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Abstract

Few-shot learning on graphs increasingly requires cross-domain trans-
fer: a single model must adapt to many graph domains (social, e-
commerce, academic, biochemical) with different topologies and fea-
ture statistics, often without reliable text. Motivated by the recent tax-
onomy of few-shot learning on graphs (meta-learning vs. pre-training
vs. prompting), we focus on the setting where labeled base tasks are
scarce and domain shift is primarily structural. We propose a text-free
multi-domain pre-training framework that learns (i) a shared graph en-
coder backbone and (ii) compact per-domain prompts (routing tokens)
that explicitly correct structural shift by aligning spectral/topological
statistics across domains. Our method uses self-supervised pre-training
(contrastive and masked generative objectives) augmented with a spec-
tral alignment regularizer: prompt-conditioned spectral filters are learned
so that prompt-filtered representation covariances (and optionally de-
gree/Laplacian moments) match across domains. We formalize a clean
problem where domain shift arises from domain-specific Laplacian eigen-
values with an approximately shared eigenbasis, and we prove upper
bounds showing prompt size m controls approximation error while
few-shot labeled samples K control estimation error ~O(,/(m/K)). We
complement this with matching lower bounds on prompt size and im-
possibility results when no shared spectral structure exists. Experi-
ments (to strengthen the contribution) would construct a multi-domain
benchmark with synthetic spectral shifts and real domains, evaluating
few-shot transfer, catastrophic forgetting, and prompt-size/accuracy
tradeoffs against single-domain pre-training, naive multi-domain pool-
ing, mixture-of-experts, and text-based alignment baselines.
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1 Introduction

We consider the regime of cross-domain few-shot learning on graphs in which
a practitioner has access to many unlabeled graphs drawn from several do-
mains, yet must subsequently solve downstream prediction problems in each
domain from only a small labeled set. Unlike settings where graphs come
with rich textual annotations (e.g., documents, knowledge graphs with de-
scriptions), we focus on the text-free case: node and edge attributes are
either absent or purely numeric and non-linguistic, so there is no external
semantic channel through which one may align domains. Consequently, the
dominant obstacle to transfer is not primarily label shift but rather topology
shift: domains exhibit different connectivity patterns, degree distributions,
and spectral profiles, which can cause a graph encoder trained on one domain
to induce a representation geometry poorly matched to another.

The standard approach to amortize representation learning across tasks is
self-supervised pre-training of a single graph neural network or graph trans-
former. However, in multi-domain corpora, a single shared encoder tends to
overfit to the most frequent structural motifs and spectral scales present in
the pooled data. If domains differ mainly in their graph Laplacians, a naive
pooling strategy implicitly selects a single frequency response and thereby
privileges some domains at the expense of others. On the other hand, train-
ing and storing a separate backbone per domain is parameter-inefficient and
offers no mechanism for adaptation to new domains with few labels. Our
objective is to isolate a setting in which we can provably obtain (i) a sin-
gle shared backbone and (ii) a compact per-domain adaptation mechanism
that is learnable from limited labeled data, while still providing quantitative
guarantees on downstream risk.

We propose to represent domain-specificity by a small vector pg; € R™
that parameterizes a spectral reweighting of the domain Laplacian. Opera-
tionally, pg defines a polynomial filter g,,(L) (e.g., via a Chebyshev recur-
rence) that is inserted into the message-passing operator of a frozen back-
bone fy. Thus, the only domain-dependent component is a low-dimensional
prompt controlling the frequency response of aggregation. This choice is
motivated by the observation that many topological discrepancies between
domains—including degree bias, mixing time, and homophily/heterophily
structure—are reflected in the spectrum of the normalized Laplacian. A
polynomial spectral filter is a particularly convenient class: it is expressive
enough to approximate broad families of smooth transfer functions while re-
maining computationally compatible with sparse graph primitives, and its
effective capacity is controlled by the degree m, which we treat as the prompt
budget.

Prompting alone does not specify how different domains should be mapped
into a representation space that admits a shared downstream inductive bias.
Accordingly, we introduce an alignment principle that is also text-free: dur-



ing pre-training we add a regularizer that encourages prompt-filtered embed-
ding statistics to match across domains. Concretely, let X; denote a second-
moment statistic (e.g., covariance) of embeddings produced by fp on domain
d under prompt pg. We penalize a distance between suitably normalized ver-
sions of ¥z and Xz for sampled domain pairs (d,d’). This spectral /statistical
alignment is combined with standard self-supervised losses (contrastive ob-
jectives and masked reconstruction), yielding a two-stage protocol: offline
pre-training over unlabeled multi-domain graphs, followed by downstream
adaptation in which 6 is frozen and only p, (and optionally a small linear
head) is optimized on K labeled examples.

Our analysis is organized around a structural hypothesis that makes pre-
cise when such a prompting scheme should be sufficient. We assume an
approximate commuting-Laplacian condition: the Laplacians Ly of different
domains are simultaneously (approximately) diagonalizable, meaning there
exists a shared orthogonal basis U such that

Lqg = UNU"T + Ay, 1Agll2 <0,

where Ay is diagonal with entries in [0, 2]. This condition does not assert that
the graphs are identical; rather, it asserts that domains share latent “eigen-
directions” while differing primarily in the weighting of those directions. Un-
der this hypothesis, a domain prompt that implements a polynomial g,, can
approximate a domain-dependent spectral transfer i, by choosing coeffi-
cients so that gp,(\) = 1g(A) uniformly on [0,2]. The role of alignment is
to encourage the learned prompts to select compatible frequency responses
so that embeddings across domains inhabit a common geometry, thereby
making few-shot adaptation statistically efficient.
Our contributions are as follows.

