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Abstract

Few-shot learning (FSL) is increasingly realized via heterogeneous
adaptation mechanisms: in-context learning (ICL) in large language/multimodal
models, parameter-efficient finetuning (PEFT), and classical meta-
learning. Existing FSL benchmarks largely report accuracy alone,
obscuring the decisive deployment constraints of 2026: latency, en-
ergy, carbon footprint, and communication (federation). Motivated
by recent survey observations that (i) evaluation protocols are incon-
sistent and (ii) Green AI metrics are missing or nonstandard, we in-
troduce CarbonBench-FSL, a benchmark suite and reporting proto-
col that treats adaptation cost as a first-class citizen. We formalize
episodic evaluation with jointly measured utility and cost random vari-
ables, define Pareto-frontier and scalarized leaderboard metrics (e.g.,
hypervolume, area-under-frontier, accuracy-at-budget), and provide an
evaluation harness that outputs statistically valid confidence intervals
and rankings. We prove tight sample complexity bounds for estimat-
ing frontier metrics and for reliably distinguishing methods, and we
give hardness results showing that optimal per-task portfolio selec-
tion under global budgets is NP-hard. CarbonBench-FSL enables fair
comparison across ICL, finetuning/PEFT, meta-learning, and hybrids
under domain shift and resource constraints.
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1 Introduction

Few-shot learning (FSL) evaluation was historically organized around a sin-
gle question: given a small labeled support set, which algorithm attains
the highest expected query-set accuracy. That framing was adequate when
the primary constraint was labeled-data scarcity and when competing meth-
ods operated within a narrow computational regime (e.g., a fixed convo-
lutional backbone with episodic fine-tuning or metric learning). In 2026
this premise is no longer stable. The dominant adaptation mechanisms
now span in-context learning (ICL) with long-context foundation models,
parameter-efficient fine-tuning (PEFT) with low-rank or prefix adapters,
full fine-tuning, retrieval-augmented hybrids, and meta-learners that may
themselves invoke large pretrained models. These methods exhibit compa-
rable utility on many benchmarks while differing by orders of magnitude
in inference-time token consumption, adaptation FLOPs, wall-clock latency,
and measured energy. An accuracy-only leaderboard therefore ceases to be
a well-posed proxy for deployability, and it is no longer sufficient even as a
scientific summary of algorithmic progress.

We proceed from three observations that, taken together, force a cost-
aware evaluation protocol. First, the classical separation between “training-
time cost” and “test-time cost” has eroded. In ICL, a nontrivial portion of
the effective “training signal” is embedded in the prompt, and the prompt is
re-sent (and re-computed) per episode. In PEFT and test-time training vari-
ants, gradient-based adaptation is explicitly performed at evaluation time.
Thus, the resource footprint that matters is not only pretraining, but also
the episodic adaptation+inference footprint; the latter is precisely what a
few-shot benchmark exercises. Second, the operative bottlenecks in prac-
tical deployments increasingly include context length and energy. Tokens
are not an incidental implementation detail: they induce both monetary
cost (API pricing), latency (attention complexity), and energy (increased
memory traffic and compute). Similarly, energy and carbon reporting have
become standard in empirical ML practice, and it is methodologically incon-
sistent to ignore them in a regime where methods trade utility for energy by
construction (e.g., longer prompts, more adaptation steps, larger retrieval
corpora). Third, algorithmic choices can arbitrarily inflate costs without
commensurate utility gains, so any scalar score that depends only on utility
admits pathological dominance failures: two methods can be indistinguish-
able in expected accuracy while being decisively different in energy or token
budget, and an accuracy-only ranking cannot detect that distinction.

Recent surveys of FSL and meta-learning diagnose a second, concep-
tual mismatch between benchmark design and current practice. Classical
episodic meta-learning benchmarked a learner that generalizes by acquir-
ing an initialization or metric from many training tasks, contrasting with
transfer learning that reuses a pretrained representation and performs sim-
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ple adaptation. Over time, the empirical gap narrowed, and survey evidence
shows that strong pretrained backbones with straightforward adaptation can
match or surpass many specialized meta-learners on standard task distribu-
tions, especially when training and test classes are not strictly disjoint in a
semantic sense. This calls into question what precisely an FSL benchmark is
measuring: is it the quality of a meta-learned inductive bias, the quality of
a pretrained representation, or merely the ability to exploit scale? Without
a joint accounting of utility and adaptation-time cost, we cannot disentan-
gle whether improvements arise from better algorithms or from increased
per-episode computation (more steps, larger contexts, more retrieval). A
cost-aware protocol is therefore not only a deployment requirement but also
a scientific control: it forces comparisons to be made along a tradeoff surface
rather than at a single, unconstrained operating point.

The emergence of ICL further destabilizes legacy evaluation conventions.
ICL behaves like a meta-learner instantiated at inference time, yet it is
governed by qualitatively different knobs: demonstration selection, prompt
length, formatting, and calibration procedures. In the few-shot regime, small
formatting and selection changes can shift performance materially, and these
changes typically scale token counts and attention costs. Moreover, ICL in-
troduces an additional axis of robustness concern: performance may depend
on the order and label distribution of demonstrations, and calibration can
vary across tasks and domains. An evaluation that reports only mean accu-
racy implicitly treats these choices as innocuous hyperparameters, whereas
in practice they define a family of points on a utility–cost frontier. If we wish
to treat ICL as a first-class FSL method (as current practice compels), then
our benchmark must expose and measure these knobs under a standardized
protocol.

Green AI considerations supply the final necessity. In 2026, it is common
to report energy, hardware configuration, and carbon proxies, and it is also
common to observe that measurement noise and systems effects (batching,
warmup, clock rates, memory constraints) can dominate naïve FLOPs-based
estimates. Thus, a benchmark that purports to compare algorithms must
specify a measurement protocol and a hardware profile, and must treat costs
as random variables subject to estimation error. In the FSL setting, where
evaluation is episodic and inherently stochastic, the same statistical disci-
pline applied to accuracy must be applied to costs. Otherwise, cost report-
ing degenerates into ad hoc anecdotes that cannot support ranking claims.
We therefore treat the joint estimation of utility and costs as part of the
benchmark definition rather than an optional add-on.

These considerations motivate CarbonBench-FSL as an evaluation prob-
lem rather than merely a dataset collection. Our aim is not to replace utility
with cost, but to make explicit that any method induces a joint distribution
over (Um,Cm) on episodes, and that meaningful comparisons require a multi-
objective report. Concretely, instead of asking for the maximum accuracy at
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an unspecified operating point, we ask for the achievable tradeoff between
utility and costs under declared knobs, summarized by an estimated Pareto
frontier and by budgeted scalar functionals (e.g., accuracy at a token/energy
budget, or hypervolume). This shift resolves the ambiguity noted above: a
method that improves accuracy only by multiplying adaptation-time com-
putation is not categorically “better”; it occupies a different region of the
tradeoff surface.

Finally, we emphasize that the change in evaluation target demands a
change in statistical methodology. Episodic benchmarks are commonly run
with modest numbers of tasks, and the resulting rankings can be brittle.
When costs are added, brittleness can worsen unless one uses paired de-
signs (identical episodes across methods) and reports uncertainty. In our
setting, the correct object is an estimate of an expected utility–cost profile
with confidence intervals, not a single point estimate. We therefore build
the benchmark around reproducible episodic sampling, standardized instru-
mentation, and finite-sample guarantees for the reported metrics. Under
these constraints, an “accuracy-only” evaluation is not merely incomplete; it
is formally incapable of identifying Pareto-dominant methods and therefore
cannot serve as an adequate summary of progress in few-shot adaptation in
the current methodological landscape.

2 Related Work

Few-shot learning has a mature benchmarking tradition, but its dominant
abstractions were designed for regimes in which adaptation-time computa-
tion is either negligible or implicitly fixed. The early canonical image bench-
marks, exemplified by miniImageNet and tieredImageNet ??, standardized
an episodic protocol (e.g., N -way K-shot classification) and focused atten-
tion on the expected query accuracy after adaptation on a small support
set. Subsequent benchmarks broadened the task distribution and sought
to close loopholes associated with narrow domain focus. Meta-Dataset ?
aggregates multiple vision datasets and introduces heterogeneous episode
structure (varying ways, shots, and class imbalance), emphasizing that an al-
gorithm should perform across a mixture of task families rather than a single
curated dataset. Meta-Album ? extends coverage to diverse visual domains
with a unified interface and highlights that task difficulty varies substantially
across domains. Meta-Omnium ? further expands the scope and stresses dis-
tribution shift across modalities and sources. These efforts move the field
toward a more realistic Q, but they largely preserve the single-objective eval-
uation target: rank methods by mean utility, with costs treated, at best, as
informal qualifiers.

A parallel line of work seeks unified few-shot evaluation across model
families and adaptation mechanisms. Benchmarks and libraries such as
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Torchmeta, learn2learn, and broader “few-shot as a service” suites provide
standardized episode generation and interfaces, enabling comparisons be-
tween metric learning, gradient-based adaptation, and meta-learned initial-
izations. More recent unified efforts attempt to place in-context learning,
retrieval-augmented methods, and parameter-efficient fine-tuning into a com-
mon evaluation scaffold, motivated by the empirical observation that large
pretrained models with simple adaptation can match or surpass specialized
meta-learners on many classical FSL distributions. While such unification is
necessary for modern practice, it also sharpens the methodological gap we
address: if methods differ fundamentally in their adaptation-time resource
usage (prompt tokens versus gradient steps versus retrieval), then a unified
benchmark that reports only utility necessarily conflates algorithmic progress
with increased per-episode compute.

