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Abstract

Few-shot learning on graphs faces not only label scarcity but also
structure scarcity: tail nodes with small neighborhoods and cold-start
nodes with missing edges. Prior graph few-shot methods (meta-learning,
pre-training, prompting) largely assume that training and testing tasks
are i.i.d. or that topology is sufficiently informative; the survey source
material highlights that this assumption breaks for structure-scarce
settings and flags robustness and scalability as key 2026-era challenges.
This paper proposes a structure-scarcity simulator for self-supervised
graph pre-training: a degree-aware neighborhood deletion and attribute
masking operator that explicitly trains encoders to remain predictive
under topology degradation. We then perform prompt-only few-shot
adaptation, freezing the backbone and updating <1

Table of Contents

1. 1. Introduction: structure scarcity as topology shift; why i.i.d. episodic
assumptions fail; 2026 motivation (tail/cold-start, large graphs, parameter-
efficient adaptation).

2. 2. Related Work: (i) meta-learning on graphs with structure/adaptation
enhancements, (ii) contrastive/generative pre-training, (iii) prompting
and PEFT on graphs, (iv) long-tail/cold-start graph learning.

3. 3. Problem Setup and Computational Model: local-access r-hop neigh-
borhoods; head-to-tail and cold-start evaluation protocols; prompt-
only adaptation constraint; formal risk definitions under topology shift.

4. 4. Structure-Scarcity Simulator Simη: degree-aware edge deletion and
attribute masking; design space (probability schedules, conditional
deletion, feature corruption); properties and controllable parameters.

1



5. 5. Pre-Training Objective: combined contrastive + generative loss
using simulator views; discussion of why it targets topology-shift sta-
bility; implementation notes (negative sampling, masking policies) to
be validated experimentally.

6. 6. Prompt-Only Adaptation: unified similarity/matching template;
prompt parameterization options (vector prompts vs prompt-graphs);
constrained ERM forK-shot learning; connection to parameter-efficient
fine-tuning.

7. 7. Theory I 2̆014 Stability-Based Transfer Bound: define representa-
tion stability under Shift; prove excess-risk bound decomposing prompt
complexity and shift penalty; interpretability of terms; conditions for
tightness.

8. 8. Theory II 2̆014 Controlling Stability via Synthetic Sparsity: analy-
sis in a linearized message passing/NTK-like regime; show simulator-
augmented objective upper-bounds the stability term; provide explicit
dependence on simulator strength.

9. 9. Lower Bounds and Hardness: matching K = Ω(P/ε2) labeled-
sample lower bound for P -parameter prompts; impossibility for fully
isolated nodes without informative attributes; NP-hardness sketch for
worst-case robust prediction under adversarial edge deletions.

10. 10. Experimental Plan (Flagged as Strengthening): controlled sparsity-
shift benchmarks; real-world long-tail graphs; ablations of simulator
schedules; compare prompting vs adapters/LoRA vs fine-tuning vs
meta-learning; correlate measured stability proxy with accuracy un-
der shift.

11. 11. Discussion and Limitations: when synthetic sparsity helps/hurts;
relation to cross-domain graphs and complex graphs (hetero/dynamic);
open directions (local-access deployment, interpretable prompt-graphs).

2



1 Introduction

We study node-level prediction in regimes where structure scarcity is the
dominant obstacle rather than label scarcity alone. In many deployed graph
systems, the nodes of interest at inference time are not typical members of
the training population: they are tail entities with few interactions, newly
arrived users or items with incomplete neighborhoods, or nodes whose inci-
dent edges are partially missing due to privacy, logging, or sampling. In such
settings, a learned predictor is queried on an ego-neighborhood that is sys-
tematically sparser than the neighborhoods that carried supervision during
training. We formalize this mismatch as a topology shift : if training labels
are observed on structure-rich head nodes, then test instances correspond
to tail/cold-start nodes whose r-hop induced neighborhoods have been per-
turbed by a sparsification operator Shift (edge deletion and feature masking
being canonical examples). The salient point is that the covariates available
to the learner—the local subgraph Subr(G, v) together with its attributes—
change in a manner that is neither negligible nor symmetric across the node
population.

This perspective exposes a limitation of the usual i.i.d. episodic assump-
tions in few-shot learning on graphs. Standard N -way K-shot evaluations
implicitly posit that support and query examples are drawn from the same
conditional distribution over observations given labels. On graphs, however,
the observation associated with a node is itself a random object (a local
neighborhood) whose distribution depends strongly on node degree, com-
munity position, and data-collection artifacts. In particular, the training
pipeline often privileges high-degree, information-rich nodes (head nodes)
because these are easier to label and yield lower-variance gradient estimates;
meanwhile, the operational objective is frequently to perform well on pre-
cisely those nodes where the topology provides less context (tail nodes).
Consequently, even when labels are scarce in the classical sense, the more
severe shift is structural: the learner adapts on support samples whose neigh-
borhoods exhibit one connectivity regime and is evaluated on query samples
whose neighborhoods exhibit another.

The year 2026 adds a pragmatic constraint that makes this shift un-
avoidable in large-scale applications. Modern graph encoders are commonly
pre-trained on massive unlabeled corpora and are expensive to update per
downstream task. At the same time, downstream tasks are numerous and
heterogeneous, and their labeled sets are small (often hundreds or fewer
labeled nodes per task). This combination encourages parameter-efficient
adaptation mechanisms, where one freezes a strong encoder fθ and adapts
a small number of parameters. We adopt this constraint explicitly: during
downstream adaptation, the learner may only tune a prompt p ∈ RP (or
an equivalent prompt-graph), subject to a norm budget ∥p∥ ≤ B, while the
backbone fθ : Subr(G, v)→ Rd remains fixed. In this regime, the statistical

3



question is not whether full fine-tuning can recover performance, but rather
what guarantees (and limitations) are attainable by optimizing over a low-
dimensional prompt class under distribution shift in the local neighborhood.

A second constraint is local access. In many deployment settings, full-
graph inference is infeasible: the graph is too large, continuously updated, or
partitioned across services. We therefore restrict attention to algorithms that
may query only Subr(G, v) for requested nodes v at adaptation and test time.
This restriction is not merely computational; it shapes what information
is even observable about a tail node. A cold-start node may have deg(v)
close to zero, in which case its neighborhood contains little beyond its own
attributes. Hence, any general theory must distinguish between performance
limits stemming from lack of labels and performance limits stemming from
lack of structure.

Within this setting, the key technical quantity is the stability of the
frozen representation to topology shift. If the encoder output fθ(Subr(G, v))
changes substantially when edges are deleted or features are masked, then
no amount of prompt tuning on head nodes can guarantee good performance
on tail nodes, because the prompt only sees head-style embeddings at adap-
tation time. Conversely, if fθ is stable under a family of plausible sparsifi-
cations, then the shift from head to tail becomes a controlled perturbation
in embedding space, and prompt-based ERM can transfer with a bounded
penalty. This reframes robustness to structure scarcity as a representation-
learning problem: we should pre-train fθ so that it maps multiple corrupted
versions of the same underlying neighborhood to nearby embeddings.

To achieve this, we incorporate a degree-aware simulator Simη during
self-supervised pre-training. The simulator produces sparsified-and-masked
views of neighborhoods, with corruption probabilities depending on deg(v)
so that low-degree nodes are more aggressively perturbed. By training fθ to
be consistent across two independently simulated views, and simultaneously
requiring sufficient information retention via a generative reconstruction ob-
jective, we encourage invariances that are aligned with tail/cold-start con-
ditions. Importantly, this is not an adversarial robustness objective; it is a
distributional one. We do not aim to be correct under arbitrary deletions,
which can encode intractable combinatorial properties, but rather under
shifts whose intensity and degree-dependence resemble the simulator fam-
ily.