(1) A parameter-efficient, text-free multi-domain pre-training ob-
jective. We formalize a pre-training procedure in which domain prompts
parameterize spectral filters inside a shared backbone, and an explicit align-
ment regularizer matches prompt-conditioned embedding moments across
domains. The method is designed so that, at downstream time, adaptation
is restricted to m prompt parameters (and possibly a small linear head),
with memory O(Dm) across D domains. This is the graph analogue of
parameter-efficient tuning, but without relying on textual side information
or language-based alignment.

(2) Approximation guarantees for spectral prompting. In the ideal-
ized case § = 0, we show that if a downstream task depends on a band-limited
(or Lipschitz) spectral transfer function t4, then there exists a degree-m
polynomial prompt filter that approximates 14 to error € with

m = O(log(1/e)),
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and that the resulting operator approximation yields an O(e) contribution
to excess risk. The proof reduces to Chebyshev approximation on [0, 2] and a
stability-to-risk argument translating uniform spectral error into prediction
error for Lipschitz functionals.

(3) Few-shot excess risk bounds for prompt-only adaptation. When
0 > 0, the Laplacian perturbations Ay introduce an irreducible mismatch be-
tween the assumed shared basis and the actual domain Laplacians. We quan-
tify this effect by showing an O(4) contribution to excess risk via standard
spectral perturbation inequalities. Combining approximation, perturbation,
and estimation yields a bound of the form

E[Riska(5a)] — Riska(p}) < O(c+96) + 6(@),

for prompt-only adaptation from K labeled samples, under a linear down-
stream predictor in the prompt-filtered embedding space. The term /m/K
is the expected estimation error for an m-parameter family, emphasizing that
prompt tuning can be statistically preferable to full fine-tuning when K is
small.

(4) Matching lower bounds and structural necessity. We comple-
ment the upper bounds with two negative results that clarify what can and
cannot be achieved in this setting. First, even when the shared eigenbasis
U is known and § = 0, there exist Lipschitz spectral transfer families for
which any degree-m polynomial prompt achieving uniform error € requires
m = Q(log(1/e)), matching the approximation rate above. Second, if the
commuting-Laplacian hypothesis fails in a strong sense—the eigenbases are
sufficiently misaligned across domains—then any method that keeps a fixed
backbone and adapts only through m = o(n) prompt parameters applied
as spectral filters (or comparable diagonal modulations in a fixed basis) can
be forced to incur constant excess risk on at least one domain. This im-
possibility result formalizes the intuition that low-dimensional prompting
cannot simultaneously undo arbitrary cross-domain rotations of the spectral
geometry.

(5) A new-domain adaptation perspective from unlabeled data.
Finally, we outline how prompts for a previously unseen domain may be
inferred from unlabeled graphs by minimizing an alignment loss based on
estimated Laplacian moments or embedding moments. We provide sample
complexity bounds showing that N = O((m+log(1/p))/e2) unlabeled graphs
suffice to achieve alignment error € with probability at least 1 — p, and that
N = Q(m/e?) is unavoidable in general.



In sum, the technical message of this work is that, in the absence of text,
cross-domain transfer on graphs admits a natural spectral organization. If
domains share an approximate eigenbasis, then compact polynomial prompts
can reweight frequencies so that a single backbone supports multiple domains
with few-shot prompt adaptation. The resulting guarantees explicitly sep-
arate approximation, structural perturbation, and finite-sample estimation
effects, thereby clarifying how the prompt budget m, the few-shot size K,
and the spectral mismatch § jointly control downstream risk.

2 Related Work

Few-shot learning on graphs. Few-shot prediction on graphs has been
studied under several paradigms, including meta-learning across tasks, met-
ric learning in an embedding space, and transductive label propagation on
novel classes. Graph meta-learning methods adapt a base learner using a
small support set, often via gradient-based meta-learning (e.g., MAML-style
objectives) or learned update rules ?. In the graph setting, this includes
approaches that meta-learn message passing parameters, pooling operators,
or node-level label propagation mechanisms, typically assuming multiple su-
pervised tasks during meta-training ??. Metric-based formulations build
class prototypes from a few labeled nodes/graphs and classify queries by dis-
tances in a learned embedding space ?; graph-specific instantiations combine
a GNN encoder with prototype aggregation or relation networks to handle
neighborhood effects ?7. A recurring limitation is that many few-shot graph
methods assume either (i) access to many labeled tasks during training, or
(ii) a single-domain distributional match between meta-train and meta-test
tasks. Our focus differs in that we treat domains—mnot merely tasks—as the
primary axis of variation, and we explicitly target the regime where multi-
domain data are available primarily in wunlabeled form, with only few-shot
labels per domain at downstream time.