The literature on “compute-aware” or “cost-aware” evaluation in ML pro-
vides conceptual tools but is not yet integrated into episodic FSL in a sta-
tistically disciplined way. In supervised learning and systems benchmarking,
it is increasingly common to report throughput, latency, memory, and en-
ergy alongside accuracy, with standardized harnesses and audited rules (e.g.,
MLPerf-style closed divisions) ?. In “Green AI” ??, the community has ad-
vocated reporting energy and carbon proxies, and a variety of tools (e.g.,
experiment trackers and power loggers) implement protocols that translate
hardware power samples into Joules and then into CO2 via carbon intensity
and power usage effectiveness (PUE) assumptions ?. These reporting norms
have clarified that FLOPs alone are an incomplete surrogate for environ-
mental and deployment cost, since memory traffic, utilization, batching, and
clock/power management can dominate energy at fixed FLOPs. However,
most Green AI guidance is phrased at the level of training runs or large-scale
experiments, not at the level of episodic adaptation+inference where the rel-
evant unit is an episode e = (S,Q,meta) and costs can vary substantially
with S (e.g., prompt length, retrieval hits, number of adaptation steps).
Our contribution is not a new energy model, but a benchmark formulation
that treats these costs as episode-level random variables to be estimated and
compared with the same care as accuracy.

Statistical methodology for benchmark leaderboards is another area where
existing practice falls short of what the modern FSL regime requires. In
classical episodic evaluation, it is standard to report a mean accuracy over
a finite set of tasks with a standard error, but it is less common to frame
ranking claims with explicit (ε, δ) guarantees or to use paired designs as a
first-class principle. Yet paired evaluation—running all methods on the iden-
tical episode sequence—is precisely the design that reduces ranking variance
when episode difficulty is a dominant source of noise. This observation is
well-understood in experimental design and in the literature on paired tests
and variance reduction, but it is rarely elevated to a benchmark invariant.
When one adds cost coordinates with measurement noise (e.g., noisy power
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sampling), unpaired evaluation becomes even harder to interpret, because
differences in episode composition can induce apparent cost differences that
are unrelated to the method. Accordingly, our protocol insists that both
utility and costs be logged per episode under a fixed harness, enabling confi-
dence intervals not only for mean utility but also for frontier functionals and
budgeted metrics.

In-context learning introduces robustness and calibration issues that fur-
ther motivate a frontier-based view. A substantial body of work documents
that ICL performance depends sensitively on prompt formatting, demon-
stration order, label token choices, and the marginal label distribution in
the prompt ??. Calibration methods (e.g., contextual calibration, verbal-
izer selection, logit bias correction) can improve accuracy and reduce vari-
ance across prompts, but they often introduce additional token overhead
(extra prompts, multiple forward passes, or auxiliary queries). Similarly,
self-consistency, ensembling over permutations, and retrieval-based demon-
stration selection can be interpreted as mechanisms that trade additional
computation and tokens for higher or more stable utility. These phenomena
are typically studied by holding one cost axis implicit (e.g., reporting the
best accuracy over many prompt variants), which is informative for algo-
rithm design but insufficient for deployment and, in our view, insufficient for
benchmark comparison: the act of searching over prompts is itself a cost,
and the resulting method should be understood as a set of achievable (U,C)
points rather than a single scalar.

We also note connections to multi-objective evaluation in adjacent areas.
In reinforcement learning and neural architecture search, Pareto frontiers
over reward versus latency/compute are standard, and scalarizations such as
hypervolume are used to compare families of tradeoffs. Similarly, in approxi-
mate inference and anytime prediction, one reports accuracy as a function of
computation budget. These paradigms suggest that the right object to report
is not a single operating point but a curve or set indexed by declared knobs.
Episodic FSL is particularly well-suited to this view because the benchmark
already samples tasks; adding budgets (tokens, FLOPs, energy) yields a
natural accuracy-at-budget functional. What has been missing is a bench-
mark specification that (i) defines the relevant cost coordinates at episode
granularity, (ii) enforces a measurement protocol to make those coordinates
comparable across methods, and (iii) couples the reporting to finite-sample
statistical guarantees.

In summary, existing FSL benchmarks contribute high-quality task dis-
tributions and standardized episode generation, and the Green AI literature
contributes measurement norms and cost terminology. The ICL robustness
literature contributes evidence that adaptation-time knobs materially affect
utility. Yet, to our knowledge, there is no end-to-end benchmark formula-
tion that treats episodic few-shot adaptation as inducing a joint distribution
over utility and costs, estimates this joint object with controlled uncertainty,
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and structures leaderboards around Pareto frontiers and budgeted metrics
rather than accuracy alone. CarbonBench-FSL is designed to occupy this
gap: we preserve the episodic protocol and broadened task distributions of
prior work, while formalizing cost measurement and statistical reporting so
that comparisons are reproducible, multi-objective, and interpretable under
explicit budgets.

3 Formal Setup and Notation

We fix an episodic evaluation regime in which performance and resource
usage are random variables induced by a task distribution. An episode (or
task instance) is a tuple

e = (S,Q,meta),

where S is a support set used for adaptation, Q is a query set used for evalu-
ation, and meta denotes auxiliary episode metadata (e.g., domain identifier,
modality, class taxonomy, shot/way, or a shift label). We write Q for a
distribution over episodes; our evaluation samples episodes e1, . . . , en

i.i.d.∼ Q
unless stated otherwise by a benchmark track. The i.i.d. assumption is not a
modeling convenience but a benchmark contract: it is the hypothesis under
which we will attach (ε, δ)-type guarantees to reported utilities, costs, and
derived leaderboard functionals.

The support set S may contain labeled examples, unlabeled examples,
or both, depending on the intended adaptation setting. When S is labeled
we write S = {(xi, yi)}|S|i=1; when unlabeled components are present we may
decompose S = (Sℓ, Su). Likewise the query set is Q = {(xj , yj)}|Q|

j=1 for
supervised evaluation (with the yj held out from the method and used only
for scoring). We stress that the episode structure is allowed to vary with
meta; for instance, the number of classes, degree of imbalance, or the size of
S may be heterogeneous across draws from Q.

We evaluate a finite collection of adaptation methods M. Each m ∈ M
is required to implement a standardized interface consisting of an adaptation
phase and an evaluation phase. Abstractly, on episode e = (S,Q,meta), the
method produces predictions on Q after using S (and optionally meta):

ŷQ ← m.Eval
(
m.Adapt(S,meta), Q,meta

)
.

This abstraction covers in-context learning (where “Adapt” constructs a
prompt and “Eval” performs forward passes), gradient-based finetuning or
PEFT (where “Adapt” runs updates and “Eval” runs inference), meta-learners
(where “Adapt” performs a small inner loop), and hybrids such as retrieval-
augmented prompting (where “Adapt” may query an index). Any additional
external resources (e.g., retrieval corpora, tools, or extra training data) must
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be declared as part of the method specification; in the formalism, such re-
sources are viewed as part of the method m rather than part of the episode
draw.

For each method m and episode e, we define a utility random variable
Um(e) capturing episodic task performance under the benchmark scoring
rule. The default utility is query accuracy, but we allow any bounded func-
tional such as macro-F1, reward, or calibration-aware utility (e.g., a proper
scoring rule). We assume that the benchmark specifies a measurable map
from predictions on Q and ground-truth labels in Q to a scalar in [0, 1]:

Um(e) ∈ [0, 1].

The induced randomness in Um(e) arises from the episode draw e ∼ Q and
may also include method-internal randomness (e.g., sampling, dropout at in-
ference, or randomized prompt permutations). When methods are random-
ized, we interpret Um(e) as the utility of the method with its prescribed ran-
domness; evaluation fixes the random seed schedule to ensure reproducibility
and to support paired comparisons across methods.

Cost-aware evaluation requires that we treat adaptation-time and inference-
time resource usage as first-class objects. We therefore associate to each
(m, e) a vector of costs

Cm(e) =
(
Ctok
m (e), Cflop

m (e), Cparam
m (e), Ccomm

m (e), CJ
m(e), CCO2

m (e)
)
,

where Ctok
m is the number of prompt/context tokens consumed at adapta-

tion+inference, Cflop
m is an estimated FLOP count for the same computation,

Cparam
m is the number of parameters (or effective degrees of freedom) updated

during adaptation, Ccomm
m is an optional communication cost for federated or

client–server variants, CJ
m is energy in Joules, and CCO2

m is a CO2 proxy de-
rived from energy and carbon-intensity/PUE assumptions. The benchmark
may choose a subset of these coordinates as mandatory, but the evaluation
harness must define each selected coordinate precisely and compute it con-
sistently across all methods.

We distinguish between intrinsic costs (e.g., token counts and FLOPs es-
timates) and measured costs (e.g., time and energy). Intrinsic costs are com-
puted deterministically from method traces under a declared tokenizer and
FLOP accounting rules. Measured costs depend on a hardware and systems
profile HW, which fixes device type (GPU/CPU), driver/runtime versions,
power sampling method, batching rules, warmup protocol, and any normal-
ization choices such as power usage effectiveness (PUE) and carbon intensity.
Formally, we treat HW as part of the experimental condition and write the
measured coordinates as conditional random variables given HW. In particu-
lar, CJ

m(e) is defined as the energy attributable to the adaptation+inference
workload for episode e executed under HW and the benchmark protocol.
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Because energy and related costs are obtained from instrumentation, we
explicitly model measurement noise. Let C̃m(e) denote the observable cost
vector returned by the harness for method m on episode e. We posit an
additive noise model

C̃m(e) = Cm(e) + ηm,e,

where ηm,e is a zero-mean noise vector induced by sampling resolution,
clock/power management, background processes allowed by the protocol,
and estimator error in converting power samples to energy. The protocol is
designed so that E[ηm,e | e] = 0 and each coordinate is either bounded or
sub-Gaussian with a known (or conservatively bounded) variance proxy. This
assumption is again a benchmark contract: it encodes what it means for the
measurement harness to be standardized. When repeated runs are permit-
ted, we may reduce noise by averaging over repeats; otherwise, the statistical
analysis treats C̃m(e) as a noisy but unbiased observation of Cm(e).

Finally, we emphasize that paired evaluation is built into our notation.
Since all methods are run on the identical episode sequence e1, . . . , en, we can
meaningfully consider episode-wise differences (in utility or cost) and exploit
correlation across methods induced by shared episode difficulty. This pairing
will be central when we later define ranking stability and confidence inter-
vals for derived functionals. The present section merely fixes the objects: a
task distribution Q over episodes e, a finite method setM with a standard-
ized adapt–evaluate interface, a bounded utility Um(e), a cost vector Cm(e)
measured under a declared HW, and a noise model for the observed costs
returned by the harness.

