapter update ∆T (or sufficient
statistics derived from ST ) to a server, we may define

Costfed(T ) := αL+ βrs+ γ Retr(L) + ρComm(T ),

where Comm(T ) measures bits sent/received and ρ converts bandwidth into
a cost weight. Low-rank adapters are naturally communication-efficient:
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sending LoRA factors requires O(dr) scalars rather than O(d2), and in many
deployments one can further quantize or sparsify these factors. Retrieval can
be handled either centrally (client sends a query key derived from ST ) or lo-
cally (client maintains a private subset of M); the former introduces privacy
and communication constraints, while the latter introduces memory con-
straints. In either case, the gating logic remains: we compare the predicted
marginal loss reduction from enabling PEFT (or enlarging L) against the
marginal increase in Costfed(T ), now including Comm(T ).

Calibration, uncertainty, and PAC-Bayes-style bounds. Finally, the
hybrid policy is only as reliable as its ability to assess uncertainty and shift.
Beyond point estimates of uT , we can maintain a distribution over task pre-
dictors to obtain calibrated probabilities and principled decision rules. One
route is PAC-Bayes: for each task T , we consider a posterior QT over predic-
tors (e.g., over wT in the frozen-feature model, or over adapter parameters
in the PEFT model) obtained from ST , with a prior P derived from meta-
training. Standard PAC-Bayes inequalities then yield, with high probability
over ST ,

Ef∼QT

[
LT (f)

]
≤ L̂ST

(QT ) + O

(√
KL(QT ∥P)+log(1/δ0)

K

)
,

for a confidence parameter δ0. In our context, KL(QT ∥P) acts as a com-
plexity penalty that is sensitive to whether we (i) rely on ICL-only (small
posterior shift), (ii) fit a larger-rank adapter (larger parameter movement),
or (iii) combine both. Thus the same ingredients that enter Cost(T ) also
enter an uncertainty-aware upper bound on risk, providing a coherent basis
for gating: we can choose the action minimizing an explicit upper confidence
bound plus λCost(T ). Separately, calibrated predictive uncertainty can be
used to order or filter demonstrations (preferring those that reduce poste-
rior variance in directions most relevant to ST ), thereby connecting selection
heuristics to provable generalization control.

These extensions suggest that the linearized squared-loss case is best
viewed as a minimal template: once we can express adaptation as control-
ling an estimation term and a shift/approximation term under resource con-
straints, the same hybrid mechanism and error–cost frontier persist across
classification, semi-supervision, federated deployment, and uncertainty-aware
decision-making.

10 Experimental Plan: Empirically Stress-Testing
the Theory

We outline an experimental program whose purpose is to (i) instantiate the
objective E[LT (f̂T )]+λE[Cost(T )] with measurable surrogates, (ii) trace the
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induced error–cost Pareto frontier for a family of admissible policies, and (iii)
exhibit qualitative behaviors predicted by Thms. 1–5, including regimes in
which ICL-only saturates under shift and regimes in which low-rank PEFT
yields a predictable improvement as a function of r and s.

Benchmarks and task construction (cross-domain few-shot). We
focus on cross-domain few-shot learning (CD-FSL) episodes in which qtrain
and qtest differ by domain, label space, or both. Concretely, we propose
standard CD-FSL suites in vision (e.g., train on a source such as miniIm-
ageNet and test on targets such as CUB, Cars, Places, Plantae; or more
severe shifts such as DomainNet), and, when applicable, analogous suites in
language (domain-shifted classification and regression tasks with a shared
backbone and episodic support/query splits). Each episode T provides ST

(size K) and QT , with N -way-K-shot sampling for classification and K-shot
sampling for regression. We log both average risk and tail behavior across
tasks (e.g., quantiles over T ∼ qtest), since gating is intended to control
per-task allocation rather than only mean performance.

Policies and ablations. We evaluate a family of policies aligned with the
restricted class Π considered in Thm. 2. At minimum, we include:

1. ICL-only: choose CT ⊆ M with |CT | ≤ L (vary L), no parameter
update (∆T = 0).

2. PEFT-only: set CT = ∅, fit a rank-r adapter for s steps on ST (vary
r, s).

3. Hybrid (ours): retrieve/select CT and optionally fit ∆T according to
a gating statistic uT and a threshold τ(λ).

4. Full finetune (upper envelope): update the full model (or full
head) for a fixed compute budget, recorded as a high-cost reference
point rather than a competitor under the same constraints.

5. Oracle variants: (a) oracle gating that chooses among ICL/PEFT/hybrid
using query labels (infeasible, used only to upper-bound the achievable
frontier), and (b) oracle retrieval that provides an idealized CT (e.g.,
nearest neighbors in a privileged embedding) to isolate retrieval failures
from adaptation failures.