Self-supervised and masked pre-training for graphs. Self-supervised
learning (SSL) is a central mechanism for amortizing representation learning
on graphs when labeled data are scarce. Contrastive objectives maximize
agreement between multiple views of a graph or node neighborhood, typ-
ically created by stochastic augmentations such as edge dropping, feature
masking, or subgraph sampling ???7. Generative and reconstruction-based
objectives predict masked node/edge attributes, recover adjacency struc-
ture, or reconstruct latent codes, including masked autoencoding variants
?777?7. These methods usually target single-domain corpora, and their trans-
fer guarantees (when studied) often rely on assumptions about augmentation
invariances, smoothness over the graph, or stability of embeddings under
perturbations. In the multi-domain setting, naive pooling of graphs across



domains can implicitly bias the learned encoder toward the dominant spec-
tral scales and structural motifs present in the aggregated data, leading to
suboptimal transfer to underrepresented domains. This motivates objectives
that explicitly account for cross-domain heterogeneity during pre-training,
rather than treating it as additional i.i.d. variability.

Parameter-efficient fine-tuning and prompt tuning. Parameter-efficient
fine-tuning (PEFT) methods, developed primarily in the context of large lan-
guage models, restrict adaptation to low-dimensional parameter subsets such
as adapters, prefix/prompt vectors, or low-rank updates ???. The guiding
principle is that a shared backbone can be reused across many tasks, while
task-specific vectors with small dimension suffice to steer the computation.
Graph counterparts of prompting have appeared in several forms: (i) hard
prompts that select or attach a small set of virtual nodes/edges or sub-
graphs to condition the encoder, (ii) soft prompts that introduce trainable
tokens or vectors injected into node representations, and (iii) prompt-style
reformulations of graph problems into masked prediction or template-based
objectives 77. Most existing graph prompt constructions are defined in the
vertex/feature domain (e.g., additional node embeddings or feature offsets),
whereas our interest is in prompts that act as spectral controls on message
passing through polynomial filters. This distinction matters in the multi-
domain, text-free setting: spectral prompting targets topological shift di-
rectly by reweighting frequencies of the Laplacian, and thus admits a natural
capacity control via the polynomial degree.

Multi-domain, domain adaptation, and domain generalization on
graphs. Domain adaptation on graphs has been explored for node classi-
fication and graph classification under covariate shift, label shift, and struc-
tural shift, using discrepancy minimization, adversarial alignment, and in-
variant representation learning ?7?77. Related work in domain generalization
seeks representations that perform well on unseen domains without test-
time adaptation, often by enforcing invariances across training domains or
by episodic training ??. In graphs, domain shift is complicated by the in-
terplay between features and topology; in particular, differences in degree
distributions, homophily levels, and connectivity patterns can induce sub-
stantial changes in the spectrum of the Laplacian and in the stability of
message passing ?7. Several works study out-of-distribution generalization
in graph neural networks and propose regularizers based on causal invariance,
stable neighborhood aggregation, or subgraph-based augmentations 77. Our
formulation can be viewed as complementary: rather than insisting on strict
invariance of the encoder across domains, we allow controlled domain-specific
modulation via prompts, but restrict this modulation to be low-dimensional
and structured (spectral filters), thereby enabling few-shot adaptation while



maintaining a single shared backbone.

Cross-domain graph pre-training and alignment objectives. A small
but growing body of work considers pre-training on heterogeneous graph
corpora spanning multiple sources. When domain labels are available, one
can train domain-specific heads or use multi-task objectives; when domain
labels are absent, methods often rely on clustering or implicit mixture mod-
eling. Alignment objectives typically match embedding distributions across
domains by moment matching (e.g., MMD), adversarial training, contrastive
cross-domain pairing, or consistency constraints ??. In graphs, such align-
ment is frequently implemented at the node-embedding level, sometimes as-
suming comparable feature semantics across domains. Our setting differs
in two respects. First, we do not assume a shared semantic channel such
as text, ontologies, or tokenized descriptions. Second, we emphasize align-
ment in a prompt-conditioned representation space, so that the alignment
signal directly shapes the low-dimensional domain parameters rather than
encouraging the backbone alone to absorb all cross-domain variability.

Degree bias, structural heterogeneity, and structure scarcity. A
recurring empirical issue in GNNs is sensitivity to degree distributions and
local topology. Standard message passing with normalized adjacency can in-
duce degree-dependent smoothing and oversquashing effects, and the learned
representation may systematically favor hubs or dense regions 7?7. Across do-
mains, shifts in degree distribution or mixing properties can therefore yield
large changes in effective receptive fields and in the frequency response of
aggregation operators. Moreover, in many text-free domains, node features
are weak and the topology carries most of the predictive signal; conversely,
in other domains, the topology may be sparse or noisy (“structure scarcity”),
forcing models to rely more heavily on features or to learn robust structural
priors ?7?7. These observations motivate adaptation mechanisms that can tune
the aggregation behavior without relearning a full backbone. Spectral filter-
ing provides a direct handle: it allows one to emphasize or suppress partic-
ular Laplacian frequencies that correspond to different smoothness regimes,
which is closely related to classical analyses of graph signal processing and
to recent studies of oversmoothing and heterophily in GNNs 777,

Contrast with text-attributed and LLM-based alignment. Recent
progress in graph learning increasingly leverages textual node/edge descrip-
tions, captions, and documentation to align heterogeneous graphs or to trans-
fer knowledge across domains using language models 77. In such settings,
the text channel provides a high-capacity, domain-agnostic semantic anchor,
and prompting can be performed in language space with strong priors learned
from web-scale corpora. While powerful, these approaches are inapplicable



in the strictly text-free regime we study, where attributes are numeric or
absent and there is no external semantic alignment signal. Our emphasis is
therefore on structural alignment mechanisms that operate directly on graph
operators (e.g., Laplacians) and on representation statistics induced by the
encoder, rather than on alignment through shared token semantics. This con-
trast is substantive: without text, cross-domain transfer must be achieved
by exploiting regularities in topology and spectrum, which leads naturally
to the structured prompt class and alignment regularizer developed in this
work.