4 Problem Definition: Cost-Aware Few-Shot Eval-
uation (CAFSE)

We now formalize the benchmark problem induced by the objects fixed in §3.
The central design choice is that we do not regard a method as producing
a single number, but rather a utility–cost tradeoff that can be queried at
different adaptation “knobs” (prompt length, update steps, adapter rank,
communication rounds, etc.). CAFSE is thus a multi-objective evaluation
problem with statistical guarantees, where the primary output is a Pareto
frontier and any scalar leaderboard is a derived functional of that frontier.

Methods with declared knob sets. For each m ∈ M we assume a
declared (finite or discretized) configuration set Θm of admissible knob set-
tings. A configuration θ ∈ Θm fixes all budget-relevant choices of the method
(e.g., number of gradient steps, batch size, context length, retrieval depth,
precision mode), as well as any stopping rule parameters that affect cost.
Executing m on an episode e under configuration θ yields random utility
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and cost observations

Um,θ(e) ∈ [0, 1], Cm,θ(e) ∈ RdC
+ ,

where C may include intrinsic coordinates and measured coordinates un-
der HW. In all tracks, the benchmark contract requires that the mapping
(m, θ, e) 7→ (Um,θ(e), C̃m,θ(e)) is executed by a standardized harness with
fixed warmup, batching, and instrumentation rules, so that comparisons
across methods are meaningful.

Input and observable data. CAFSE takes as input (i) an episode sam-
pler for Q producing i.i.d. episodes e1, . . . , en, (ii) a finite set of methodsM
with configuration sets Θm and a standardized adapt–evaluate interface, (iii)
a metrics specification that fixes the utility functional U and the coordinates
of C to be reported, and (iv) a hardware and systems profile HW determin-
ing the measurement protocol for energy/CO2 proxies. The observable log
for a fixed (m, θ) consists of paired samples

Lm,θ =
{
(um,θ,t, c̃m,θ,t)

}n

t=1
, um,θ,t = Um,θ(et), c̃m,θ,t = C̃m,θ(et),

where C̃ denotes the harness-observed costs (potentially noisy but unbiased
under the protocol assumptions). The paired design is enforced by con-
struction: the same episode sequence {et}nt=1 is used for all methods and all
reported configurations.

Primary statistical targets. For each fixed (m, θ), CAFSE targets the
episode-marginal expectations

µm,θ := Ee∼Q
[
Um,θ(e)

]
, νm,θ := Ee∼Q

[
Cm,θ(e)

]
,

together with uncertainty quantification (confidence intervals or, more gen-
erally, (ε, δ)-accurate bounds). The benchmark may require reporting either
marginal means per coordinate or a small number of scalarizations (e.g.,
Joules and tokens). When costs are measured with additive noise, νm,θ is
interpreted as the latent mean cost and the empirical estimator is formed
from C̃.

Frontier as the main output. The CAFSE output for method m is
an estimate of the achievable utility–cost tradeoff over Θm. We define the
(expected) Pareto frontier as the set of configurations not dominated in ex-
pectation:

Fm :=
{
(νm,θ, µm,θ) : θ ∈ Θm, ∄ θ′ ∈ Θm s.t. νm,θ′ ≤ νm,θ and µm,θ′ ≥ µm,θ, with at least one strict

}
,
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where inequalities over cost vectors are coordinate-wise. The empirical ana-
logue F̂m is computed from plug-in estimators

µ̂m,θ =
1

n

n∑
t=1

um,θ,t, ν̂m,θ =
1

n

n∑
t=1

c̃m,θ,t,

optionally augmented with confidence sets per point. We treat the frontier,
not a scalar score, as the benchmark’s principal scientific artifact: it exposes
whether gains in U require disproportionate increases in tokens, FLOPs,
energy, or communication.

Budgeted performance functionals. Leaderboards typically demand
scalars. In CAFSE, any scalar score must be a declared functional of the
frontier. We emphasize three canonical classes.

Accuracy-at-budget. For a scalar budget B and a selected cost coordinate
(or scalarized cost) C, define

Acc@B(m) := sup
θ∈Θm: ν

(C)
m,θ≤B

µm,θ, Âcc@B(m) := max
θ∈Θm: ν̂

(C)
m,θ≤B

µ̂m,θ,

with the convention that infeasible methods return −∞ (or are excluded) if
no configuration meets the budget. Vector budgets are handled analogously
with coordinate-wise constraints.

Area under the frontier (AUF). Over a budget interval [Bmin, Bmax], we
may define the utility envelope

fm(B) := sup
θ: ν

(C)
m,θ≤B

µm,θ, AUF(m) :=
1

Bmax −Bmin

∫ Bmax

Bmin

fm(B) dB,

with f̂m and ÂUF(m) computed from F̂m by piecewise-constant interpolation
over the discretized configurations.

Hypervolume. In two dimensions (one cost coordinate and utility), after
fixing a reference point (Bref , Uref), we may score the dominated region in-
duced by the frontier; this is a standard choice when one wishes to reward
uniformly good tradeoffs rather than peak performance at a single budget.

Rankings with error control. CAFSE returns (i) frontier estimates with
uncertainty, (ii) chosen scalar scores with uncertainty, and (iii) a ranking
induced by these scores. Since rankings are unstable under noise, the bench-
mark must specify tie-handling. Concretely, when confidence intervals over-
lap, we treat methods as statistically indistinguishable at the stated confi-
dence level; when multiple comparisons are performed, the harness applies
a declared correction (e.g., Holm–Bonferroni) or reports families of non-
dominated methods under the uncertainty sets.
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Desiderata and benchmark contracts. We require the following prop-
erties as part of the CAFSE problem definition.

• Fairness (paired, budget-consistent evaluation). All methods are eval-
uated on identical episode draws and identical splits (S,Q), with iden-
tical budget definitions and stopping criteria. Any external data, re-
trieval corpus, tool access, or extra training is declared and attributed
to the appropriate track.

• Reproducibility (deterministic harness semantics). The evaluation har-
ness fixes tokenizer versions, FLOP accounting rules, and HW (includ-
ing sampling resolution and warmup). Randomness is controlled by
a logged seed schedule; repeated-run variance estimation is permitted
only when uniformly available.

• Statistical validity (finite-sample uncertainty). Reported means and
derived frontier functionals are accompanied by confidence intervals
under stated assumptions (boundedness or sub-Gaussian noise, i.i.d.
episodes). The episode budget n is treated as a first-class resource
that determines attainable (ε, δ) guarantees.

• Cost awareness (multi-objective outputs). Methods are not compared
solely by utility; Pareto frontiers (and, when desired, budgeted scalar-
izations) are mandatory outputs, ensuring that improvements in U are
contextualized by their resource implications.

Under these contracts, CAFSE provides a precise target for the evaluation al-
gorithm: from paired episode logs, estimate per-method utility–cost frontiers
and any declared scalar leaderboard functionals with quantified uncertainty,
enabling meaningful comparison under explicit deployment-relevant budgets.

5 CarbonBench-FSL Benchmark Suite Specification

We next specify the benchmark suite underlying CarbonBench-FSL. The
suite is not a single dataset, but a family of episodic task distributions ob-
tained by combining (i) task families (classification, structured prediction,
generation, decision-making) across (ii) modalities (text, vision, audio, multi-
modal), and (iii) shift regimes (in-domain, cross-domain, and related forms of
distribution shift). The outcome of this specification is a collection of episode
samplers, each defining a distribution Q over episodes e = (S,Q,meta) with
mandatory, method-independent splits.

Task families and episode templates. We fix a finite index set of fami-
lies D, where each d ∈ D provides a base population of instances Xd together
with a labeling or reward mechanism. An episode template specifies how to
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construct S and Q from Xd and determines the semantics of utility U for that
family. Concretely, each family d defines a distribution Qd by the following
generic procedure:

1. Sample episode metadata meta, which may include a domain identifier,
label set, language, prompt template identifier, and difficulty parame-
ters.

2. Sample (or induce) a task instance τ (e.g., a class subset, a relation
type, a program, a goal) from a family-specific task prior.

3. Draw a support set S and query set Q conditionally on τ and meta,
with the constraint S ∩Q = ∅ at the instance level.

For few-shot classification families, we use an N -way, K-shot template with
fixed (N,K) per benchmark track, and a query size |Q| chosen to yield stable
per-episode utility estimates. For structured prediction (e.g., tagging) and
generation (e.g., short-form QA), S contains a fixed number of supervised
exemplars and Q contains held-out instances scored by exact match, token-
level F1, or a declared task reward. For decision-making families, S may
contain demonstrations or offline trajectories and Q corresponds to evalua-
tion rollouts or held-out contexts, with U defined as episodic return under
an evaluation environment specified in meta. The suite is agnostic to the
presence of unlabeled data: if provided, it is included explicitly as an episode
component and used uniformly across methods.

Shift regimes as first-class benchmark axes. To evaluate adaptation
methods beyond i.i.d. in-domain generalization, we define regimes as sepa-
rate distributions (or sub-distributions) over episodes. For each family d, we
specify a set of regimes Rd and associated samplers {Qd,r}r∈Rd

. At mini-
mum, we include:

• In-domain (ID). Episodes are drawn from a single domain and a fixed
preprocessing pipeline; meta-train and meta-test differ only through
episode resampling, not through domain shift.

• Cross-domain (CD). Episodes are drawn from multiple domains with a
designated split into source domains (available for method development
within the benchmark) and target domains (held out for evaluation).
Formally, if domains are indexed by z ∈ Zd, then Zd = Zsrc

d ∪ Ztgt
d

with Zsrc
d ∩ Z

tgt
d = ∅, and the test-time sampler places mass only on

Ztgt
d .

• Cross-label-set / cross-task (CL). The label sets or task identifiers sam-
pled in meta are disjoint across development and test partitions. This
is the canonical setting for few-shot class generalization in vision and
entity/relation generalization in NLP.
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Where applicable, we optionally refine the above by language shift (cross-
lingual), style shift (register or genre), and context shift (different prompt
templates), each implemented as an explicit component of meta and a dis-
jointness constraint between development and test identifiers. The bench-
mark treats each (d, r) as a distinct evaluation condition; overall reporting
may average across conditions or present per-condition frontiers.