Finally, our objective is to connect these modeling choices to explicit
tradeoffs between (i) the prompt parameter budget P , (ii) the number of la-
beled support nodes K, and (iii) the severity of topology shift. Prompt-only
adaptation imposes an unavoidable statistical price: with too many prompt
degrees of freedom relative to K, generalization on the support distribution
degrades, and no representation stability can remove this dependence. Con-
versely, even with favorable P and K, a large shift in representation caused
by neighborhood sparsification induces an irreducible transfer penalty. Our
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framework is designed to make both effects transparent under the local-access
constraint, thereby matching the realities of tail-heavy graph prediction and
the operational preference for frozen encoders with lightweight adaptation.

2 Related Work

Our setting sits at the intersection of (i) few-shot adaptation on graphs, (ii)
self-supervised graph representation learning, (iii) parameter-efficient tuning
via prompts, and (iv) long-tail and cold-start graph prediction. We focus on
the combination of a frozen encoder, local-access constraints, and an explicit
head-to-tail topology shift, which is only partially addressed when these
literatures are considered in isolation.

Meta-learning and few-shot learning on graphs. Graph meta-learning
adapts models to new tasks with limited labeled nodes by exploiting shared
structure across tasks. Representative approaches include gradient-based
methods (e.g., MAML-style adaptations) and metric/prototype-based meth-
ods built atop GNN encoders, often with episodic training on subgraphs or
node neighborhoods ?????. Graph-specific extensions incorporate neighbor-
hood sampling, hierarchical pooling, or task-conditioned message passing
to better handle varying graph sizes and label semantics ??. A recurring
implicit assumption is that support and query nodes are drawn from the
same distribution over ego-neighborhoods given the label, so that adapta-
tion performance reflects label scarcity rather than a systematic change in
neighborhood topology. Several works do address structural variability via
augmentations, subgraph transformations, or uncertainty-aware aggregation,
yet the mismatch between structure-rich training nodes and structure-poor
test nodes is typically not isolated as a first-class distribution shift ??. Our
formulation makes this mismatch explicit through a shift operator acting on
local neighborhoods and evaluates transfer to tail/cold-start regimes under
frozen-backbone constraints.

Self-supervised pre-training: contrastive and generative objectives.
Large-scale unlabeled pre-training has become the standard route to strong
graph encoders. Contrastive methods learn representations invariant to aug-
mentations such as edge dropping, feature masking, subgraph sampling, and
diffusion, including DGI, MVGRL, GRACE, GraphCL, and GCC ?????.
Generative and reconstruction-based methods instead predict masked at-
tributes, recover adjacency, or reconstruct local motifs, often improving fea-
ture utilization and preventing collapse ???. Hybrid objectives combining
contrastive consistency with reconstruction have also been explored to bal-
ance invariance and information preservation ??. Our use of synthetic spar-
sification aligns with this tradition, but we emphasize a degree-aware cor-
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ruption process designed to simulate tail-like neighborhoods and to control
a stability quantity under topology shift. In particular, while many augmen-
tations are chosen for empirical performance, our simulator is motivated by
the desideratum that the induced invariances translate to bounded represen-
tation perturbations for the tail distribution.

Prompting and parameter-efficient tuning for graphs. Parameter-
efficient fine-tuning (PEFT) methods, including adapters, prefixes, and low-
rank updates, are widely used in language and vision to adapt large frozen
backbones with limited task-specific parameters ???. Analogous ideas have
recently appeared in graph learning under the name of graph prompting:
one freezes a pre-trained GNN and learns small prompt modules such as
virtual prompt nodes/edges, feature prompts, or prototype vectors, with the
goal of fast task adaptation and better transfer across datasets ???. These
approaches empirically support the premise that a strong self-supervised
encoder can be reused across tasks with lightweight tuning. However, ex-
isting work largely studies prompting under matched train/test conditions
and reports average-case improvements, whereas our focus is on prompt-
only adaptation under a structural distribution shift. Moreover, we connect
prompt dimension and support-set size through explicit sample-complexity
terms, and we separate the statistical penalty of prompt expressivity from
the transfer penalty induced by representation instability under sparsifica-
tion.

Long-tail, cold-start, and robustness to structural scarcity. Learn-
ing on graphs with imbalanced degree or label distributions has been stud-
ied in long-tail node classification, cold-start recommendation, and semi-
supervised settings where low-degree nodes receive weak propagation from
neighbors ???. Proposed remedies include degree-aware reweighting, topol-
ogy or feature augmentation, neighbor imputation, self-training on pseudo-
labels, and incorporating side information beyond the observed edges (e.g.,
text, profiles, or knowledge graphs) ???. A related but distinct line considers
adversarial or worst-case robustness to edge perturbations and poisoning at-
tacks ??. Our emphasis differs in two ways. First, we treat structure scarcity
as a distributional phenomenon (tail/cold-start neighborhoods are system-
atically sparser) rather than an adversarial one, consistent with operational
shifts caused by logging, privacy filtering, or sampling. Second, we impose
local-access constraints and a frozen encoder, which rule out methods requir-
ing repeated full-graph propagation at adaptation time. The resulting theory
highlights an unavoidable limitation: when neighborhoods contain little or
no information (e.g., extreme cold-start), performance is bounded by what
attributes remain observable, motivating stability-aware pre-training rather
than purely label-efficient adaptation mechanisms.
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3 Problem Setup and Computational Model

We study node-level prediction under a combination of label scarcity, struc-
tural scarcity, and parameter-efficiency constraints. The ambient object is
an attributed graph G = (V,E,X) with node features X ∈ R|V |×dx . For a
node v ∈ V and an integer radius r ≥ 1, we write Subr(G, v) for the induced
r-hop ego-subgraph around v, i.e., the subgraph on nodes within graph dis-
tance at most r from v (together with their features). Throughout, we work
in a local-access model: an algorithm may request Subr(G, v) for particular
nodes v, but it is not permitted to execute full-graph message passing or
to repeatedly traverse the entire edge set at adaptation or test time. This
captures large-scale and privacy-filtered settings where only bounded neigh-
borhoods can be materialized per query.

Head-to-tail evaluation under topology shift. We formalize the mis-
match between structure-rich training nodes and structure-poor test nodes
via two distributions. The head distribution Dhead governs labeled exam-
ples with comparatively informative neighborhoods (e.g., moderate-to-high
degree, dense local connectivity, unmasked attributes). The tail distribution
Dtail governs evaluation examples in which the observable neighborhood is
structurally degraded, as in low-degree nodes, partially logged edges, or cold-
start entities. To model this degradation explicitly, we introduce a (possi-
bly stochastic) topology shift operator Shift acting on graphs (or directly on
ego-neighborhoods). Given an original downstream graph G∗, we may eval-
uate on neighborhoods extracted from Shift(G∗), or equivalently on pairs(
Subr(G

∗, v),Subr(Shift(G
∗), v)

)
that share the same center node v and la-

bel but differ in observable edges and/or features. The essential assumption
is that labels are preserved by Shift while the structural statistics of neigh-
borhoods change in a way that emphasizes tail or cold-start regimes.

Frozen encoder and prompt-only adaptation. We assume access to
a graph encoder

fθ : Subr(G, v)→ Rd

whose parameters θ are learned offline by self-supervised pre-training on
unlabeled data from a pre-training distribution Dpre. At downstream time, θ
is frozen: the only trainable component is a prompt p ∈ RP (or an equivalent
prompt-graph parameterization) constrained by ∥p∥ ≤ B and a parameter
budget P . A prompted predictor takes the form

v 7−→ hp(fθ(Subr(G
∗, v))) ,

where hp is a fixed template (e.g., a similarity-to-prototypes classifier, a small
MLP head with prompt-controlled biases, or a prompt-conditioned linear
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separator) whose dependence on task data enters only through p. This ab-
straction isolates the statistical role of prompt expressivity from representa-
tion learning in the encoder, and it enforces a parameter-efficient adaptation
regime.