3 Problem Setup and Computational Model

We study text-free multi-domain graph representation learning with parameter-
efficient downstream adaptation. There are D domains indexed by d €
{1,..., D}, and each domain induces a distribution P, over attributed graphs

G=(V,E,X), X e RIVIXS, V| <n,

where X collects real-valued node attributes (possibly absent, in which case
we take X to be a constant feature) and n is a global size bound used for

padding in analysis. We write Gl(.d) ~ Py for unlabeled samples and denote
by N4 the number of unlabeled graphs available from domain d during pre-
training. Throughout, “multi-domain” refers to heterogeneous sources of
graphs whose topology and feature distributions may differ substantially
across d; we do not assume shared label spaces across domains, and we allow
downstream tasks to be domain-specific.

Text-free regime. By text-free we mean that no textual channel is avail-
able for alignment or prompting: nodes and edges do not carry natural-
language descriptions, tokens, or externally pre-trained embeddings derived
from text corpora. All training signals are obtained from the graph struc-
ture (e.g., adjacency, Laplacian) and numeric attributes (if present), together
with self-supervised objectives on these quantities. In particular, we do not
use a language model, do not require paired text—graph data, and do not as-
sume that feature dimensions have shared semantics across domains beyond
being bounded real vectors. This restriction rules out alignment mechanisms
that rely on a universal semantic space, and it forces transfer to be achieved
through structural and statistical regularities.

Two-stage learning and access patterns. Our computational model
has two stages.
Stage I (offline pre-training). We are given an unlabeled multi-domain

corpus {Gl(d)}?;dl for each d. Pre-training proceeds by mini-batch sampling



of graphs (or subgraphs) from one or more domains. Depending on the
setting, the domain identity d may be observed during pre-training, or it
may be latent; when latent, we treat d as an unobserved source index and
allow the learner to infer a prompt assignment by unsupervised clustering
or mixture modeling. In either case, the backbone encoder parameters are
shared globally, and domain-specificity is constrained to enter only through
low-dimensional prompt parameters.

Stage II (few-shot downstream adaptation). For each domain d and each
downstream task of interest, we receive a labeled dataset Sy of size K (few-
shot), drawn from a domain-specific task distribution. The task may be
node-level, edge-level, or graph-level prediction; in all cases, we evaluate ex-
pected risk with respect to fresh test samples from the same domain and task.
During adaptation we freeze the backbone and update only a compact set
of trainable parameters: a domain prompt pg € R™ (and optionally a small
linear head). This formalizes parameter-efficient fine-tuning in the multi-
domain regime: a single shared representation is amortized across domains,
while each domain is allowed a bounded-capacity modulation.

Model class: shared backbone and domain prompts. Let fy denote
a shared graph encoder with parameters 6 (e.g., a message-passing GNN or
graph transformer). For each domain d we maintain a prompt vector pg € R™
with a fixed budget m. Operationally, pg controls a prompt-parameterized
operator gp,(-) that modulates message passing; in the specific instantiation
studied later, g,,(L) is a degree-m polynomial (or truncated Chebyshev ex-
pansion) of a graph Laplacian L. We emphasize here only the computational
interface: given a graph G, the encoder produces embeddings

h = f.g(GQ gpd(L(G)))7

where h may denote node embeddings, edge embeddings, or a pooled graph
embedding depending on the task. The key constraint is that domain-
specificity is confined to pg (and a small head), while # is shared and, at
downstream time, frozen.

Self-supervised pre-training objectives. Pre-training uses only unla-
beled graphs and a self-supervised loss f5. We allow f to combine con-
trastive and generative components, such as view-invariant agreement un-
der stochastic augmentations and masked attribute/structure reconstruction.
Since our setting is multi-domain, we additionally consider an alignment reg-
ularizer R,jign that couples domains through prompt-conditioned statistics
of representations. Abstractly, the pre-training objective is

Qn{lgi)n} Edww EGN’Pd [gssl(fH(G; gpd)a G)] + A IRaligr1(‘9a {pd}),
sAPd
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where 7 is a sampling distribution over domains and A > 0 is a weight.
The role of Rajign is not to enforce strict invariance of h across domains,
but to encourage that the prompted representation geometry is comparable
across domains in a sense that supports low-sample adaptation. A concrete
instantiation, used later, matches second-order moments (e.g., covariances)
of embeddings computed under domain prompts.

Downstream adaptation and parameter-efficiency. In domain d, few-
shot adaptation solves a supervised empirical risk minimization problem over
the prompt (and optionally a linear head). Let Ly, denote a supervised loss
on labeled examples (G,y) € S;. We update

(pa,wa) € arg  min K > Esup( " fo(G: p), y)
(G,y)€Sq

subject to a prompt budget constraint (e.g., ||p||2 < B or an effective degree

constraint for the polynomial filter). The backbone parameters 6 are held

fixed. This separation is essential in our setting: since we evaluate on many

domains, full fine-tuning would scale storage and optimization cost with D|6|,

whereas prompt tuning scales as O(Dm) with m < |6].