Modalities and unified episodic interface. CarbonBench-FSL includes
modality-specific families but enforces a single episodic contract. In text fam-
ilies, instances are sequences paired with labels or targets; in vision families,
instances are images with labels; in audio families, instances are waveforms
or spectrograms; and in multimodal families, instances are aligned tuples
(e.g., image–text or audio–text). In all cases, the episode is serialized for
methods through the same abstract fields (support/query plus metadata),
while permitting modality-specific renderings (e.g., image tensors versus im-
age URLs) as long as all methods in a track receive identical inputs. We
regard multimodal prompting and tool use as track-level decisions: if a track
allows external tools (OCR, ASR, retrieval), then the access pattern is de-
clared and applied uniformly; otherwise such access is disallowed to preserve
comparability.

Mandatory dataset and episode splits. We impose mandatory splits at
two levels: instance-level partitions and task-identifier partitions. Instance-
level partitions ensure that, within each (d, r), there is no leakage of in-
dividual examples between development and test samplers. Task-identifier
partitions ensure that, when the regime calls for it (e.g., CL), the identifiers
that determine the task—such as classes, relations, domains, languages, or
templates—are disjoint across partitions.

Concretely, for each family d we define three benchmark partitions: de-
velopment (public), test (held-out), and an optional diagnostic (public) split
for ablations. The development split supports method debugging and knob
selection; the official test split is used for reported scores. The sampler for
the test split is fixed (including its random seed schedule) by the benchmark
organizers, so that all submissions are evaluated on an identical episode
sequence. Within each episode, we enforce disjointness S ∩ Q = ∅ and fix
|S|, |Q| by track; any deviation (e.g., variable-shot episodes) must be declared
as a separate subtrack so that budget comparisons remain interpretable.

Closed versus open data usage. Because adaptation methods differ in
their reliance on external corpora (retrieval, continued pretraining, instruc-
tion data), the suite defines data-usage policies as separate tracks. In a
closed track, only the benchmark-provided development split may be used
for any training or retrieval corpus construction beyond the pretrained model
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itself. In an open track, additional data may be used, but must be declared
with provenance and licensing, and is treated as part of the method descrip-
tion rather than the benchmark definition. In either case, the test episode
sampler remains fixed and unseen during development.

Optional track structure: federated variants. We include an optional
federated track in which each episode is augmented with a client partition.
Formally, an episode becomes e = ({S(i)}Mi=1, Q,meta) where S(i) is client
i’s local support set and Q is a global (or per-client) query set specified
by meta. The track specifies whether adaptation is (i) local-only with no
communication, (ii) server-mediated with a bounded number of rounds, or
(iii) hybrid (e.g., local adapters plus occasional aggregation). The benchmark
does not prescribe a particular federated algorithm; it prescribes only the
partitioning scheme (including heterogeneity patterns across clients) and the
episode interface, leaving communication and coordination to the method.

Optional track structure: continual variants. We also include an op-
tional continual adaptation track in which the evaluation oracle provides a
sequence of episodes (et)

n
t=1 with nonstationary metadata (e.g., a domain

index that drifts over time). Methods may maintain state across episodes,
subject to declared memory constraints and the same knob semantics as in
the stationary setting. The suite specification for this track consists solely
of (i) the drift schedule encoded in metat, (ii) the rule determining what in-
formation from past episodes may be retained (e.g., bounded replay buffer,
bounded parameter updates), and (iii) the requirement that evaluation util-
ities are computed on the provided queries without retroactive access to
future episodes. We treat this track as optional because it introduces ad-
ditional modeling choices, but we include its interface so that cost-aware
adaptation can be studied under realistic nonstationarity.

6 Measurement Protocol

We next fix a measurement protocol whose role is to convert a method execu-
tion on an episode into a standardized cost vector Cm(e) = (Ctok

m (e), Cflop
m (e), Cparam

m (e), Ccomm
m (e), CJ

m(e), CCO2
m (e))

together with auxiliary observables (wall-clock time, power traces) that per-
mit calibration of measurement noise and reproducible re-evaluation. The
protocol is part of the benchmark definition: submissions are required to
expose the hooks needed for instrumentation, and the evaluation harness
enforces uniform warmup/batching rules under a fixed hardware profile HW.

Phase separation and cost attribution. For each method m and episode
e = (S,Q,meta), we separate execution into adaptation (any computation
that depends on S and produces an episode-specific state) and inference
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(prediction on Q given the adapted state). Costs are recorded for the union
of these phases, and, when supported by the submission, also reported as a
decomposition Cm(e) = Cadapt

m (e)+Cinfer
m (e). This separation is particularly

important for methods with nontrivial adaptation (gradient steps, retrieval
indexing, local training in federated variants), while remaining well-defined
for in-context learning (ICL), for which the adaptation component may be
vacuous.

Token accounting. We define Ctok
m (e) as the total number of model to-

kens processed at test time to produce predictions for the entire query set Q,
including both input and generated output tokens. For text-only models, this
is measured by the model tokenizer used in the submission. For multimodal
models, we require a declared tokenization scheme for non-text inputs (e.g.,
image patch tokens or audio frame tokens) so that counts are comparable
within a track. For ICL, the input tokens include all fixed prompt text (sys-
tem instructions), all serialized support exemplars, and all query prompts;
output tokens include any generated rationales if the method chooses to
produce them. For retrieval-augmented methods, tokens consumed by the
generator are counted as usual; in addition, any token-level interaction with
a learned retriever that uses a language-model forward pass (e.g., bi-encoder
scoring via the same backbone) must be included in Ctok

m (e), while purely
classical retrieval is accounted for in Cflop

m (e) and wall-clock time. The har-
ness records token counts by intercepting model calls; submissions that batch
multiple query items must still report aggregate tokens over the batch.

FLOPs and updated-parameter accounting. We define Cflop
m (e) as an

estimate of floating-point operations for the adaptation and inference phases
combined. Because exact FLOPs are hardware- and kernel-dependent, we
standardize the estimator: the harness computes FLOPs from an agreed-
upon per-layer analytical model for the declared architecture, using ob-
served sequence lengths and batch sizes, and multiplies by the number of for-
ward/backward passes actually executed. If a submission provides profiler-
based FLOPs (e.g., from a framework tracer), we log both estimates and
require agreement within a stated tolerance on a calibration suite; other-
wise, the analytical estimator is authoritative for leaderboard costs. We
define Cparam

m (e) as the number of parameters updated during adaptation
(or, more generally, the number of effective degrees of freedom trained). For
full finetuning, this is the full parameter count of the adapted model; for
PEFT, it is the count of trainable adapter parameters (e.g., LoRA matrices)
plus any trainable layer norms or embeddings; for ICL and frozen-feature
methods, Cparam

m (e) = 0. For methods that update only a subset of param-
eters conditionally on meta, the submission must expose the updated set so
that Cparam

m (e) is computed episode-wise.
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Wall-clock time and batching invariants. We record wall-clock time
as an auxiliary scalar Tm(e) measured from the start of adaptation to the
end of query prediction, excluding dataset loading that is common across
methods but including any method-specific preprocessing (serialization, re-
trieval index access, client–server synchronization). To reduce variance from
kernel compilation and caching, the harness enforces: (i) a fixed number
of warmup executions per method per process; (ii) a fixed batching policy
(maximum batch size or maximum tokens per batch) declared by the track;
and (iii) a fixed precision regime (e.g., FP16/BF16) unless the track explic-
itly permits alternatives. These invariants ensure that Tm(e) and energy
measurements are comparable and that token/FLOP estimates correspond
to realized execution.

Communication cost for federated variants. For federated tracks, we
define Ccomm

m (e) as a vector (logged but scalarized by the leaderboard when
needed) consisting of total bytes transmitted and the number of communi-
cation rounds. Concretely, if the episode induces messages {msgr,i→j} over
rounds r, then Ccomm

m,bytes(e) =
∑

r

∑
i→j size(msgr,i→j), and Ccomm

m,rounds(e) is the
number of synchronized round barriers. The submission must mark message
boundaries so that compression, quantization, and sparsification are reflected
in the byte count rather than obscured by implementation artifacts.

Energy measurement in Joules. We define CJ
m(e) as measured energy

(Joules) attributable to the method execution for episode e under HW. The
harness collects a time series of instantaneous power P (t) from standardized
sensors (e.g., GPU power via NVML, CPU package power via RAPL) at a
fixed sampling cadence, and integrates over the measured interval: CJ

m(e) =∫ tend
tstart

(
P (t) − Pidle

)
dt, where Pidle is an empirically estimated idle baseline

for the same process placement and temperature regime. We require (a)
pinning to a fixed device set, (b) disabling frequency scaling when feasible
or logging the frequency governors, and (c) logging sensor resolution and
sampling rate. When only energy counters are available (rather than power
samples), we use counter differences over the same interval and still subtract
an idle estimate. In all cases, we log raw traces so that post hoc audits can
recompute CJ

m(e) under alternative baseline assumptions.

CO2 proxy. We define CCO2
m (e) as an operational emissions proxy derived

from measured energy and declared facility assumptions:

CCO2
m (e) =

CJ
m(e)

3.6× 106
· CI · PUE,

where CI is the carbon intensity in gCO2e/kWh and PUE ≥ 1 is a power-
usage effectiveness factor. The benchmark fixes default values of CI and PUE
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per HW profile (or requires the evaluator to declare them), and we report
sensitivity by optionally providing CCO2

m (e) under a small set of canonical
(CI,PUE) pairs.

Noise calibration and run-to-run variance. Energy and time mea-
surements exhibit nontrivial noise (sensor quantization, background system
activity, thermal throttling). We therefore incorporate a calibration phase in
which the harness (i) measures idle power and its variance, (ii) runs a fixed
microbenchmark at several durations to estimate integration error, and (iii)
optionally repeats a subset of episodes to estimate run-to-run variance of
(Um(e),Cm(e)). For repeated runs, we treat the observed costs as noisy but
(approximately) unbiased and record the empirical variance; these quantities
feed directly into the confidence intervals used later. Submissions that are
intrinsically stochastic (sampling-based decoding, randomized adaptation)
must expose random seeds so that the harness can distinguish algorithmic
variance from measurement variance.