Downstream protocol and support/query access. A downstream task
instance provides a labeled support set

S = {(vi, yi)}Ki=1,

drawn from head nodes of G∗ (or more generally from Dhead), together with a
query set Q drawn from tail or cold-start nodes (modeled by Dtail). During
adaptation, we may query only the r-hop neighborhoods Subr(G

∗, vi) for
vi ∈ S; during evaluation, each query node v ∈ Q is presented through
its shifted neighborhood Subr(Shift(G

∗), v) (or through an equivalent tail
sampling rule). In particular, we do not assume availability of labels for tail
nodes, and we do not assume that head and tail neighborhoods are identically
distributed conditional on the label.

Risk functionals under shift. Let ℓ(ŷ, y) denote a bounded prediction
loss (e.g., cross-entropy), and write Rhead(p) for the expected risk when
examples are drawn from the head distribution:

Rhead(p) = E(v,y)∼Dhead

[
ℓ
(
hp(fθ(Subr(G

∗, v))), y
)]
.

The target of interest is the test risk on the tail distribution, which we view
as induced by a shift applied to neighborhoods:

Rtest(p) = E(v,y)∼Dtail

[
ℓ
(
hp(fθ(Subr(Shift(G

∗), v))), y
)]
.

Given a finite support set S, we define the empirical risk

R̂S(p) =
1

K

K∑
i=1

ℓ
(
hp(fθ(Subr(G

∗, vi))), yi
)
,

and we perform prompt-only ERM (or any prompt-only optimizer) over {p :
∥p∥ ≤ B}, producing a task-adapted prompt pERM. This yields a precise
separation between (i) a statistical estimation term controlled by P and K,
and (ii) a transfer term controlled by how stable fθ is to the shift Shift.

Cold-start and observability. The local-access model makes explicit the
information available at test time. If deg(v) is small, then Subr(Shift(G

∗), v)
may contain very few nodes or edges; in the extreme cold-start case deg(v) =
0, the model reduces to attribute-only prediction from Xv. Consequently,

8



the feasibility of tail performance depends on whether (a) the remaining
attributes are label-informative and (b) the frozen encoder produces embed-
dings that vary smoothly with respect to edge/feature deletions typical of the
tail regime. The latter consideration motivates equipping pre-training with
explicit synthetic structure scarcity so that the learned representation is not
brittle to sparsification; we formalize this next by introducing a degree-aware
simulator Simη and its controllable design parameters.

4 Structure-Scarcity Simulator Simη

We now specify the stochastic operator Simη used to generate tail-like views
during self-supervised pre-training. Formally, for an input graph (or ex-
tracted neighborhood) G = (V,E,X), the simulator outputs a random cor-
rupted view G̃ = (V, Ẽ, X̃) distributed as G̃ ∼ Simη(· | G). The hyper-
parameters η control (i) degree-aware edge deletion, (ii) attribute mask-
ing/corruption, and (iii) optional conditioning on the ego-center and hop
distance. Our design goal is to create perturbations that are stronger on
structurally weak regions while remaining implementable by local operations
on r-hop neighborhoods.

Degree-aware edge deletion. Let e = (u,w) ∈ E be an edge. The
simulator deletes e with probability

qE(e;G, η) ∈ [0, 1], Ẽ = {e ∈ E : ξe = 1}, ξe ∼ Bernoulli(1−qE(e;G, η)).

The defining feature is that qE(e;G, η) increases as the incident degrees
decrease, thereby producing views in which low-degree nodes become even
sparser. A convenient parameterization is

qE
(
(u,w);G, η

)
= clip[0,1]

(
ρE ·

(degG(u) + 1

d̄+ 1

)−γ
·
(degG(w) + 1

d̄+ 1

)−γ
· ω
(
dist(u, v0), dist(w, v0)

))
,

where ρE ∈ [0, 1] is a global sparsification strength, γ ≥ 0 controls the
degree sensitivity, d̄ is a normalizing constant (e.g. the mean degree in the
current sampled graph or batch), v0 is the ego-center when simulating on
Subr(G, v0), and ω is an optional hop-dependent weight. Taking ω ≡ 1
yields degree-only deletion; choosing ω increasing in hop index emphasizes
deleting edges farther from the center (a common logging artifact), whereas
decreasing ω stresses immediate-neighbor loss (a cold-start-like regime). The
additive +1 prevents degeneracy at deg = 0 and ensures continuity in the
schedule.

Conditional deletion and connectivity constraints. Purely indepen-
dent Bernoulli deletion is analytically and computationally convenient, but
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one may also incorporate mild conditioning to better match deployment
shifts. Two examples are: (i) per-node budget deletion, where for each node
u we retain at most k(u) incident edges sampled proportionally to (1− qE),
and (ii) minimum-degree preservation, where we resample deletions until each
node keeps at least one incident edge when degG(u) > 0. Such conditioning
breaks edge-wise independence but remains local and retains the essential
monotonicity: nodes with smaller degG(u) experience larger expected rela-
tive loss of incident edges.

Attribute masking and corruption. Edge sparsification alone does not
model attribute incompleteness, so Simη also corrupts X. We distinguish
node-level masking from feature-dimension masking. For each node u ∈ V ,
we draw a node mask indicator

mu ∼ Bernoulli
(
1−qV (u;G, η)

)
, qV (u;G, η) = clip[0,1]

(
ρV ·

(degG(u) + 1

d̄+ 1

)−γV
· ωV (dist(u, v0))

)
,

and we set X̃u = Xu if mu = 1 and otherwise apply a corruption operator
Corr, e.g. X̃u = 0, X̃u = MASK, or X̃u = Xu+ϵ with ϵ subgaussian. In addi-
tion, for feature vectors that remain present (mu = 1), we may mask individ-
ual coordinates: for each dimension j ∈ [dx], draw mu,j ∼ Bernoulli(1− ρX)
and set X̃u,j = Xu,j if mu,j = 1 and otherwise replace with a learned mask
token or zero. This two-level scheme allows the simulator to represent both
missing-at-random attributes (coordinate masking) and missing-at-entity at-
tributes (node masking), with degree-aware intensification when desired.

Locality and ego-subgraph compatibility. Although Simη is defined on
graphs, in practice we apply it to sampled neighborhoods. Given Subr(G, v0),
we compute degrees either with respect to the ambient G (if available in
pre-training) or with respect to the induced neighborhood (if only local
access is permitted). Both choices preserve the intended bias: in either
case, nodes near the center with few observed incident edges receive higher
deletion/masking probability, producing synthetic tails inside the same pre-
training distribution.

Controllable parameters and regimes. The simulator hyperparame-
ters can be grouped as

η = (ρE , γ, ω; ρV , γV , ωV ; ρX ; Corr; conditioning flags),

where (ρE , ρV , ρX) set the overall corruption strengths, (γ, γV ) set the de-
gree dependence, and (ω, ωV ) shape the hop profile. Varying ρE interpolates
between fully observed neighborhoods (ρE = 0) and severe sparsification; in-
creasing γ concentrates corruption on low-degree regions and is the principal
mechanism by which we emulate tail/cold-start structure. Importantly, these
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parameters admit calibration to an anticipated test-time shift: if we estimate
empirical edge-retention curves as a function of degree in the downstream
system, we can choose η so that the simulator matches (or intentionally
upper-bounds) those curves.