Within each policy, we ablate (i) retrieval pool size m, (ii) demonstration se-
lection (random, similarity-based, and greedy submodular surrogates), (iii)
ordering of demonstrations in the context (random order, similarity order, di-
versity order), and (iv) adapter initialization (zero, pretrained default, meta-
learned prior). These ablations separate the contributions of Retrieve(·),
SelectDemos(·), and the adapter optimization routine.
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Cost measurement and normalization. Our theoretical cost is Cost(T ) =
αL + βrs + γ Retr(L). Experimentally, we will report both (i) this proxy
cost under user-chosen (α, β, γ) and (ii) direct system measurements: wall-
clock latency, number of forward passes, number of backward passes, peak
memory, and retrieval query time. The intent is not to enforce a single
universal conversion between these units, but to verify that conclusions are
stable across reasonable calibrations. For each λ, we compute the empirical
objective

Ĵλ(π) :=
1

n

n∑
j=1

L̂Tj (f̂
π
Tj
) + λ

1

n

n∑
j=1

Ĉost(Tj ;π),

and we sweep λ to trace an empirical Pareto curve. We additionally report
the achieved distribution of chosen actions (ICL-only vs PEFT-enabled) as
a function of λ, which is a direct observable consequence of the gating mech-
anism.

Robustness under domain shift and label mapping. To connect to
the shift parameter δ, we propose controlled stress tests in which shift mag-
nitude is increased along interpretable axes. In vision, this includes cor-
ruptions and style shifts (blur, noise, color jitter, texture bias) and domain
transfer (photographic to sketch/clipart). In language, we include tempo-
ral drift, topic drift, and instruction paraphrases that preserve semantics
but alter surface form. For classification, we add a label mapping shift : re-
trieved demonstrations may come from a label set whose names or indices
do not match the current task. We explicitly test policies under (i) cor-
rect mapping, (ii) permuted mapping, and (iii) ambiguous mapping where
only textual class descriptions are provided. The hypothesis consistent with
Thm. 3 is that, when the effective mapping or representation is shifted in a
way not expressible as additional labeled examples in a fixed feature space,
ICL-only performance saturates even as L grows, whereas PEFT can recover
by altering the representation (subject to the rank constraint).

Failure cases aligned with lower bounds. We will include synthetic
and semi-synthetic episodes designed to make the lower-bound mechanisms
visible rather than merely implicit. For Thm. 3, we construct tasks where
the discriminative direction lies largely in a shifted subspace (e.g., apply a
hidden orthogonal transform AT on embeddings or on a learned intermedi-
ate layer) such that the conditional distribution of ϕ(x) under the observed
support is insufficient to identify the correct predictor without modifying
the representation. We then evaluate ICL-only as L increases (including ide-
alized CT ) to confirm the predicted plateau. For Thm. 4, we construct a
family where the shift decomposes into r⋆ principal directions and measure
excess risk as a function of adapter rank r, checking for an empirical 1/r-type
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decay once estimation error is controlled (e.g., by fixing K large enough or
averaging across episodes).

Sensitivity to retrieval quality and ordering. Since the theory iso-
lates retrieval as a resource with its own cost Retr(L) and does not assume
it is perfect, we test the degradation of ICL utility under controlled retrieval
noise: approximate nearest neighbors at varying recall, embedding quanti-
zation, and adversarially perturbed keys. We also examine ordering effects:
even if CT is fixed, the sequence presented to the model can change per-
formance. We measure ordering sensitivity as a variance component of L̂T

over random permutations, and we test simple ordering rules (similarity-first,
diversity-first) as low-cost interventions. A central diagnostic is whether the
hybrid policy is stable to retrieval perturbations: when retrieval becomes un-
reliable, the gate should shift probability mass toward PEFT-enabled actions
for the same λ, reflecting a rational substitution of resources.

What constitutes confirmation. We do not require exact constants
from Thm. 1; rather, we seek the structural signatures: (i) ICL improves
primarily through an estimation-like regime with diminishing returns in L,
(ii) PEFT reduces a shift-like error component as rank/steps increase, and
(iii) the hybrid gate yields a uniformly better empirical objective Ĵλ across
λ, approaching the oracle envelope while respecting measured costs. These
experiments, taken together, are intended to show that the proposed com-
petitive analysis is not merely a proof artifact, but a useful description of
how adaptation resources should be allocated under realistic constraints.

11 Discussion and Future Directions

We view the preceding formulation as an attempt to make adaptation an
object of algorithmic design rather than an implicit, model-specific conven-
tion. The central output of the theory is not a single best method, but a
language for stating and testing claims of the form: under a task family
qtest, an adaptation policy π ∈ Π achieves a certain point on an error–cost
Pareto frontier, where cost accounts for context length, PEFT computation,
and retrieval overhead. This perspective suggests several implications for
evaluation practice, several actionable heuristics for practitioners, and sev-
eral open problems which are obscured when one reports only accuracy at a
fixed prompt length or only accuracy at a fixed finetuning budget.

Toward unified evaluation protocols. The objective E[LT (f̂T )]+λE[Cost(T )]
compels us to report adaptation results as curves rather than single num-
bers. In particular, a policy that is superior at one λ may be dominated at
another, and the hybrid gate is designed precisely to move along that curve
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automatically as λ varies. We therefore recommend that benchmarks report:
(i) an empirical Pareto frontier obtained by sweeping λ (or sweeping budgets
B), (ii) the induced distribution over actions (ICL-only, PEFT-only, hybrid)
as a function of λ, and (iii) a decomposition of cost into its constituents αL,
βrs, and γ Retr(L), alongside wall-clock and memory measurements. These
reports make it possible to compare methods even when system constants
differ, because they permit re-weighting cost terms post hoc.