Reproducibility invariants and logging. Finally, we fix a minimal
set of invariants required for reproducibility: versioned code and model
identifiers; exact tokenizer and prompt serialization; declared knob settings
(prompt length, adapter rank, steps, batch size, rounds); deterministic episode
ordering; and a complete record of HW (device model, driver/runtime ver-
sions, precision mode, sensor type, and CI/PUE assumptions). The har-
ness emits a per-episode log entry containing (um,t, cm,t, Tm,t) together with
hashes of inputs/outputs sufficient to verify that two evaluations are seman-
tically identical. Under these invariants, the remaining discrepancies in C
are attributable to bounded measurement noise, which is explicitly quantified
and propagated to uncertainty estimates.

7 Leaderboard Metrics

The benchmark output is multi-objective: for each method m ∈ M and
episode e ∼ Q we observe a utility Um(e) together with a cost vector Cm(e).
A leaderboard must therefore specify (i) which tradeoffs are considered ad-
missible (Pareto efficiency), (ii) which scalar summaries are reported for ease
of ranking, and (iii) how ties and stochasticity are handled so that the re-
ported ordering is stable under re-evaluation.

Knobs and the induced set of achievable points. Each method m de-
clares a (finite or discretized) set of knob settings Θm controlling its resource–
accuracy tradeoff (e.g., prompt length, number of gradient steps, adapter
rank, number of communication rounds). Running m with knob θ ∈ Θm on
episode e yields random variables Um,θ(e) and Cm,θ(e). We emphasize that
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θ is part of the method definition for evaluation purposes: if a submission
adaptively chooses θ episode-wise, then θ is determined by a declared policy
πm and the resulting method is evaluated as m ◦ πm, with costs attributed
to the realized choice.

Pareto dominance and frontier definition. We adopt the convention
that higher utility is better and lower costs are better (coordinate-wise). For
two knob settings θ, θ′ ∈ Θm, we say that θ dominates θ′ (write θ ≽ θ′) if

E[Um,θ] ≥ E[Um,θ′ ] and E[Cm,θ] ≤ E[Cm,θ′ ]

coordinate-wise, with at least one inequality strict. The (population) Pareto
set of knob settings is

Pm =
{
θ ∈ Θm : ∄ θ′ ∈ Θm with θ′ ≽ θ

}
,

and the corresponding utility–cost frontier is the image

Fm =
{(

E[Um,θ],E[Cm,θ]
)
: θ ∈ Pm

}
.

Because C is multi-dimensional, Fm is generally a set in [0, 1] × RdC
+ . The

benchmark reports F̂m estimated from finite episodes and, for visualiza-
tion, also reports two-dimensional projections such as (E[U ],E[CJ]) and
(E[U ],E[Ctok]), which are interpretable deployment axes.

Budgeted metrics: accuracy at budget and cost at accuracy. While
the frontier is the primary object, many users require a scalar summary at
a fixed budget. For a scalar cost coordinate C (typically CJ, Ctok, or a
scalarization of C), and for a budget B > 0, we define the accuracy-at-budget
functional

Acc@B(m;C) = sup
θ∈Θm: E[Cm,θ]≤B

E[Um,θ],

with the convention Acc@B = 0 if the feasible set is empty. Dually, for a
target utility level u ∈ [0, 1], we define the cost-at-accuracy functional

Cost@u(m;C) = inf
θ∈Θm: E[Um,θ]≥u

E[Cm,θ],

with Cost@u = +∞ if no knob setting attains u. These are evaluated on a
fixed, published set of budgets B and target utilities U so that methods with
different knob granularities remain comparable. When C is vector-valued,
the track must specify a feasible region (e.g., Ctok ≤ Btok and CJ ≤ BJ); the
corresponding Acc@B is then defined with E[Cm,θ] ≤ B coordinate-wise.
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Scalar frontier summaries: hypervolume and AUF. To rank meth-
ods without selecting a single operating point, we report functionals of the
frontier. In the common two-dimensional case (E[U ],E[C]) where C is a
scalar cost, we define an area under the frontier (AUF) over a bounded
budget interval [Bmin, Bmax] by

AUF(m;C) =
1

Bmax −Bmin

∫ Bmax

Bmin

Acc@B(m;C) dB,

where Acc@B is interpreted as the upper envelope of achievable utility as
a function of budget. We also report a (normalized) hypervolume score in
(C,U)-space relative to a reference point (Cref , Uref) chosen by the bench-
mark:

HV(m;C) = λ
({

(c, u) : c ≤ Cref , u ≥ Uref

}
∩Dom(Fm)

)
,

where λ denotes Lebesgue measure and Dom(Fm) is the region dominated
by the frontier (low cost, high utility). For multi-cost settings, we either
(i) compute hypervolume in a low-dimensional projection mandated by the
track, or (ii) scalarize costs via a published monotone map s(C) (e.g., s(C) =
αCJ+(1−α)Ctok), and apply the two-dimensional definitions to (s(C), U).
In all cases, the benchmark reports the reference point and normalization
constants so that scores are interpretable and reproducible.

Dominance rules and tie-breaking under uncertainty. Because Fm

and scalar metrics are estimated from finite episodes, we avoid deterministic
tie-breaking rules that are unstable to sampling noise. The harness therefore
reports confidence intervals for each scalar leaderboard metric and uses the
following principle: method m1 is ranked above m2 only when the lower
confidence bound for the chosen score of m1 exceeds the upper confidence
bound for m2 (or, for cost-minimization metrics, when the upper bound of
m1 is below the lower bound of m2). Otherwise, the methods are reported
as statistically indistinguishable at the declared confidence level and may
share a rank interval. For Pareto dominance, we similarly declare that an
estimated point (û1, ĉ1) dominates (û2, ĉ2) only if the corresponding one-
sided confidence bounds certify domination simultaneously across utility and
all reported cost coordinates. This rule prevents spurious dominance claims
driven by measurement noise in CJ or stochastic decoding variance.

Stochastic methods and prompt sensitivity (ICL). Many methods
are intrinsically stochastic: decoding may sample, adaptation may use ran-
dom initialization, and ICL may depend on the order and selection of demon-
strations. We treat such randomness as part of the method and define leader-
board quantities in terms of expectations over both episodes and method

21



randomness. Concretely, a submission must expose a seedable randomness
interface; the harness fixes a seed schedule and, when requested by the track,
repeats a subset of episodes to estimate the additional variance contribu-
tion. For ICL specifically, we distinguish (i) prompt construction policy (how
demonstrations are chosen and ordered) and (ii) prompt budget (how many
tokens are allocated). Prompt construction is treated as a declared algorith-
mic component; if it uses a retrieval corpus or heuristic, this must be declared
and evaluated under the appropriate track rules. Prompt sensitivity is then
reflected as variance in Um,θ(e) and Ctok

m,θ(e), and the reported frontier either
averages over prompt randomness (default) or, in robustness-focused tracks,
additionally reports quantiles (e.g., 10%-worst utility at budget). In all
cases, the same prompt policy and knob definitions are used across episodes
so that differences in frontier shape correspond to method behavior rather
than undisclosed prompt engineering.

8 8. Evaluation Algorithm: pseudocode for sam-
pling episodes, running methods, recording costs,
computing estimators, confidence intervals, and
frontier metrics; best practices for caching, warmup,
and batching without bias.

We now specify the evaluation algorithm executed by the harness. Our
goal is to obtain, for each submitted method m ∈ M (possibly equipped
with a knob θ ∈ Θm), a paired collection of utility–cost observations over
i.i.d. episodes et ∼ Q, from which we compute (i) mean utility and mean
costs with confidence intervals, and (ii) frontier-based leaderboard function-
als (e.g., Acc@B, AUF, hypervolume) with uncertainty quantification.

Episode sampling and paired design. We fix a public episode sampler
for Q and draw an episode sequence e1, . . . , en once per evaluation run. Each
episode et = (St, Qt,metat) contains all information required by the track
(e.g., class identities, domain tags, optional unlabeled pool). The harness
evaluates every method on the same episode sequence (paired evaluation),
and, when a knob sweep is required, on the same episode sequence for each
θ ∈ Θm. This pairing is not merely a convenience: it is the design choice
that enables low-variance comparisons of methods through episode-wise dif-
ferences, and it eliminates a major source of irreproducibility stemming from
different episode draws.

Standardized method interface and randomness control. Each method
m implements two calls: adaptm(S; θ, seed) and evaluatem(Q; θ, seed), with
the convention that adapt may be a no-op (e.g., for pure in-context learning)
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and that evaluate returns both predictions and any method-specific artifacts
required for auditing (e.g., selected demonstrations, retrieved documents,
or adapter checkpoints). We treat all internal randomness (prompt sam-
pling, parameter initialization, dropout, decoding stochasticity) as part of
the method distribution; accordingly, the harness provides a declared seed
schedule seed(m, t, θ, r) where r indexes optional repeated runs. If the track
requests repeated runs, we repeat only a prespecified subset of episodes to
estimate variance contributions without multiplying total cost prohibitively;
the subset and repetition count are fixed ex ante and are identical across
methods.

Cost measurement and instrumentation hooks. For each execution
of adapt + evaluate we record a utility um,θ,t and a vector of costs cm,θ,t.
Token costs Ctok are computed by a canonical tokenizer and include (i)
all prompt/context tokens provided to the base model, (ii) generated out-
put tokens, and (iii) any additional model calls induced by retrieval, self-
consistency, verification, or multi-pass decoding. FLOPs costs Cflop are re-
ported either from vendor counters when available or from a published esti-
mator calibrated to HW. Parameter-update costs Cparam count the effective
number of degrees of freedom updated during adaptation (e.g., all weights
for full finetuning, LoRA parameters for PEFT). For federated or client–
server variants we additionally log communication Ccomm as bytes and/or
rounds, with the protocol defining what metadata is included. Energy CJ is
measured via standardized power sampling integrated over the adapt+eval
window, with the harness controlling sampling rate, synchronization points,
and inclusion/exclusion boundaries; CO2 proxies CCO2 are derived from en-
ergy using declared carbon intensity and PUE assumptions attached to HW.
Because these measurements can be noisy, we log raw samples (or sufficient
statistics) so that auditors can recompute integrals and verify segmentation.