Formal objective in terms of risk. Let Risky(-) denote the population
risk in domain d for the downstream task under the evaluation distribu-
tion (node/edge/graph as appropriate). We write Adapt(fy, pg; Sq) for the
adapted predictor obtained by optimizing only (pg,wq) on Sg. Our goal is
to find a single shared backbone and prompts that minimize the average (or
worst-case) post-adaptation risk:

glr{lil’l} Egor [Riskd(Adapt(fg,pd;Sd))] s.t.  dim(pg) =m Vd,
Apa

with the understanding that Sy is a random K-sample and adaptation uses
only these labels. In addition to average-case performance, we will later
track excess risk relative to the best domain-specific predictor within an
appropriate hypothesis class, thereby isolating the statistical cost of few-
shot prompt estimation and the approximation cost induced by the prompt
budget.

Evaluation protocols: transfer and forgetting. We consider two eval-
uation regimes.

(i) Multi-domain transfer. We pre-train once on unlabeled graphs from
all training domains and then, for each domain d, adapt using K labeled
examples and report test performance on held-out data from the same do-
main. We report metrics aggregated across domains (mean and, when rel-
evant, worst-domain performance), and we vary K to quantify the sample-
efficiency conferred by prompt-only adaptation. When domain ID is not
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provided, we additionally evaluate the effect of inferred prompt assignment
on downstream risk.

(i) Continual domain arrival and forgetting. Domains may arrive se-
quentially, and we may add prompts over time without revisiting old labeled
datasets. In this regime we freeze 0 after pre-training and maintain a grow-
ing collection of prompts {ps}. Upon receiving a new domain d’, we initialize
and adapt py using either few-shot labels or, when labels are unavailable,
an unlabeled alignment objective. We measure (a) forward transfer, i.e.,
performance on the new domain after adaptation, and (b) forgetting, i.e.,
performance degradation on previously seen domains when introducing pg
and possibly updating shared components. Our default design avoids for-
getting by construction, since 8 is frozen and prompts are domain-local;
nevertheless, we include forgetting metrics to quantify any interference in-
troduced by shared normalization layers, shared batch statistics, or joint
prompt regularization.

This section specifies only the learning interface and evaluation rules. In
the next section we introduce a clean spectral-shift model under which the
prompt class admits explicit approximation and sample-complexity guaran-
tees.

4 Spectral-Shift Model: a Clean Sandbox for Prompted
Transfer

We now introduce an idealized model in which domain shift is expressed
primarily as a spectral reweighting of a shared latent graph geometry. The
purpose of this section is not to claim that real multi-domain corpora exactly
satisfy such a model, but to isolate a regime in which prompt-only adapta-
tion admits explicit approximation and sample-complexity statements. The
model will also make clear where and why prompt-only transfer can fail.

Normalized Laplacians and padding. For a graph G = (V, E, X) with
V| <mn,let L(G) € R™™"™ denote the (padded) normalized Laplacian. Con-
cretely, if L(G) € RIVI*IVI is the usual normalized Laplacian on the observed
nodes, we embed L(G) into an n x n matrix by adding isolated padded nodes;
this is purely an analytical device to place all domains in a common ambi-
ent space. We emphasize that no eigen-decomposition is assumed available
computationally.

Commuting-Laplacian hypothesis. The central structural assumption
is that domains share (approximately) a common eigenbasis. Formally, we
posit that there exists an orthogonal matrix U € R™*™ such that each domain
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admits a representative Laplacian random variable L, satisfying

Ly = UNUT + Ay, [Adll2 <6,  Ag=diag(Aag1,--, Adn), Aai € [0,2].
(1)
When 6 = 0, the family {Ld}gzl is simultaneously diagonalizable and hence
commutes. When § > 0, the hypothesis asserts that the domain-specific
eigenvectors remain close to a common basis and that the main variation
across domains is in the spectrum Ay (up to a controlled perturbation). We
interpret as an abstraction of settings in which domains share latent
geometry (e.g., similar motif structure or common generative mechanisms)
but differ in coarse structural statistics such as degree profiles, edge densities,
or homophily strength, each of which induces a shift in spectral content.

Graph signals and spectral features. Let ¢(X) € R"*" be a feature
lifting map applied nodewise, producing an r-dimensional signal on the n
padded nodes. In the commuting regime, the coordinates

S = UT¢(X) e R™"

play the role of “graph Fourier” coefficients relative to the shared basis. If
0 = 0, the operator Ly acts diagonally in this basis:

UTLU = Ay

Thus, any polynomial in L, corresponds to a pointwise transformation of
eigenvalues in the spectral domain.