A domination property. For our subsequent stability arguments, it is
useful to ensure that the test-time operator Shift is dominated by Simη:
informally, any edge or feature deletion that can occur under Shift occurs
with at most the same probability under Simη. One sufficient condition
(stated at the level of single edges/features) is

∀e ∈ E : qShift(e;G) ≤ qE(e;G, η), ∀(u, j) : qShift(u, j;G) ≤ qX(u, j;G, η),

with analogous inequalities for node-level masking. This condition can be en-
forced conservatively by choosing ρE , ρV , ρX slightly larger than the expected
deployment corruption. The practical interpretation is that pre-training ob-
serves neighborhoods at least as sparse as those encountered at evaluation,
thereby providing the encoder with repeated exposure to tail-like perturba-
tions.

5 Pre-Training Objective: Contrastive–Generative
Learning Under Synthetic Scarcity

Given unlabeled samples from Dpre, we pre-train the encoder fθ by repeat-
edly drawing two independent simulator views of the same underlying neigh-
borhood and enforcing (i) representation consistency across these views and
(ii) reconstructability of masked structure/attributes. Concretely, for a sam-
pled pair (G, v) we draw G̃(1), G̃(2) ∼ Simη(· | G) independently and compute

z(a) = fθ
(
Subr(G̃

(a), v)
)
∈ Rd, a ∈ {1, 2}.

The pre-training loss is

Lpre(θ, ϕ) = Lcontrast(θ) + λLgen(θ, ϕ),

where ϕ denotes parameters of the decoder(s) used for reconstruction, and
λ ≥ 0 controls the discriminative–generative tradeoff.

Contrastive invariance to simulator corruption. For the contrastive
term, we adopt an InfoNCE-style objective over mini-batches of size m.
Writing z(a)i for the embedding of the i-th sampled neighborhood under view
a, a standard choice is

Lcontrast = −
1

2m

m∑
i=1

[
log

exp
(
⟨z(1)i , z

(2)
i ⟩/τ

)∑m
j=1 exp

(
⟨z(1)i , z

(2)
j ⟩/τ

)+log
exp
(
⟨z(2)i , z

(1)
i ⟩/τ

)∑m
j=1 exp

(
⟨z(2)i , z

(1)
j ⟩/τ

)],
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with temperature τ > 0. The only role of this term in our analysis is that it
explicitly penalizes variation of fθ across simulator-induced perturbations of
the same underlying neighborhood, thereby biasing fθ toward being insensi-
tive to degree-dependent edge loss and attribute masking. This is precisely
the invariance required to make Stab(fθ; Shift) small when Shift is dominated
by Simη.

Generative reconstruction under missingness. Contrastive learning
alone can encourage invariances that discard task-relevant information. We
therefore include a masked reconstruction term that forces embeddings to
retain information sufficient to predict the uncorrupted neighborhood. A
simple instantiation uses a decoder dϕ that takes as input the embedding
and (optionally) local positional identifiers (e.g. hop index), and outputs re-
constructions of masked node features and/or removed edges inside the r-hop
induced subgraph. Denoting by M the set of corrupted feature coordinates
(or nodes) and by E− the set of deleted edges under the simulator, we may
write schematically

Lgen = E
[ ∑
(u,j)∈M

ℓX
(
dϕ(z, id(u), j), Xu,j

)
+
∑
e∈E−

ℓE
(
dϕ(z, id(e)), 1

)
+
∑
e∈E+

ℓE
(
dϕ(z, id(e)), 0

)]
,

where E+ is a sampled set of non-edges for negative edge prediction. The
precise parameterization is not essential; what matters is that reconstruction
is performed from corrupted views so that the encoder must propagate stable
information across sparsification patterns rather than overfitting to a single
topology.

Why the objective targets topology-shift stability. The stability
term Stab(fθ; Shift) measures the expected embedding perturbation induced
by a test-time sparsification. By construction, the contrastive component
reduces (in expectation) ∥z(1) − z(2)∥ when G̃(1) and G̃(2) differ by deletions
and maskings typical of Simη. When Shift is dominated by Simη, the simula-
tor generates perturbations at least as severe as those induced at test time,
and the learned invariances transfer to the shifted regime. The generative
component prevents trivial solutions (e.g. mapping every neighborhood to
a constant) and encourages that invariance be achieved through predictive
compression rather than information erasure, which is crucial for downstream
discrimination with a small prompt.

Implementation notes under local-access constraints. We rely on in-
batch negatives for computational efficiency; this yields O(m2d) similarity
computation but avoids maintaining a memory bank, and is compatible with
sampling neighborhoods independently from Dpre. In practice, one may fur-
ther stabilize training by (i) normalizing embeddings, (ii) using a predictor
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head and stop-gradient on one branch (BYOL-style) to reduce sensitivity to
batch size, or (iii) replacing InfoNCE with variance–covariance regularization
(VICReg-style) to mitigate collapse; these choices preserve the intended in-
variance effect and are interchangeable for our purposes. For masking, we ap-
ply simulator edge deletions before feature corruption so that masked nodes
do not artificially influence message passing through edges that would be
absent under scarcity. When node-level masking is used, we prefer a learned
mask token over all-zeros to reduce distribution shift between “missing” and
“truly zero” attributes. For edge reconstruction, we sub-sample candidate
pairs within Subr to avoid quadratic enumeration of all node pairs.

Experimental validation points. The remaining design choices—temperature
τ , the balance λ, and the specific corruption policies within Simη—are treated
as tunable hyperparameters. Empirically, we will validate (i) whether in-
creasing simulator strength decreases Stab(fθ; Shift) as predicted, (ii) whether
the contrastive–generative combination outperforms either term alone under
tail evaluation, and (iii) whether the learned invariances preserve label in-
formation sufficiently to be exploited by prompt-only adaptation.

6 Prompt-Only Adaptation: Unified Matching Tem-
plates and Constrained K-Shot ERM

We now specify the downstream adaptation stage under the parameter-
efficiency constraint that the encoder fθ is frozen and only a prompt object
p ∈ RP (or an equivalent prompt-graph parameterization of total dimen-
sion P ) may be updated. The input to adaptation is a labeled support set
S = {(vi, yi)}Ki=1 drawn from head nodes of the downstream graph G∗, to-
gether with unlabeled query nodes from a tail/cold-start regime. For each
support node we compute the local embedding

zi = fθ
(
Subr(G

∗, vi)
)
∈ Rd,

and we seek a prompted predictor of the form v 7→ hp(z) that can be tuned
with K labels and then evaluated on tail neighborhoods (potentially after
applying Shift).

A unified similarity/matching view of hp. To make the role of prompts
explicit while keeping the hypothesis class analyzable, we instantiate hp as a
similarity-based template. We write gp : Rd → Rd′ for a prompt-conditioned
transformation of the frozen embedding and define class scores by comparing
gp(z) to prompt-conditioned reference vectors. For a C-class task, a general
form is

scorec(z; p) = Sim
(
gp(z), rc(p, S)

)
, ŷ = argmax

c∈[C]
scorec(z; p),
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where Sim is a fixed similarity (e.g. dot product or negative squared distance),
and rc(p, S) denotes a class-specific reference computed from the support set
(possibly also depending on p). This umbrella includes (i) linear probing
(scorec(z; p) = ⟨wc(p), z⟩), (ii) prototypical classification (rc is a prototype),
and (iii) nearest-neighbor matching with a prompt-induced metric. The
analysis in the sequel uses only Lipschitzness of hp as a map of the embedding
argument, hence we do not commit to a single Sim.