A second protocol implication is that we should evaluate robustness
across shift regimes. Thm. 3 formalizes the phenomenon that, with a frozen
ϕ, there exist shifts (captured abstractly by AT ) for which ICL-only saturates
at an Ω(δ2) excess risk, regardless of L. Consequently, reporting performance
only at mild shifts can systematically overstate the generality of ICL-based
conclusions. It is more informative to report performance as a function of
controlled shift severity (corruptions, domain transfer, label mapping ambi-
guity), and to include the failure modes where ICL is provably incapable of
compensating for the shift. In such regimes, a successful method should not
merely gain accuracy; it should reallocate resources toward representation
change (via ∆T ) in a manner consistent with its cost model.

Finally, retrieval must be treated as a first-class experimental axis. Since
Retr(L) enters the cost and since demo utility depends on retrieval quality,
benchmark reports should include retrieval recall/latency tradeoffs, index-
ing/quantization settings, and the sensitivity of policies to retrieval perturba-
tions. Without these measurements, one cannot distinguish a method that
is intrinsically sample-efficient from a method that relies on an unusually
favorable retrieval configuration.

Guidance for practitioners under budgets. The main prescriptive les-
son is that one should not commit to either ICL or PEFT as a universal
default; rather, one should implement a resource allocation rule that can
substitute between them as conditions change. Concretely, given measured
system coefficients (α, β, γ), one may treat λ as a dial reflecting latency
or monetary constraints and deploy a gate based on an observable statis-
tic uT computed from ST . When uT indicates a small shift (e.g., support
embeddings lie near known source prototypes and exhibit low dispersion),
ICL-only with a modest L tends to be cost-effective because it reduces an
estimation-like component without paying backprop cost. When uT indi-
cates substantial shift (or when retrieval is unreliable), it can be rational
to spend βrs to reduce a shift-dominated component, consistent with the
tradeoff in Thm. 1 and the tightness statement in Thm. 4.

In operational terms, we suggest the following workflow. First, calibrate
Cost(T ) by measuring the marginal latency and memory impact of: adding
one more demonstration, increasing r by a small increment, and adding one
more PEFT step s, as well as the retrieval overhead for the intended M.
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Second, choose a target λ (or B) corresponding to an application budget.
Third, tune the gate (including uT and τ(λ)) on held-out tasks drawn from
the anticipated deployment mixture. The quantity to tune is not accuracy
alone but the empirical objective Ĵλ, since this is what will remain sta-
ble when deployment constraints change. Fourth, monitor the gate’s action
frequencies and failure cases: if the gate persistently chooses PEFT under
apparently easy tasks, uT is likely miscalibrated; if it persistently chooses
ICL under hard shifts, then either uT is underestimating shift or the chosen
r, s are insufficient for the deployment δ.

Open questions beyond the linearized regime. Our analysis relies on
a linear task model in an embedding space and a low-rank approximation of
shift. While this abstraction yields crisp statements, several extensions are
necessary for a complete account.

(i) Beyond fixed ϕ and linearization: one may seek analogues of Thm. 1
in regimes where adaptation changes ϕ in a nonlinear manner and where ICL
cannot be faithfully represented as ridge regression in a fixed feature map.
A plausible direction is to analyze ICL and PEFT through local lineariza-
tion (e.g., tangent kernels) while explicitly tracking how AT interacts with
curvature and with the adapter parameterization.

(ii) Nonparametric and structured shifts: the operator AT captures a
broad class of domain shifts but does not encompass shifts that are inherently
non-linear or label-conditional. It remains to understand when a low-rank
correction is the right inductive bias and when one needs different structures
(e.g., sparse, block-diagonal, or mixture-of-subspaces corrections). A related
question is whether retrieval can be used not merely to reduce variance but
to identify the relevant structure of the shift (thereby choosing r adaptively).

(iii) Multimodal contexts and formatting constraints: in multimodal sys-
tems, L is not simply a count of examples, and the relevant cost may be
dominated by tokenization, image resolution, or cross-attention complexity.
Moreover, the utility of demonstrations depends on formatting and interleav-
ing across modalities. Developing a cost model that meaningfully predicts
Cost(T ) and a selection rule SelectDemos(·) that remains approximately
submodular under such constraints is open.

(iv) Learning the policy class itself: Thm. 2 is stated for a restricted
Π. In practice, one may wish to enlarge Π to include policies that choose
L, r, s continuously, policies that condition retrieval on queries, or policies
that allocate budget across tasks in a streaming fashion. This points to
online and bandit formulations in which λ and even (α, β, γ) are uncertain
and must be estimated, while still respecting no-leakage constraints.

We expect that progress on these questions will require keeping the
present discipline: separating statistical limitations (what can be learned
from ST and M) from algorithmic limitations (NP-hard selection and con-
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strained optimization), and reporting outcomes as error–cost tradeoffs rather
than isolated accuracy points.
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