Downstream tasks as spectral transfer functions. We model the
downstream label as depending on a low-complexity transformation of spec-
tral features. For simplicity we describe a binary prediction setting; analo-
gous statements can be made for regression or multiclass linear models. Let
g : [0,2] — R be a domain-specific spectral transfer function. Given a graph
signal ¢(X), define the transformed signal

Si = Utag(A)UTH(X),  va(Ag) = diag(a(A1)s - - - Ya(Aan))-

We assume the Bayes-optimal decision rule in domain d is linear in Sy:

y = sign((wj, vec(Sq)) +¢), (2)

where w is an unknown weight vector of bounded norm and £ is noise. The
task model captures the idea that labels depend on particular frequency
bands: for instance, community-level properties often correlate with low-
frequency components, whereas anomaly-like signals may be high-frequency.
To enable approximation results, we assume )4 is Lipschitz on [0, 2] and,
in the strongest form used later, that the relevant dependence is effectively
band-limited or well-approximable by low-degree polynomials.

13



Prompts as spectral filters. The prompt mechanism we analyze is a
spectral reweighting applied to message passing. Abstractly, a prompt pg €
R™ determines a filter

m

a(L) = Y ar(pa) LY, (3)

k=0

or, more stably, a Chebyshev expansion on a rescaled Laplacian L:

m

~ -9
gpa(L) = D ar(pa) (L),  L:= SL-I=L-1
k=0

where T}, is the k-th Chebyshev polynomial. In the ideal case § = 0, we have

pq (La) = U 9pq (Aa) UT’ pq (Ag) = diag(gpd()\d71), cee 7gpd(>‘d,n))v

so the prompt acts as a domain-specific frequency response curve. Con-
sequently, if the downstream transfer function 4 is well approximated by
a degree-m polynomial on [0, 2], then there exists a prompt pg such that
Gpy(Ag) = 14a(Ag) uniformly over eigenvalues. This is the mechanism behind
logarithmic prompt-size scaling with the target approximation error.

Where the backbone enters. The backbone encoder fy is shared across
domains and is meant to exploit generic structural inductive biases (local-
ity, permutation invariance, pooling, etc.). In the sandbox, we conceptually
separate two roles: (i) gp,(L) shapes the spectral content of information
propagation to compensate for domain shift in Ag; (ii) fp implements a task-
agnostic feature extractor operating on the filtered messages. The idealized
theory treats fy as sufficiently expressive to realize (or preserve) linear pre-
diction in the prompted spectral features, while the prompt supplies the
domain-specific frequency correction.

Realism and failure modes. We record the main points at which the
model can break.

Figenbasis mismatch. If domains do not admit a common (or approxi-
mately common) eigenbasis, then no family of diagonal spectral reweightings
can simultaneously align all domains. In that case, prompts of dimension
m = o(n) are information-theoretically insufficient to undo an arbitrary ro-
tation of spectral coordinates, and one should expect a constant excess risk
on some domain families (formalized later as an impossibility statement).

Graph-size variability beyond padding. Padding aligns dimensions but
does not create semantic correspondence between nodes across graphs. Our
model does not assume node identity correspondence; rather, U is a latent
basis in the ambient R™ used for analysis. If domains differ systematically
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in size distributions and graph topologies in a way that changes the effective
spectrum dramatically, the shared-basis assumption may become inaccurate
(large 6).

Non-spectral shifts. Domain shift may arise from feature distribution
changes (covariate shift in X), label shift, or changes in higher-order struc-
tures not well captured by the Laplacian spectrum. In such regimes, a purely
spectral prompt may be too constrained; one would need prompts that mod-
ulate feature channels, attention patterns, or normalization statistics in ad-
dition to (or instead of) Laplacian polynomials.

Locality versus global spectral effects. Polynomial filters are local in the
sense that L* only propagates information within k& hops, whereas true spec-
tral projectors can be global. Thus, small m restricts the spatial range of
the correction. Our approximation theorems interpret this as a tradeoff: in-
creasing m expands the set of realizable frequency responses and increases
receptive field, but it also increases few-shot estimation error through the
m-parameter adaptation.

Interpretation. Within its scope, the spectral-shift model identifies a con-
crete axis along which domains can differ while still being amenable to
parameter-efficient transfer: domain-specific eigenvalues with a shared (ap-
proximate) eigenbasis. The prompt is then a compact encoding of a domain’s
frequency response, and few-shot adaptation amounts to estimating this re-
sponse (and a small linear head) from K labeled examples. In the next sec-
tion we instantiate this principle algorithmically by coupling prompt learning
to a spectral /statistical alignment objective during pre-training, thereby en-
couraging prompted representations to share comparable geometry across
domains even when ¢ > 0 and the ideal model holds only approximately.

5 Spectral-Alignment Prompt Pre-Training

We now describe the learning procedure that operationalizes the spectral-
shift principle: we pre-train a single backbone encoder while learning a com-
pact prompt for each domain, where prompts parameterize polynomial spec-
tral filters, and we regularize the prompted representations to be statistically
aligned across domains.

Backbone encoder and insertion point of the prompt. Let fy be a
shared graph encoder producing node embeddings H € R™*% (and option-
ally a pooled graph embedding h¢). The backbone may be instantiated as
a message-passing GNN, a graph transformer with structural biases, or a
hybrid architecture; our analysis only requires that the backbone is shared
across domains and is sufficiently expressive to preserve linear predictability
in the prompted features. We insert the prompt as a domain-dependent
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linear operator on graph signals before (or inside) message propagation.
Concretely, given a padded Laplacian L = L(G) and lifted node features
d(X) € R™" we form a prompt-conditioned message operator

Mp,(G) = gpy(L(G)) €R™™,  Z = Mp,(G) $(X), (4)
and then feed (G, Z) through the backbone:
H = [fo(G; Z). (5)

In a multi-layer GNN, can be applied once at the input (as a spectral
“pre-emphasis” of the signal) or at each layer (as a domain-dependent prop-
agation rule); we treat both as instances of the same abstraction, since both
implement a domain-specific polynomial in L composed with shared nonlin-
earities.