Prototype-based instantiation (metric prompting). A particularly
convenient specialization for K-shot learning is a prototypical head. Let
Sc = {i : yi = c} and define a prompt-conditioned prototype

µc(p) =
1

|Sc|
∑
i∈Sc

gp(zi), scorec(z; p) = −
∥∥gp(z)− µc(p)∥∥22.

If gp is close to identity, then prompts primarily modulate the geometry
of the embedding space and can correct systematic bias between the pre-
trained representation and the downstream label geometry using only a small
number of parameters. When C is large and K is small, prototypes provide
an implicit regularization: parameters are shared across classes through gp
rather than through C independent weight vectors.

Vector prompt parameterizations (post-encoder). In the strictest
local-access setting, we may keep the encoder calls independent of p and
implement prompting purely in embedding space. Typical choices include

gp(z) = z+p (additive prompt), gp(z) = γ(p)⊙z (feature-wise gating), gp(z) = z+U(p)V (p)⊤z (low-rank update).

Here γ(p) ∈ Rd is a bounded gating vector and U(p), V (p) have small rank so
that the total number of free parameters is P ≪ |θ|. These vector prompts
are computationally attractive: once zi are cached for the support set, each
prompt update step avoids re-encoding neighborhoods, reducing adaptation
to inexpensive operations in Rd.

Prompt-graphs (pre-encoder) under a frozen backbone. An alter-
native is to represent p as a small prompt graph Πp consisting of np vir-
tual nodes with learnable features and a fixed, bounded pattern of edges
connecting Πp to the ego-subgraph. For a node v, we form an augmented
neighborhood Subr(G

∗, v)⊕Πp (with attachment rules that depend only on
hop index or a designated anchor) and define

zv(p) = fθ
(
Subr(G

∗, v)⊕Πp

)
, ŷ = h

(
zv(p)

)
,

where h is a fixed readout (e.g. a cosine-to-prototype map). This real-
izes adaptation by altering the message-passing context while keeping θ un-
changed. The cost is that embeddings must typically be recomputed when
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p changes; nevertheless, np can be made small and the attachment local so
that local-access constraints remain satisfied.

Constrained ERM for K-shot adaptation. We perform downstream
learning by empirical risk minimization over prompts with a norm budget:

pERM ∈ arg min
∥p∥≤B

R̂S(p) = arg min
∥p∥≤B

1

K

K∑
i=1

ℓ
(
hp(zi), yi

)
.

In practice we implement this constraint either by projected gradient descent
p ← Π{∥p∥≤B}(p − η∇R̂S(p)) or by adding a penalty ρmax{0, ∥p∥ − B}2.
The constraint is not merely cosmetic: it controls the capacity of the prompt
class and is the parameter-level analogue of standard regularization in linear
probing.

Relation to parameter-efficient fine-tuning. Prompt-only adaptation
is a graph-local analogue of parameter-efficient fine-tuning (PEFT): we re-
strict task-specific learning to P degrees of freedom while retaining a task-
agnostic representation learned offline. Vector prompts correspond to learned
offsets/gates in representation space (comparable to prompt tuning or lightweight
adapters), while low-rank constructions parallel LoRA-style updates but
placed after the encoder rather than inside it. Prompt-graphs, by contrast,
mimic soft prompt tokens in sequence models: they modify the computa-
tion by injecting learnable context rather than changing backbone weights.
The subsequent theory treats all these options through a single lens: a con-
strained hypothesis class indexed by p and evaluated under topology shift
through the stability of the frozen encoder.

7 Theory I — Stability-Based Transfer Bound

We formalize the effect of topology shift by isolating the portion of the risk
that is attributable to distribution shift in the observed neighborhoods rather
than to statistical error in fitting the prompt. LetRhead(p) ≜ E(v,y)∼Dhead

[
ℓ(hp(fθ(Subr(G

∗, v))), y)
]

denote the population risk on head neighborhoods, and recall Rtest(p) is
defined analogously under Dtail (possibly induced by applying Shift). Our
bounds proceed by (i) controlling the statistical error of prompt ERM on
Dhead and (ii) controlling the transfer error from Dhead to Dtail through a
stability modulus of the frozen encoder.

Representation stability under topology shift. We quantify how much
the representation of a node can change when its neighborhood is sparsified.
Writing the shifted graph as Shift(G) and coupling (G, v) ∼ Dhead with its
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shifted counterpart, we define the topology-shift stability of fθ by

Stab(fθ; Shift) ≜ E(G,v)∼Dhead

∥∥∥fθ(Subr(G, v))− fθ(Subr(Shift(G), v))∥∥∥
2
.

This quantity is a property of the frozen encoder and the shift operator, inde-
pendent of the downstream labels. In particular, it is well-defined under the
local-access model because it depends only on pairs of r-hop neighborhoods.

Step 1: prompt ERM generalization on head nodes. We first bound
the excess risk incurred by fitting the prompt on K labeled head examples.
Under bounded embeddings ∥fθ(·)∥ ≤ R, a norm constraint ∥p∥ ≤ B, and
Lipschitzness of the prompt class in its parameters and in the embedding in-
put, standard Rademacher complexity arguments yield that with probability
at least 1− δ,

Rhead(pERM)− inf
∥p∥≤B

Rhead(p) ≤ O

(
αBR

√
P +

√
log(1/δ)√

K

)
,

where P is the number of tunable prompt parameters and α is the Lipschitz
constant of hp with respect to p. The salient point is that the statistical error
scales as

√
P/K: holding K fixed, increasing prompt capacity increases the

price of adaptation, while freezing θ removes any dependence on |θ|.

Step 2: transfer from head to tail via Lipschitz stability. To relate
the head and tail risks, we use the fact that the downstream shift acts through
the representation z = fθ(Subr(·)). Suppose the composed loss is L-Lipschitz
in the embedding argument, i.e.,∣∣ℓ(hp(z), y)− ℓ(hp(z′), y)∣∣ ≤ L ∥z − z′∥2 for all (z, z′, y, p).

Then, under the coupling that generates Dtail by applying Shift to neighbor-
hoods while preserving labels, we obtain the pointwise bound∣∣Rtest(p)−Rhead(p)

∣∣ ≤ L · Stab(fθ; Shift) for all p.

Indeed, we write both risks as expectations over the same draw (G, v, y) ∼
Dhead and apply the Lipschitz property to the difference between the losses
evaluated at fθ(Subr(G, v)) and fθ(Subr(Shift(G), v)).

Excess test risk decomposition. Combining the head generalization in-
equality with the transfer inequality yields an excess risk bound on the tail
distribution that separates prompt complexity from the shift penalty. Con-
cretely, by adding and subtracting Rhead and using triangle inequalities, we
obtain

Rtest(pERM)− inf
∥p∥≤B

Rtest(p) ≤ O

(
αBR

√
P√

K

)
+ 2L·Stab(fθ; Shift) (up to logarithmic terms).
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The first term is the usual estimation error for prompt ERM on K labels;
it is the price of parameter-efficiency. The second term is the irreducible
cost of evaluating on neighborhoods that differ from those used to fit the
prompt. Importantly, the second term is prompt-independent in the sense
that it depends on p only through the Lipschitz constant L of the tem-
plate; consequently, improving robustness to structure scarcity is primarily
a representation learning problem (reducing Stab(fθ; Shift)) rather than a
downstream optimization trick.

Interpretation and conditions for tightness. The decomposition is
informative precisely because the two terms correspond to distinct failure
modes. If Stab(fθ; Shift) is small, then tail performance is limited mainly
by the few-shot estimation rate

√
P/K, and increasing K or decreasing P

improves test risk in the expected manner. Conversely, if Stab(fθ; Shift) is
large, then no amount of prompt tuning on head labels can guarantee good
tail performance without changing the representation: even the best prompt
for Dhead may not transfer.