Pseudocode and logging discipline. The harness maintains per-method
logs Lm,θ = {(um,θ,t, cm,θ,t)}nt=1. Conceptually, the evaluation proceeds as
follows: for each episode t, we materialize St, Qt, then for each method m
(and each θ when sweeping) we execute adapt+eval under the fixed seed
schedule, record um,θ,t, and record cm,θ,t under the measurement protocol.
We require that all logged values be attached to the episode identifier and
the knob setting, and that failures (timeouts, OOM, invalid outputs) be
logged explicitly and handled by a track-defined rule (e.g., utility 0 with
costs measured up to failure, or exclusion with a recorded failure count).
This explicit failure accounting is necessary to prevent silent survivorship
bias, especially for methods operating near hardware limits.
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Estimators, confidence intervals, and frontier reconstruction. Given
Lm,θ, we compute plug-in estimators

µ̂m,θ =
1

n

n∑
t=1

um,θ,t, ν̂m,θ =
1

n

n∑
t=1

cm,θ,t,

together with confidence intervals for each scalar coordinate using empirical
Bernstein (or a sub-Gaussian bound when mandated by the track). We
then form an estimated achievable set Âm = {(µ̂m,θ, ν̂m,θ) : θ ∈ Θm} and
compute its Pareto-efficient subset by removing empirically dominated points
(optionally with a dominance certification rule based on one-sided bounds
when the track emphasizes conservative dominance). Frontier functionals
are computed on the resulting set: for a budget B, Âcc@B is obtained by
maximizing µ̂m,θ over feasible θ under ν̂m,θ ≤ B (or ν̂m,θ ≤ B coordinate-
wise), and ÂUF is computed by numerical integration over a published grid
of budgets. Hypervolume is computed relative to a published reference point
with a deterministic tie-handling rule (e.g., lexicographic ordering in the cost
coordinate) to ensure reproducibility. When the track requests uncertainty
for frontier functionals, we propagate uncertainty either via a union bound
over knob settings (conservative) or via bootstrap over episodes with fixed
knob grid (exploratory), with the chosen procedure fixed by the benchmark
specification.

Warmup, caching, and compilation without bias. Accurate cost mea-
surement requires careful treatment of system-level effects. We therefore
distinguish initialization from per-episode execution. Initialization includes
one-time actions such as loading weights into memory, building retrieval
indices declared as part of the method, or compiling kernels. The track
specifies whether these are included in reported costs; by default, we re-
port per-episode costs and separately report one-time initialization costs
so that deployment scenarios can be reconstructed. To reduce variance
from cold-start effects without biasing comparisons, the harness executes a
fixed warmup procedure prior to the first measured episode for each method
(and, if necessary, for each θ), and excludes warmup from logged per-episode
costs. Warmup length and content are fixed by protocol (e.g., a single syn-
thetic episode with representative sequence lengths), preventing methods
from choosing favorable warmup workloads. Caching is permitted only when
it is (i) method-internal, (ii) does not depend on query labels, and (iii) does
not exploit cross-episode leakage. For example, caching a tokenized prompt
template is permitted; caching episode-specific model outputs for reuse on
future episodes is not. If a method uses retrieval, any caching of retrieval
results must be keyed by the declared input and must be accounted for in
costs; moreover, the retrieval corpus must be declared under the track rules.
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Batching and throughput normalization. Because batching can change
both throughput and energy, we require a consistent batching policy. By de-
fault, we disallow batching across different episodes (to avoid subtle dataflow
interactions and to simplify accounting), but permit batching within an
episode (e.g., evaluating multiple query examples in mini-batches). If a
method exposes batch size as a knob, it must be declared as part of θ and
evaluated accordingly, and all costs (including padding waste and memory-
bound slowdowns) are attributed to that choice. The harness records wall-
clock time in addition to CJ to enable secondary analyses (e.g., energy-delay
products) while keeping leaderboard definitions cost-coordinate driven.

These rules jointly yield an evaluation procedure that is (i) statistically
interpretable through i.i.d. episode sampling and paired comparisons, (ii)
reproducible through deterministic logging and fixed protocols, and (iii)
cost-faithful through standardized instrumentation, warmup, and caching
constraints.

Theory: what can and cannot be inferred from n episodes. We for-
malize the harness as drawing i.i.d. episodes e1, . . . , en ∼ Q and returning,
for each method m (and knob setting θ ∈ Θm when applicable), samples
{(um,θ,t, cm,θ,t)}nt=1 of the random pair (Um,θ(e),Cm,θ(e)). The central the-
oretical question is then: given bounded (or sub-Gaussian) utility and cost
coordinates, how many episodes are required to estimate (i) mean utility and
mean costs, (ii) frontier-based functionals such as Acc@B, AUF, and hyper-
volume, and (iii) method rankings, all with explicit (ε, δ) guarantees. The
answer, under our assumptions, is that the evaluation is statistically well-
posed with sample complexity Θ((σ2/ε2) log(1/δ)), and that this dependence
is information-theoretically unavoidable.

Tight sample complexity for mean utility and mean costs. Fix a
method m and a knob θ. Under boundedness Um,θ(e) ∈ [0, 1] and each scalar
cost coordinate Cm,θ,k(e) ∈ [0, Cmax,k], the empirical means

µ̂m,θ =
1

n

n∑
t=1

um,θ,t, ν̂m,θ,k =
1

n

n∑
t=1

cm,θ,t,k

concentrate at rate O(
√
(log(1/δ))/n) by Hoeffding. When episode-to-episode

variance is significantly smaller than the worst-case bound, empirical Bern-
stein inequalities yield tighter, data-adaptive confidence radii of the form

|µ̂m,θ − E[Um,θ]| ≤ O

√
V̂ar(Um,θ) log(1/δ)

n
+

log(1/δ)

n


(and analogously for each cost coordinate), which is the regime typically
encountered once tasks are fixed and only episodes vary. Conversely, min-
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imax lower bounds via two-point (Le Cam) constructions show that no es-
timator can guarantee ε-accurate mean estimation with probability 1 − δ
using o((1/ε2) log(1/δ)) episodes in the worst case. Thus, in the absence
of additional structure on Q, the harness cannot be made substantially
more sample-efficient by clever post-processing; improvements come primar-
ily from variance reduction (paired evaluation, stratification) rather than
asymptotic rate changes.

Frontier functionals: stability of Acc@B, AUF, and hypervolume.
Cost-aware reporting is inherently a two-stage procedure: first estimate the
achievable set Am = {(µm,θ, νm,θ) : θ ∈ Θm} (or its Pareto frontier), then ap-
ply a functional ϕ (maximum under a budget, integral over budgets, or dom-
inated hypervolume). The estimation error in ϕ̂m = ϕ(Âm) decomposes into
(i) statistical error from (ut, ct) sampling, and (ii) discretization/coverage
error from the knob grid Θm. Under a Lipschitz condition on ϕ with re-
spect to perturbations of points in R1+dC , the plug-in estimator inherits the
episode-level concentration: if the mean estimates for all knob settings are
uniformly within ε (in the appropriate norm), then |ϕ̂m−ϕ(Am)| ≤ O(Lϕε).
Uniformity over θ ∈ Θm is obtained by a union bound (or, more sharply,
by controlling the maximum deviation in a finite class), giving episode com-
plexity scaling like

n = O

(
σ2

ε2
log
|Θm|
δ

)
for a fixed discrete sweep. This term makes explicit a practical design prin-
ciple: the benchmark should prefer coarse but meaningful knob grids (e.g.,
logarithmic ranks/steps) over excessively dense sweeps that inflate log |Θm|
and hence required episodes for the same confidence.

Ranking stability: paired evaluation and episode-wise differences.
Rankings are functions of {E[Um]}m∈M (or of scalarized frontier metrics),
and their stability depends on how quickly we can resolve gaps. For two
methods m1,m2, the paired design induces episode-wise differences Dt =
Um1(et)−Um2(et). Concentration of D̄ = 1

n

∑
tDt depends on τ2 = Var(Dt),

not on Var(Um1) + Var(Um2). When methods succeed and fail on similar
episodes (a common phenomenon), Um1(e) and Um2(e) are positively corre-
lated and τ2 is reduced, improving the number of episodes needed to assert
E[Um1 ] > E[Um2 ] by margin ∆:

n = Θ

(
τ2

∆2
log

1

δ

)
.

This explains why paired episode sequences are not only a fairness constraint
but also a statistical efficiency device: without pairing, one effectively re-
places τ2 by an unpaired variance that can be substantially larger, producing
less stable leaderboards for a fixed evaluation budget.
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Minimax lower bounds for frontier-aware leaderboards. Lower bounds
extend beyond mean estimation. Any method-agnostic procedure that out-
puts a scalar score Ŝm meant to approximate a frontier functional Sm =
ϕ(Fm) must contend with worst-case pairs of task distributions Q0,Q1 that
(i) induce nearly indistinguishable per-episode observations for n samples,
yet (ii) differ in Sm by Ω(ε). Packing arguments (of Fano type) yield that
n = Ω((σ2/ε2) log(1/δ)) episodes are required, up to constants, to guarantee
|Ŝm−Sm| ≤ ε with probability 1− δ. Informally, frontier metrics cannot be
estimated substantially faster than the underlying means from which they
are computed, unless one imposes additional structure on how utility varies
with costs across θ.

Hardness of portfolio optimization under budgets. The benchmark
primarily reports per-method frontiers; nevertheless, it is natural to ask for
a portfolio that chooses among configurations (m, θ) under a global bud-
get. This selection problem is computationally hard even when episode
utilities and costs are known exactly. In the simplest variant, suppose
we have a finite set of candidate configurations i ∈ {1, . . . , N}, each with
value vi (expected utility gain) and cost wi (expected energy or FLOPs),
and we seek max

∑
i vixi subject to

∑
iwixi ≤ B, xi ∈ {0, 1}. This is

precisely 0-1 knapsack, implying NP-hardness of globally optimal budgeted
selection. A second natural variant arises when choosing a limited set of
prompts/demonstrations/retrieval exemplars intended to cover diverse episodes
under a context-length budget; this can encode maximum coverage (and
hence set cover hardness). These reductions justify our design choice: the
benchmark reports frontiers and frontier functionals as primary artifacts, and
treats any portfolio track (if included) as requiring explicit approximation
or heuristic commitments rather than claiming global optimality.