Prompt parameterization as polynomial spectral filters. For each
domain d € {1,..., D} we maintain a prompt vector p; € R™ with a fixed
budget m. We interpret p, as coefficients of a degree-m polynomial filter

m

gpa(L) =Y ar(pa) L, (6)

k=0

where ay(-) is either the identity (direct parameterization) or a low-capacity
map (e.g. an MLP) that enforces constraints such as bounded coefficients. To
improve numerical stability and to respect the spectrum of the normalized
Laplacian, we implement g,, using Chebyshev polynomials on the rescaled

operator L := L — I, whose eigenvalues lie in [—1,1]:
m ~
9pa (L) = Z Cd,k Tk(L)7 Pd = (cd,O) ceey Cd,m)- (7)
k=0

The Chebyshev recurrence yields an O(m|E|) implementation per graph (or
per sampled subgraph) without eigendecomposition: for a signal s € R™*"
we compute

m

to=s, ti=Ls, tp=2Ltk1—tra (k>2),  gp(L)s=> cautr
k=0

This realizes a receptive field of m hops and makes the prompt budget di-
rectly commensurate with both (i) the approximation power over spectral
transfer functions on [0,2] and (ii) the number of trainable parameters ex-
posed during few-shot adaptation.
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Self-supervised pre-training objective. We pre-train the shared back-
bone and prompts using unlabeled graphs from all domains. We denote
by /g1 a composite self-supervised loss that mixes an invariance term (con-
trastive) and a signal-modeling term (generative), since these encourage com-
plementary properties of the representation. A representative instantiation
is

b = le(HY, H®) 4 alyen(H), (8)

where £, is an InfoNCE-style loss computed on two stochastic views of the
same graph (node dropping, edge perturbation, attribute masking), and lgep
reconstructs masked node attributes or local structural statistics from H.
The key point for our setting is that the prompt enters the computation of
H through M, (G); therefore, the pretext tasks shape prompts toward pro-
ducing representations that are simultaneously predictive for generic graph
structure and compatible across domains once filtered.

Spectral /statistical alignment regularizer. Self-supervision alone does
not guarantee that representations produced under different domain prompts
are geometrically comparable. We therefore add an alignment term that en-
courages cross-domain agreement of second-order statistics in the prompted
representation space. For a minibatch B from domain d, let h(G) denote
either the pooled graph embedding or a concatenation/average of node em-
beddings after backbone processing. We form a batch moment estimate
(centered or uncentered) such as

SuB) = 1 SO RGO =R = g 3O ME). O

|B| GeB GeB

We then define an alignment map A(-) that optionally conditions on the
prompt and normalizes scale, for example A(pg, %) = tr(X)7'X or a low-
rank sketch of ¥. Given two domains d # d’, we penalize a discrepancy
between their aligned moments:

Luign(d. ') i= Dist(A(pa, Sa(B)), Alpar, S (B), (10)

where Dist can be the Frobenius norm, a Bures/Wasserstein distance be-
tween Gaussians, or a kernel MMD applied to embeddings. The intended
effect is that, under the commuting-Laplacian hypothesis, prompts reweight
domain spectra so that the backbone sees comparable frequency content
across domains; matching moments is a tractable surrogate for aligning the
full prompted representation distributions.
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Joint optimization and training protocol. The pre-training objective

combines and ((10)):

min Egor Egp, [fssl(Q,pd;B)} + AEgza Epp,, B~P, [falign(d7 d')},

0,{pa}

(11)
with A > 0. In practice we approximate the expectations by sampling one (or
two) domains per iteration, computing embeddings under the corresponding
prompts, estimating ¥4 on the fly (or via an exponential moving average),
and taking a gradient step in (6, {pg}). The memory cost of storing prompts
is O(Dm); the incremental cost per forward pass is dominated by evaluating
gp, (L) via m sparse-matrix recurrences.

Few-shot adaptation and parameter-efficiency. After pre-training,
we freeze 6 and adapt only a domain prompt (and optionally a small lin-
ear head) using K labeled examples in the target domain. The prompt-only
update is an m-dimensional supervised optimization problem; the method
is therefore parameter-efficient by construction, and the prompt budget m
governs the statistical complexity of adaptation. This design aligns with the
sandbox model of Section {f if g,, approximates the domain transfer func-
tion in the shared basis, then a simple predictor on top of fy suffices, and
few-shot learning need only refine the spectral response rather than relearn
a domain-specific encoder.

Practical remarks on polynomial degree and stability. Two imple-
mentation details are worth recording for the subsequent theory. First, the
approximation properties of Chebyshev expansions imply that increasing m
expands the set of realizable frequency responses on [0, 2|, consistent with log-
arithmic degree requirements for uniform approximation of Lipschitz transfer
functions. Second, bounding coefficient norms (e.g. ||pq||2 < B) controls the
operator norm of g,,(L) on the spectrum of L, which stabilizes training and
ensures that alignment based on second moments is well-behaved. These
constraints will be invoked implicitly when translating approximation error
of spectral filters into downstream excess risk bounds in the next section.