Both terms are essentially tight. For the prompt term, if the prompt
class contains a P -dimensional linear family, then there exist tasks for which
any method using K labeled examples suffers expected excess risk at least
Ω(
√
P/K), matching the upper bound scaling in P and K. For the shift

term, the Lipschitz inequality is tight whenever the loss changes at rate
L along the direction of the embedding perturbation induced by Shift; in
particular, if Shift systematically deletes informative edges for tail nodes,
the induced representation drift can be aligned with the decision boundary,
and the resulting risk gap scales proportionally to E∥fθ(·) − fθ(Shift(·))∥2.
The next section addresses how simulator-augmented pre-training reduces
this stability term in a controlled manner.

8 Theory II — Controlling Stability via Synthetic
Sparsity

We now explain why simulator-augmented pre-training can control the topology-
shift stability term. Our goal is to connect the stability modulus

Stab(fθ; Shift) = E
∥∥∥fθ(Subr(G, v))− fθ(Subr(Shift(G), v))∥∥∥

2

to an observable pre-training objective in which we enforce representation
consistency under synthetic structure loss.

Linearized message passing / NTK-like regime. We adopt a standard
linearization argument: for a message-passing encoder with parameters θ
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near an initialization θ0, we approximate the embedding by its first-order
expansion

fθ(Subr(G, v)) ≈ fθ0(Subr(G, v)) + Jθ0(Subr(G, v))(θ − θ0),

where Jθ0 is the Jacobian with respect to θ. For the purpose of stability
under edge/feature deletions, the constant offset fθ0 cancels in differences,
and we may view the learned representation as a linear map applied to a
(fixed) neighborhood-dependent feature vector. Concretely, we assume the
simplified model

fθ(Subr(G, v)) = W ψ(G, v), (1)

where W ∈ Rd×D is learned and ψ(G, v) ∈ RD is a bounded feature map
summarizing the r-hop neighborhood (e.g., aggregated node attributes and
adjacency patterns). We assume ∥ψ(G, v)∥2 ≤ S almost surely, which is
natural under bounded node features and finite r.

Simulator consistency as a surrogate for stability. Let G̃(1), G̃(2) ∼
Simη(· | G) be two independent simulator views of the same underlying
neighborhood. A core term in our pre-training objective enforces invariance
by penalizing the embedding discrepancy∥∥fθ(Subr(G̃(1), v))− fθ(Subr(G̃(2), v))

∥∥2
2
.

Under (1), this becomes ∥W (ψ(G̃(1), v) − ψ(G̃(2), v))∥22, which is precisely
the quadratic form governing sensitivity to simulator-induced deletions and
masking. We therefore study the regularized objective

Lpre(W ) = E(G,v)EG̃(1),G̃(2)∼Simη(·|G)

∥∥W∆ψSim

∥∥2
2
+ λ∥W∥2F , ∆ψSim ≜ ψ(G̃(1), v)−ψ(G̃(2), v).

(2)
The ridge term captures either explicit weight decay or implicit norm con-
trol from optimization dynamics, and it will be useful to ensure a bounded
operator norm.

Dominated shifts and explicit dependence on simulator strength.
To relate Simη to the downstream operator Shift, we require that Shift be
dominated by the simulator in the sense that every deletion/masking event
that can occur under Shift is at most as likely under Simη, up to a multi-
plicative factor. One convenient formulation is the following: for each local
structural/feature element e (e.g., an edge incident to a node in Subr(G, v),
or a feature coordinate of a node in the neighborhood), let pe(G, v) denote
the probability that Simη removes/masks e, and let qe(G, v) denote the cor-
responding probability for Shift. We assume there exists ρ ≥ 1 such that

qe(G, v) ≤ ρ pe(G, v) for all relevant (G, v, e). (3)
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In our degree-aware setting, pe(G, v) is larger for elements attached to low-
degree nodes, so (3) is plausible when the test-time shift increases sparsifica-
tion primarily on tail neighborhoods (possibly by increasing deletion rates in
the same degree-dependent family). The parameter ρ is an explicit measure
of “how much stronger” the test shift is compared to the simulator: taking η
stronger (more deletions/masks, especially on low degree) increases pe and
can reduce ρ.

A stability bound from the pre-training objective. Let W ∗ be any
minimizer of (2). We claim that small Lpre(W ∗) implies small stability
under any dominated shift. The key observation is that, for bounded ψ, the
perturbation induced by Shift can be controlled by the perturbations induced
by two independent simulator draws. Intuitively, if Simη deletes/masks each
element with probability at least that of Shift (up to ρ), then the random
difference between two simulator views stochastically covers the difference
between the original neighborhood and its shifted version. In particular,
one can show (by element-wise coupling and a variance comparison) that
there exists a constant c0 depending only on the boundedness and additivity
properties of ψ such that

E
∥∥ψ(G, v)− ψ(Shift(G), v)∥∥2

2
≤ c0 ρ · E

∥∥ψ(G̃(1), v)− ψ(G̃(2), v)
∥∥2
2
. (4)

Multiplying by W ∗ and applying Jensen’s inequality gives

Stab(fW ∗ ; Shift) = E
∥∥W ∗(ψ(G, v)−ψ(Shift(G), v))

∥∥
2
≤
√

E
∥∥W ∗(ψ(G, v)− ψ(Shift(G), v))

∥∥2
2
.

Combining this with (4) yields

Stab(fW ∗ ; Shift) ≤ √c0ρ ·
√

E
∥∥W ∗(ψ(G̃(1), v)− ψ(G̃(2), v))

∥∥2
2
. (5)

Finally, since the first term in (2) is exactly the expectation under the square
root in (5), we obtain an explicit upper bound in terms of the optimized
objective:

Stab(fW ∗ ; Shift) ≤ √c0ρ ·
√
Lpre(W ∗). (6)

The dependence on simulator strength is entirely contained in ρ: stronger
simulator corruption (larger pe, especially on low degree) decreases ρ for a
fixed test shift and tightens (6). The ridge parameter λ further prevents
degenerate solutions by controlling ∥W ∗∥F , ensuring that the model cannot
amplify small neighborhood perturbations without incurring large regular-
ization cost. In summary, in this linearized regime, the synthetic sparsity
objective provides a certificate that the learned representation is insensitive
to the same kinds of structural losses that characterize tail and cold-start
evaluation.
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9 Lower Bounds and Hardness

We complement the preceding upper bounds with limitations that are intrin-
sic to (i) prompt-only adaptation with a P -dimensional hypothesis class, (ii)
tail/cold-start regimes where the observable neighborhood carries no label
information, and (iii) worst-case robustness requirements under adversarial
topology perturbations. These results justify why our guarantees necessarily
scale with P , why any nontrivial performance on fully isolated nodes must
rely on informative attributes, and why we restrict attention to stochastic
(distributional) shift models rather than adversarial ones.

A matching labeled-sample lower bound in the prompt dimension.
Fix a frozen encoder fθ and consider any prompt family {hp : ∥p∥ ≤ B}
whose induced predictors contain a P -dimensional linear subfamily. A canon-
ical example is a template of the form

hp(z) = ⟨p,Φ(z)⟩, p ∈ RP , ∥Φ(z)∥2 ≤ 1,

followed by a 1-Lipschitz loss (e.g., hinge or logistic with appropriate scaling).
We claim that the

√
P/K dependence in prompt ERM bounds cannot be

improved in general: there exists a distribution over labeled embeddings
(Z, Y ) with Z ∈ Rd (equivalently, over neighborhoods (G, v) pushed forward
by fθ) such that any learning algorithm that outputs a prompt p̂ given K
labeled samples satisfies the minimax excess risk lower bound

E
[
R(p̂)

]
− inf

∥p∥≤B
R(p) ≥ c

√
P

K
,

for an absolute constant c > 0 (up to benign dependence on B and Lipschitz
constants). Equivalently, guaranteeing excess risk at most ε requires

K = Ω

(
P

ε2

)
.