Approximation options and what guarantees remain. Although ex-
act portfolio optimization is NP-hard, meaningful approximation guarantees
are available under additional assumptions. If portfolio utility is monotone
submodular (diminishing returns) and costs are additive, the standard greedy
algorithm achieves a (1 − 1/e)-approximation under a knapsack constraint.
However, the benchmark cannot assume submodularity in general: adapta-
tion configurations can interact in non-diminishing ways (e.g., complemen-
tary prompts), and costs may be non-additive due to caching or shared
initialization. Therefore, whenever approximation algorithms are used in
an auxiliary track, we require (i) a precise statement of the assumed utility
model, (ii) explicit accounting for shared costs, and (iii) reporting of achieved
solutions alongside the per-method frontiers so that the portfolio result is in-
terpretable as a policy layer atop the measured primitives rather than as a
replacement for them.
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9 Experimental Protocol and Reference Baselines

Our experimental protocol is implementation-facing: it specifies (i) the re-
quired method interface, (ii) the episode- and hardware-level measurement
rules that instantiate Cm, (iii) the knob grids Θm for constructing F̂m, and
(iv) a set of reference baselines that collectively span classical metric-based
meta-learning, gradient-based meta-learning, and modern transfer/ICL adap-
tation.

Standardized method API and episode handling. Each submission
exposes two entry points:

state← adapt(S; θ, seed), ŷQ ← evaluate(Q, state; θ, seed).

The episode object e = (S,Q,meta) is immutable and identically provided
across methods (paired design). We require that adapt may read S (including
any unlabeled portion when the track allows it) but may not access Q labels.
Any stochasticity (dropout, sampling, augmentation) must be driven by the
provided seed and logged. For methods with retrieval, the retriever is part
of the method; any corpus beyond the benchmark-provided resources must
be declared and evaluated only in the appropriate track.

Cost measurement protocol (HW-pinned). Costs are measured un-
der a fixed HW profile (device type, driver/CUDA versions, mixed-precision
settings, and power sampling toolchain). For each (m, θ, et), we record:

• Ctok
m,θ(et): prompt/context tokens consumed in all model calls, includ-

ing calibration prompts and any verification/self-consistency calls;

• Cflop
m,θ(et): FLOPs estimate for adaptation plus inference, computed

from logged tensor shapes and kernel-level proxies (or a declared ana-
lytic model), and reported with the estimator type;

• Cparam
m,θ (et): effective parameters updated (e.g., LoRA matrices only,

bias-only for BitFit, or full model for finetuning);

• CJ
m,θ(et): energy in Joules, measured as the time integral of device

power over the adapt+evaluate region, with a standardized warmup
and synchronization barrier;

• CCO2
m,θ (et): a derived proxy using declared carbon intensity and PUE

assumptions attached to HW;

• Ccomm
m,θ (et): bytes/rounds for federated variants (if enabled), including

optimizer state when transmitted.
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We fix batching rules (no cross-episode batching unless explicitly allowed by
the track) to prevent amortizing costs in a way that invalidates per-episode
accounting. When energy measurements are noisy, we permit r repeated
executions for a small subset of episodes for variance estimation; the repeats
must be performed for all methods on the same subset.

Reference baseline suite. We include baselines intended to be strong
but transparent, with minimal tuning beyond Θm sweeps.

1. Metric-based few-shot (no gradient adaptation). SimpleShot
(nearest class centroid with cosine distance, optionally with feature
normalization) and ProtoNets (episodic prototype classifier). For these,
the main knob is the backbone choice (fixed across baselines within a
track) and optional transductive normalization when unlabeled sup-
port is permitted.

2. Gradient-based meta-learning. MAML and First-Order MAML,
with θ including inner-loop steps s ∈ {1, 5, 10}, inner learning rate
schedule, and whether we adapt all layers or only the head (ANIL-
style). We treat meta-training compute as out of scope for Cm (benchmark-
time cost measures adaptation+inference); nevertheless, we require re-
porting meta-training resources separately for completeness.

3. Transfer and finetuning. Full finetuning of a pretrained encoder
with a linear head, and PEFT variants: LoRA (rank r), adapters (bot-
tleneck size), IA3 (multiplicative vectors), and BitFit (bias-only). Here
θ includes steps s, learning rate, and the PEFT capacity parameter
(e.g., r ∈ {2, 4, 8, 16}).

4. In-context learning (ICL) and calibrated ICL. A prompt-based
baseline that formats S as demonstrations and queries Q in a stan-
dardized template; θ includes prompt length budget L (demonstration
count), exemplar selection rule (fixed heuristic such as random or class-
balanced), and decoding configuration. We include a calibrated ICL
variant that applies either contextual calibration (e.g., label prior cor-
rection via content-free prompts) or temperature scaling fit on S (when
labels exist), counting all additional model calls in Ctok and CJ.

This list is not meant to be exhaustive; rather, it spans qualitatively different
adaptation mechanisms so that frontier comparisons are meaningful.

Required ablations: isolating confounders. To reduce the degrees of
freedom that otherwise invalidate comparisons, we require the following ab-
lations when a method family is claimed to improve the frontier.
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• Budget sweeps. Each method must report a sweep over its dominant
knob(s): for ICL, L (and, when applicable, number of model calls); for
PEFT/finetuning, steps s and capacity (e.g., LoRA rank r); for meta-
learners, inner steps s. At minimum, we require a logarithmic grid
(e.g., s ∈ {1, 2, 5, 10}) to support a nontrivial F̂m.

• Prompt ordering and formatting. For prompt-based methods, we
evaluate both a canonical ordering (class-balanced, fixed) and a per-
muted ordering; we report the induced change in µ̂m,θ and in frontier
metrics, since ordering effects can dominate small gains.

• Domain shift strata. Episodes are labeled by meta into shift regimes
(in-domain, cross-domain, cross-label-space where applicable). We re-
quire stratified reporting so that a method that improves only a narrow
slice cannot be presented as globally superior.

• Calibration and thresholding. When utility depends on thresholds
(e.g., F1), we require either a fixed global threshold or a support-fit
rule that is identical across methods; any additional fitting must be
costed.

What constitutes strengthening evidence. We regard claims as stronger
when they survive the following checks, all of which are directly supported
by the logged Lm.

1. Frontier dominance with uncertainty. Rather than reporting
a single operating point, we present F̂m with confidence bands in-
duced by per-episode uncertainty, and we prefer statements of the form
“method m1 dominates m2 on [Bmin, Bmax]” where dominance is robust
to confidence intervals.

2. Paired comparisons. For any headline improvement, we report
paired episode-wise differences in the relevant scalar metric (utility
or ϕ(F̂m)), along with an explicit (ε, δ) claim or a confidence interval
for the gap.

3. Sensitivity analysis. We vary HW within a small approved set (when
feasible) or, minimally, we report both token/FLOP costs and energy
so that conclusions do not hinge on a single measurement modality.

4. Ablation completeness. When a method includes multiple compo-
nents (e.g., retrieval plus calibration, or PEFT plus test-time ensem-
bling), we require a component drop-out study where the cost incre-
ments are also reported; otherwise, improvements are not attributable.

Under this protocol, the empirical artifacts (logs, knob sweeps, and F̂m)
are sufficient for reproducing the leaderboard functionals and for diagnosing
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whether an apparent gain is a genuine shift of the utility–cost tradeoff or
merely movement along it.

10 Discussion

CarbonBench-FSL alters the qualitative conclusions one draws from few-shot
results by elevating utility–cost tradeoffs to the primary object of compari-
son. In a classical accuracy-only view, it is common to treat meta-learning,
transfer/finetuning, and in-context learning (ICL) as competing families and
to report a single best-tuned point per family. In our formulation, each
method m induces an achievable set of random outcomes (Um(e),Cm(e))
across episodes e ∼ Q, and the benchmark output is an estimate of Fm

(with uncertainty) rather than a single operating point. This shift is not
cosmetic: it changes what it means for one family to “win.” A method
that is best at a high-compute operating point may be strictly dominated
at deployment-relevant budgets, and conversely a method with modest peak
accuracy may be Pareto-optimal in low-energy or low-token regimes.

Meta-learning versus transfer under adaptation-time costs. When
we restrict Cm to benchmark-time adaptation and inference, gradient-based
meta-learners frequently occupy an intermediate region of the frontier: they
can achieve nontrivial improvements with small inner-loop step counts, but
their marginal utility per additional inner step may saturate quickly once the
support set S is small. In contrast, transfer with PEFT (e.g., low-rank up-
dates) tends to offer a wider knob range: by varying effective capacity Cparam

m

and steps (and hence Cflop
m and CJ

m), one often traces a longer, smoother fron-
tier. The cost-aware view therefore encourages a more precise statement:
meta-learning may be preferable when a strict bound on per-episode state
update is imposed (e.g., small Cparam

m and bounded steps), whereas PEFT
may dominate when modest additional energy is acceptable and the task
distribution Q exhibits sufficient transfer for gradient updates to be effec-
tive. Importantly, this is compatible with the fact that meta-training may
be expensive; CarbonBench-FSL separates benchmark-time Cm from pre-
computation resources, so that conclusions about deployment-time budgets
are not confounded by training-time sunk costs, while still allowing those
costs to be reported for completeness.

ICL versus parameter updates under token and energy budgets.
ICL changes the cost accounting primarily through Ctok

m (e) and the num-
ber of model calls, which then map to CJ

m(e) and CCO2
m (e) under HW. On

many contemporary systems, energy and latency scale more predictably with
tokens than with nominal FLOP counts, particularly when memory band-
width or kernel launch overhead dominates. For this reason, an ICL method
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that appears “training-free” can nevertheless be expensive in CJ if it relies
on long contexts, multiple decoding passes, or calibration/self-consistency.
Conversely, small-step PEFT can be cost-competitive when the adaptation
compute is limited and amortized over a short query set Q. CarbonBench-
FSL thus changes the natural comparison: rather than asking whether ICL
or finetuning achieves higher U at its best setting, we ask for which budget
vectors B (tokens, energy, or combined) the corresponding frontiers intersect,
and whether dominance persists across shift strata in meta. In particular,
we find it more informative to report statements of the form

∀B ∈ [Bmin, Bmax] : ϕ(Fm1 ;B) ≥ ϕ(Fm2 ;B),

with confidence bands, than to report a single “best” score.