The proof is standard in statistical learning theory: we choose a packing
of prompts {p(1), . . . , p(M)} with M ≥ exp(Ω(P )) and define distributions
{Pj}Mj=1 over (Z, Y ) such that each p(j) is (nearly) optimal for Pj while the
induced sample distributions have small pairwise KL divergence. An applica-
tion of Fano’s inequality (or Assouad’s lemma on the hypercube) shows that
no algorithm can reliably identify which Pj generated the data when K ≪ P ,
forcing a constant probability of outputting a prompt whose risk is sepa-
rated from the optimum by Ω(

√
P/K). Importantly, this argument already

holds when fθ is “perfect” in the sense that Z = fθ(Subr(G, v)) is directly
observed; thus the lower bound is entirely about the limited labeled-sample
regime and the prompt class capacity. This establishes that our prompt-only
rates are minimax-optimal (up to constants/log factors) among all methods
constrained to update only P real-valued parameters.

20



Cold-start impossibility without informative attributes. Next we
isolate a failure mode that is not a matter of finite-sample complexity but
of identifiability. Consider a tail node v with deg(v) = 0 after the shift (or,
more generally, whose r-hop neighborhood contains no other nodes). Then
Subr(G, v) contains only the node feature vector Xv (and trivial structure).
If under Dtail the attribute Xv is independent of the label Yv, i.e.,

P(Y = y | Xv = x) = P(Y = y) for all x,

then no predictor based on Subr(G, v) can outperform the label prior. In the
balanced binary case, for any (possibly randomized) predictor Ŷ = A(Xv)
we have

P(Ŷ ̸= Y ) ≥ 1

2
.

The argument is immediate: since Xv carries no information about Y , the
joint distribution factorizes, and the Bayes-optimal decision rule is constant,
achieving error equal to the minority-class probability (in particular 1/2
when balanced). This conclusion holds regardless of whether we use prompt-
ing, full fine-tuning, or any other learning rule, and it also persists if we allow
access to unlabeled tail features at test time. Thus, any positive result for
isolated nodes must assume informative node attributes, auxiliary modali-
ties, or additional side information (e.g., textual profiles, temporal traces, or
cross-graph identity links).

Computational hardness of worst-case robust prediction under ad-
versarial deletions. Finally, we emphasize that robustness to arbitrary
edge deletions is computationally intractable in the worst case, even when
we restrict attention to local neighborhoods. We sketch a reduction from
CLIQUE. Fix integers k and t. Given a graph instance H, we construct
a larger graph G with a distinguished node v⋆ such that the label of v⋆ is
defined as

Yv⋆ = 1{the r-hop neighborhood of v⋆ contains a k-clique}.

Suppose we require a predictor to be robust in the sense that it must output
the correct label for v⋆ under any deletion of up to t edges in Subr(G, v

⋆).
Choosing t appropriately, deciding whether there exists an adversarial dele-
tion that flips the label is equivalent to deciding whether a k-clique exists
(or can be destroyed) in the encoded neighborhood, which is NP-hard. In
particular, computing the robust label (and therefore producing a certifiably
robust predictor) would solve CLIQUE in polynomial time. This hardness
persists even if we grant the algorithm full access to Subr(G, v

⋆) (so the
local-access constraint is not the source of difficulty); it is the adversarial
quantification over deletions that induces the combinatorial barrier.
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Implications. Taken together, these limitations delineate the regime in
which our theory is meaningful. The Ω(P/ε2) lower bound explains why
parameter-efficiency must be paired with small-P prompt designs when K
is tiny. The cold-start impossibility shows that topology-shift robustness
cannot be unconditional: if the shift removes all informative structure and
attributes are uninformative, no method can succeed. The NP-hardness
sketch motivates our use of dominated stochastic shifts and stability-based
bounds: we target robustness to plausible distributional sparsification, not
worst-case adversaries.

10 Experimental Plan

We design experiments to validate the two central claims suggested by the
theory: (i) synthetic degree-aware sparsification during self-supervised pre-
training reduces sensitivity of frozen embeddings to downstream topology
loss, and (ii) under a fixed frozen encoder, prompt-only adaptation exhibits
the expected tradeoff between labeled sample size K, prompt dimension P ,
and performance under head-to-tail shift.

Controlled sparsity-shift benchmarks. We will instantiate a family
of semisynthetic benchmarks in which the same underlying labeled graph
is evaluated under progressively stronger topology loss. Concretely, start-
ing from a standard transductive node classification dataset, we define head
nodes as the top degree quantile (structure-rich) and tail nodes as the bottom
degree quantile (structure-scarce). We then generate evaluation-time neigh-
borhoods by applying a parametrized shift operator Shiftγ that performs
additional edge deletions (and, optionally, feature masking) with strength
γ, with higher deletion probability for smaller deg(v) to emulate cold-start
and long-tail effects. For each γ, we report accuracy (or macro-F1 under im-
balance) on tail queries while the support set S remains sampled from head
nodes. This isolates the shift penalty while keeping label semantics fixed,
matching the setting of Theorem 2.

Real-world long-tail graphs and tail evaluation protocol. To ensure
external validity, we will evaluate on graphs where the degree distribution is
heavy-tailed and where tail nodes are known to be challenging (e.g., product
co-purchase/recommendation graphs, citation graphs with new papers, and
social graphs with sparse user histories). For each dataset we will define a tail
split by degree and/or by temporal cold-start (when timestamps are avail-
able), and we will additionally test robustness under explicit post-processing
shifts Shiftγ applied only at evaluation time. We will ensure the local-access
constraint is respected by computing predictions for each node using only
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Subr(G, v), and we will report the dependence on r to quantify the extent
to which performance derives from local versus broader structure.

Pre-training ablations: simulator design and schedules. We will
ablate the structure-scarcity simulator Simη along three axes. First, we com-
pare degree-aware deletion/masking against degree-agnostic deletion, hold-
ing the expected sparsity constant, to test whether targeting low-degree re-
gions is necessary to improve tail performance. Second, we vary the cor-
ruption family: edge deletions only, feature masking only, and combined
deletions+masking, in order to disentangle whether robustness arises pri-
marily from structural invariance or attribute denoising. Third, we study
simulator schedules: (a) fixed-strength corruption, (b) a curriculum that
increases sparsity over training, and (c) a mixture schedule that samples
η from a distribution (exposing the encoder to a range of tail severities).
These experiments are designed to probe the linearized intuition in Theo-
rem 3: stronger and appropriately dominated synthetic sparsification should
reduce measured instability, but overly strong corruption may degrade se-
mantic fidelity and hurt head performance.

Adaptation baselines under equal budgets. We will compare prompt-
only adaptation to competing parameter-efficient and full-capacity alterna-
tives, controlling for parameter count and optimization budget. Baselines
will include: (i) full fine-tuning of the encoder (upper bound on adaptation
capacity), (ii) linear probing on frozen embeddings, (iii) adapters or LoRA-
style low-rank updates restricted to a comparable number of trainable pa-
rameters, and (iv) meta-learning style baselines that explicitly optimize for
fast adaptation across pre-training tasks (where feasible). For prompt-only
methods, we will sweep the prompt budget P and the norm constraint (or an
equivalent regularizer) to empirically trace the capacity–generalization curve
predicted by the

√
P/K scaling. We will additionally evaluate sensitivity to

the support set size K by varying K over a range that includes the genuinely
few-shot regime.