Consequences for claims in the literature. The frontier-centric per-
spective weakens several common but under-specified claims. First, an im-
provement that moves a method along its own frontier (e.g., by spending
more tokens or more gradient steps) is not evidence of a better adaptation
mechanism; it is merely a choice of a different operating point. Second, small
accuracy gains become ambiguous without cost normalization: a gain of ∆ in
Ûm may be negligible if it requires an order-of-magnitude increase in CJ

m or
Ctok
m . Third, conclusions can flip under domain shift: methods that exploit

support labels aggressively may excel in-domain but lose their advantage
cross-domain, where the support signal is less predictive; stratified frontiers
clarify whether a method is robustly Pareto-improving or only locally so. Fi-
nally, paired evaluation (same et across methods) makes it practical to report
uncertainty on gaps rather than on absolute performance, which materially
stabilizes rankings when differences are small.

Recommendations for benchmark extensions: modalities and task
structure. Several natural extensions preserve the episodic formalism while
broadening its scope. (i) Multimodal episodes: define S,Q over paired text–
image or audio–text inputs, with modality-specific cost coordinates (e.g.,
vision encoder FLOPs) included in Cm. (ii) Structured prediction: utili-
ties such as exact match, edit distance, or constrained decoding reward can
be accommodated by redefining Um; in these settings, decoding strategies
become a first-class knob and must be reflected in Ctok

m and CJ
m. (iii) In-

teractive/decision episodes: for bandit or reinforcement-learning-like tasks,
one can treat an episode as a short horizon with utility equal to episodic re-
turn and costs accumulated over interaction; the same concentration-based
estimation framework applies provided the episode sampler is i.i.d.

Privacy and federated adaptation. Cost-aware evaluation is particu-
larly well suited to privacy-preserving and federated variants, where commu-
nication and local compute are dominant constraints. A principled extension
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is a federated track in which each episode e includes partitioned support
S = {S(i)}i across clients, and a method m is permitted client/server mes-
sage passing that incurs Ccomm

m (e) and client-side CJ
m(e). Utilities Um can

incorporate privacy-aware penalties (e.g., a constraint on (εDP, δDP) if differ-
ential privacy is enforced) by either filtering invalid methods or scalarizing
privacy into the utility/cost specification. The central methodological point
is that privacy should not be treated as an afterthought: it is a constraint
that reshapes the feasible frontier, and thus must be reported in the same
language as tokens, energy, and communication.

Continual and amortized adaptation. A further extension is to relax
the independence of method state across episodes. In continual settings,
a method may carry parameters or memory across a sequence e1, e2, . . .,
improving Um on later episodes at the risk of drift or catastrophic forgetting.
CarbonBench-FSL can accommodate this by redefining the unit of evaluation
to be a block (a sequence sampled from a higher-level distribution) and by
reporting both per-episode and amortized costs, e.g.,

Cm =
1

T

T∑
t=1

Cm(et; statet−1), Um =
1

T

T∑
t=1

Um(et; statet−1),

with explicit rules governing what information may persist. This makes
explicit a tradeoff that is otherwise obscured: methods that spend extra
compute early (high initial CJ) may be preferable if they reduce steady-
state costs or improve robustness under shift.

In summary, CarbonBench-FSL encourages conclusions that are condi-
tional on budgets and shift regimes, expressed in terms of (estimated) Pareto
dominance and frontier functionals with uncertainty. This shifts the default
claim from “method family A is better than B” to “A offers a better utility–
cost tradeoff on the relevant region of C-space under the stated assumptions,”
which is the appropriate level of specificity for deployment-facing evaluation.

Limitations and ethics: measurement dependence and carbon ac-
counting. A cost-aware benchmark is only as interpretable as its measure-
ment protocol, and we emphasize that our reported coordinates Cm are not
intrinsic properties of an algorithm in isolation. In particular, the energy
coordinate CJ

m(e) and its derived proxy CCO2
m (e) are functions of the joint

algorithm–systems configuration: model implementation details, compiler
and kernel choices, batch scheduling, memory pressure, and the hardware
profile HW. Two methods m1,m2 can change their relative ordering in CJ

when moved from one accelerator to another (e.g., due to different arithmetic
intensity or KV-cache behavior), even if their token counts and nominal
FLOP estimates are comparable. Consequently, any statement of the form
“m1 is more energy efficient than m2” must be read as conditional on a stated
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HW and a stated protocol (warmup, batching, precision, decoding settings).
We therefore treat HW as part of the benchmark definition rather than an
incidental experimental detail, and we regard portability across hardware as
an empirical question to be evaluated by rerunning the protocol under an
alternative HW′.

A second limitation concerns facility-level overhead, commonly summa-
rized by power usage effectiveness (PUE). If one reports a facility-adjusted
energy CJ

fac = PUE · CJ
IT, then the value of PUE is not only site dependent

but also time varying and often not measurable by an external evaluator.
Moreover, shared infrastructure (cooling, networking, storage) introduces al-
locations that can be accounted for in multiple defensible but non-equivalent
ways. For this reason, when we compute a CO2 proxy we do not claim to
measure an objective “true carbon footprint” of an episode. Rather, we rec-
ommend that benchmark reports explicitly separate (i) a directly measured
or instrumented IT-energy estimate CJ

m(e) under the protocol and (ii) a
derived quantity CCO2

m (e) = κ · CJ
m(e), where κ denotes an explicitly stated

carbon-intensity factor that may incorporate PUE assumptions. This factor-
ization makes the normative and contextual components of carbon reporting
explicit, and it allows downstream users to substitute their own κ to reflect
a different region, grid mix, or accounting standard without rerunning the
entire evaluation.

Risks of proxy misuse and misinterpretation. Because CCO2 is nec-
essarily a proxy, there is a nontrivial risk of misuse. First, a single scalar
carbon number can be over-interpreted as an absolute environmental claim,
masking the fact that real-world emissions depend on time-of-day, marginal
grid intensity, and load shifting. Second, carbon proxies can be used to
create an appearance of environmental rigor without reflecting meaningful
deployment conditions (e.g., choosing a favorable κ while ignoring that the
intended deployment region differs). Third, proxy reporting can incentivize
narrow optimization on reported coordinates while ignoring unmeasured ex-
ternalities, such as embodied emissions of hardware, amortization over uti-
lization, or the impact of repeated hyperparameter search. While we support
transparent reporting of those factors where feasible, we do not assume that
CarbonBench-FSL can, by itself, enforce a complete life-cycle assessment.
Our position is that the benchmark should avoid false precision: it should
prefer decomposed reporting (Ctok, Cflop, CJ with uncertainty, plus an op-
tional CCO2 under declared assumptions) over a single aggregated claim that
obscures the accounting choices.

Another misuse risk concerns cross-paper comparisons. If two studies use
different measurement protocols, one may observe differences in CJ that are
dominated by instrumentation, implementation, or batch-size effects rather
than by algorithmic structure. In particular, token-based costing Ctok is

34



often more stable across platforms than energy costing, yet it too can be
misleading when methods differ in decoding strategy (beam search, self-
consistency, tool calls) or in the number of model invocations. For these
reasons, we view a benchmark run as a paired and internally consistent com-
parison under a fixed protocol, and we caution against comparing energy or
carbon numbers across unrelated experimental setups without harmonizing
HW, decoding parameters, and load conditions.

Responsible reporting guidelines. To reduce ambiguity and to make
ethical use of cost reporting more likely, we recommend the following mini-
mum disclosure for any CarbonBench-FSL result table or submission:

• Protocol and hardware disclosure: report HW (accelerator type, driver/runtime
versions, precision settings), batching rules, warmup rules, and decod-
ing configuration; report whether power was measured (e.g., via on-
board sensors) or inferred.

• Primary cost coordinates: report Ctok and CJ (with uncertainty bands
or repeated-run variance estimates when available) in addition to any
derived CCO2 ; do not report CCO2 without the underlying CJ.

• Carbon proxy assumptions: if CCO2 is reported, state the exact multi-
plier κ used (including any PUE factor) and its provenance; if κ varies
across runs, state the averaging scheme.

• Separation of benchmark-time and precomputation: clearly separate
adaptation/inference costs (the benchmark target) from any offline
costs such as meta-training, supervised pretraining, index construc-
tion for retrieval, or hyperparameter sweeps; if offline costs are large,
report them as supplementary totals rather than silently amortizing
them.

• Budget-conditional claims: express conclusions as comparisons of fron-
tiers or of budgeted functionals (e.g., accuracy@B, AUF) rather than
absolute statements detached from B; avoid implying dominance out-
side the measured budget region.

These guidelines are not merely stylistic: they are required for the mathemat-
ical object we estimate—a frontier conditional on HW and on a protocol—to
be well defined and reproducible.

Ethical scope and non-goals. We also delimit what the benchmark does
not address. First, while cost-aware evaluation may discourage needlessly ex-
pensive adaptation procedures, it does not by itself ensure that a deployment
is socially desirable; energy and carbon are only two axes among many. Sec-
ond, CarbonBench-FSL does not adjudicate which accounting standard for
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emissions is correct; we expose assumptions so that the reader can reinstanti-
ate them. Third, an algorithm may reduce measured energy while increasing
other harms (e.g., by shifting compute to unreported external services, or
by relying on proprietary data). Our fairness constraint therefore requires
disclosure of external retrieval corpora and auxiliary models, but disclosure
cannot guarantee completeness. Finally, privacy-sensitive settings introduce
additional ethical constraints: even if a method is Pareto-optimal in (U,C),
it may be unacceptable if it violates privacy or safety requirements. We
therefore encourage tracks in which such constraints are made explicit (e.g.,
by filtering or by adding a coordinate/constraint), rather than treating them
as informal caveats.

In sum, we view measurement dependence as an inherent feature of
systems-aware evaluation, not a defect to be ignored. The appropriate re-
sponse is to specify HW and the protocol as part of the benchmark, to
report decomposed costs with uncertainty, and to treat any carbon quantity
as a conditional proxy under stated assumptions. Under these practices,
cost-aware reporting can improve scientific clarity and reduce incentives for
misleading accuracy-only optimization, while remaining honest about what
is and is not measured.
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