Stability proxy measurement and correlation with accuracy under
shift. To connect practice to the stability-based bound, we will measure
an empirical proxy for Stab(fθ; Shift) without requiring labels: for a sample
of nodes (G, v), we compute

Ŝtabγ(fθ) = E
[
∥fθ(Subr(G, v))− fθ(Subr(Shiftγ(G), v))∥2

]
,

estimated by Monte Carlo over nodes and shift randomness. We will then
correlate Ŝtabγ(fθ) with tail accuracy across (a) different pre-training schemes,
(b) different simulator schedules, and (c) different shift strengths γ. The
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intended test is not merely that lower instability coincides with higher accu-
racy, but that the relative ranking of methods under increasing γ is explained
by their stability curves, as suggested by Theorem 2. We will also verify that
improvements in stability induced by Simη are concentrated on low-degree
nodes, consistent with the degree-aware design.

Scaling checks implied by theory. Finally, we will conduct targeted
scaling experiments to test whether excess risk empirically follows the pre-
dicted dependence on K and P . Holding the frozen encoder fixed, we will
fit a simple model of performance as a function of

√
P/K (with dataset-

dependent constants) and check whether prompt-only methods saturate at
small K in a manner consistent with the lower bound. We will report both
head and tail performance to expose the tradeoff between invariance and ex-
pressivity, and we will include calibration and robustness metrics (e.g., ECE
under shift) to capture failure modes not visible in accuracy alone.

11 Discussion and Limitations

Our analysis and experimental plan are organized around a specific mech-
anism: by exposing the encoder to degree-aware synthetic topology loss
through Simη during self-supervised pre-training, we aim to decrease Stab(fθ; Shift),
thereby reducing the head-to-tail shift penalty in Theorem 2 while retaining
sufficient semantic fidelity for prompt-only adaptation. This suggests a con-
crete set of conditions under which synthetic sparsity is expected to help, as
well as regimes where it may hurt.

When synthetic sparsity helps. Synthetic sparsification is most bene-
ficial when the downstream shift is well-modeled by the simulator family, in
the sense that Shift is dominated by (or at least statistically close to) Simη

on the relevant neighborhoods. In such cases, the contrastive consistency
term directly penalizes representation changes induced by the same kinds
of edge deletions and feature masking that appear at evaluation time, and
the generative component provides an auxiliary pressure to preserve infor-
mation that can be recovered from partially observed neighborhoods. Intu-
itively, we obtain an encoder whose embeddings vary smoothly with respect
to edge/feature removal in low-degree regions, and prompt-only adaptation
can exploit this smoothness because it is not required to relearn invariances
under severe label scarcity. This regime corresponds to the motivating long-
tail setting in which tail nodes are not semantically different, but merely
structurally under-observed.

When synthetic sparsity hurts. The same mechanism can degrade per-
formance if the simulator pushes beyond the invariances we actually desire.
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Overly strong corruption may erase label-relevant signals that are not re-
dundant within Subr(G, v), especially in tasks whose Bayes-optimal rule
depends on specific motifs, rare edges, or high-order interactions that are
fragile under deletion. In our bound, such degradation is not visible through
Stab(fθ; Shift) alone: a representation can be stable yet uninformative. Prac-
tically, this manifests as a head-accuracy drop (semantic underfitting) or as
tail degradation when the remaining attributes are weak (cf. Corollary 5).
We therefore view simulator design as a bias–variance tradeoff: increasing
synthetic sparsity typically reduces the shift term, but can increase approx-
imation error by collapsing distinct neighborhoods. This also clarifies a lim-
itation of the linearized argument in Theorem 3: minimizing a squared per-
turbation objective can drive W toward low-norm, low-sensitivity solutions
that may discard discriminative directions unless counterbalanced by objec-
tives that preserve task-relevant information.

Mismatch beyond topology loss. Our theory is explicitly tailored to
topology and attribute missingness (edge deletions and feature masking).
Many real shifts are not well-approximated by such operators: edges may
be rewired rather than removed; the semantics of edges may change across
domains; node/edge types may appear or disappear; and label definitions
may drift. In these cases, the stability term can be small while the risk shift
is large because the mapping from neighborhoods to labels has changed.
Conversely, stability can be large even when the downstream task is robust,
if the encoder is sensitive to nuisance variations that the prompt template
can easily ignore. Thus, Stab(fθ; Shift) should be interpreted as a sufficient,
not necessary, control term, and our empirical correlation tests are intended
to delineate the range in which it is predictive.

Cross-domain graphs. When transferring across graphs (e.g., from one
platform or domain to another), the primary challenge is often a combination
of topology shift, feature shift, and distribution shift in subgraph patterns.
Degree-aware deletion is a plausible component of such shifts, but may be
insufficient. A natural extension is to augment Simη with domain-inspired
perturbations (feature normalizations, type masking, subgraph resampling,
or edge-type dropout) and to measure stability with respect to a richer family
of shifts. However, stronger augmentation families also increase the risk
of learning representations invariant to domain-specific but label-relevant
signals. From the perspective of Theorem 2, we would like a simulator family
that is broad enough to upper-bound the anticipated deployment shifts while
remaining narrow enough to avoid collapsing the label information needed
by any plausible downstream prompt.
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Complex graphs: heterogeneous and dynamic settings. Our nota-
tion suppresses edge features, types, and time; consequently, the current
stability notion is incomplete for heterogeneous graphs (multiple node/edge
types) and dynamic graphs (temporal edges, evolving attributes). In het-
erogeneous graphs, degree alone may not capture structural scarcity: a node
may have high total degree but sparse degree in the relevant relation type.
Degree-aware simulators should therefore be refined to type-aware sparsifi-
cation, and the prompt template may need to encode type-conditional pro-
totypes or relation-specific prompts. In dynamic graphs, the relevant local
view is time-indexed, and missingness can be coupled with recency effects;
here, a simulator that deletes edges uniformly over time may be miscali-
brated. Extending our framework would require a temporally conditioned
Simη and a stability definition that couples (Gt, v) with shifted histories.
These extensions appear conceptually straightforward but introduce prac-
tical complications in pre-training objectives and in local-access inference,
since time windows and neighborhood sampling must be carefully specified.

Local-access deployment considerations. We assume a strict local-
access model at test time. This is appropriate for settings where full-graph
passes are infeasible (latency, privacy, or streaming constraints), but it lim-
its the class of computable decision rules, and it can exacerbate cold-start
impossibility when attributes are weak. Moreover, local access induces vari-
ance through neighborhood sampling and can interact with Shift in subtle
ways (e.g., a sampler that under-represents rare neighbors behaves like an
additional shift). A deployment-oriented direction is to study resource-aware
variants of stability that account for sampling noise and caching strategies,
and to characterize when a small number of additional queries (e.g., adaptive
expansion beyond radius r) yields disproportionate gains for tail nodes.

Interpretable prompt-graphs and open directions. Finally, prompt-
only adaptation is appealing not only for parameter efficiency but also for
interpretability if prompts are structured as small graphs or prototype sets.
A concrete open problem is to design prompt-graphs whose nodes/edges
admit semantic alignment to substructures in Subr(G, v), enabling explana-
tions in terms of matched motifs or relation-specific evidence. This suggests
combining (i) constrained prompt parameterizations (e.g., sparse prototypes,
typed prompt nodes) with (ii) stability-aware pre-training so that the same
prompt remains meaningful under topology loss. More broadly, we regard
the central question as one of calibrating invariance: how to choose Simη so
that it matches the deployment shifts we care about, while preserving the
fine-grained information that prompts must leverage when only K labels are
available.
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