6 Main Theorems (Upper Bounds)

We now state the guarantees that motivate the design choices of Section
Throughout, we work under the commuting-Laplacian hypothesis: for each
domain d, a representative normalized Laplacian satisfies

Lg = UNUT + Ay, [|Agl2 <6,

for a single orthogonal basis U € R™*" shared across domains and diagonal
Aq with entries in [0,2]. We assume downstream labels are generated by a
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domain-dependent spectral transfer function composed with a linear readout
in the shared basis, i.e., (in the simplest node-level form)

y = sign((wg, U ¢(X)) +£),

where ¢ is a fixed feature-lifting map and £ is bounded or sub-Gaussian noise.
The role of the prompt pg € R™ is to implement a polynomial spectral filter
gp, (L) which approximates the unknown domain transfer function in the
eigenvalue variable A € [0, 2].

Approximation error versus prompt size. The first theorem isolates
the approximation power of degree-m polynomial prompts. Informally, if the
Bayes-optimal domain-specific transformation is a sufficiently regular (e.g.,
Lipschitz) function of the Laplacian spectrum, then a logarithmic number of
prompt coefficients suffices to approximate it uniformly on [0, 2].

Theorem 6.1 (Approximation by prompt spectral filters). Assume d =0 so
that Lg = UNGU T exactly. Suppose the downstream Bayes-optimal predictor
in domain d depends on a band-limited spectral transfer function 1p4(\) which
is Lipschitz on [0,2]. Then for any e > 0 there exists a degree-m polynomial

filter gy, with
~ 1
m = O<log >
€

|a(Aa) = gpa(Ad)||, < &

and the induced excess Bayes risk from replacing 1q by gp, is O(e).

such that

The key point is that the prompt budget m controls a uniform approxi-
mation guarantee over the entire spectral interval, rather than merely an Lo
approximation under a specific eigenvalue distribution. This is precisely the
regime in which Chebyshev expansions are well-suited: on a compact inter-
val, the Chebyshev truncation error for regular target functions decays essen-
tially exponentially in the degree, giving the logarithmic scaling in e ~*. From
the modeling perspective, Theorem justifies interpreting the prompt as a
domain-specific frequency equalizer which can undo spectral shifts Ay while
keeping the backbone fixed.

Few-shot adaptation: estimation error with prompt-only training.
Approximation alone does not yield a downstream guarantee, since in a few-
shot setting we must also estimate the prompt (and optionally a small linear
head) from K labeled examples. The next theorem provides the standard de-
composition into approximation, perturbation, and estimation errors, where
only the estimation term depends on K and only through the prompt di-
mension m.
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Theorem 6.2 (Few-shot excess risk with prompt-only adaptation). Assume
the conditions of Theorem[6.1], but allow § > 0 so that ||Agll2 < 8. Consider
a downstream predictor that is linear in the prompt-filtered embeddings and
has bounded norm. Let py denote the prompt obtained by empirical risk min-
imization over K labeled samples in domain d, with the backbone parameters
0 frozen. Then

E[Riska(5)] — Riska(p}) < O(c +0) + o( I”;)

where pY is the best degree-m prompt for domain d in the hypothesis class.

Two features of Theorem are essential for our parameter-efficient ob-
jective. First, the statistical price of adaptation scales as y/m/K (up to log-
arithmic factors), as one would expect from uniform stability or Rademacher
complexity bounds for an m-parameter family. In particular, the backbone
dimension and the number of backbone parameters do not enter the esti-
mation term, since 6 is frozen. Second, the approximation and perturbation
terms decouple from K; increasing K cannot overcome an insufficient prompt
degree (large €) or a large violation of the commuting hypothesis (large ¢).

Robustness to approximate commutativity. We briefly indicate how
the d-dependence arises. Because g, is a polynomial of degree m, we may
compare gp,(La) to gp,(UA4UT) by a functional perturbation bound. Con-
cretely, if the coefficients of g,, are bounded so that |/g,,|| is controlled on
[0, 2], then repeated use of submultiplicativity yields an operator-norm sta-
bility estimate of the form

19pa(La) = gpa(UAU ||, < C(m, |Ipall) 6,

with C'(m, ||p4||) polynomial in m when coefficients are bounded (and mild in
practice under Chebyshev parameterizations with norm constraints). Trans-
lating this operator error into a prediction error bound uses the Lipschitzness
of the downstream functional (or a margin argument for classification), which
is why Theorem incurs an additive O(9) term. Thus, approximate com-
mutativity is not merely a modeling convenience: it is the condition under
which prompt-induced spectral reweighting remains stable and transferable.

Unseen domains: unlabeled prompt adaptation via moment align-
ment. We next address the setting in which a new domain d’ arrives after
pre-training, and we wish to produce a good prompt using only unlabeled
graphs from d'. The alignment mechanism in ([10) suggests a natural unsu-
pervised criterion: choose pg so that prompt-filtered statistics (e.g., Lapla-
cian moments or embedding covariances) match those of previously seen do-
mains. The following theorem formalizes the unlabeled sample complexity
needed to reach a target alignment accuracy.
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Theorem 6.3 (Sample complexity for learning a new-domain prompt). As-
sume a new domain d' satisfies the commuting-Laplacian hypothesis with the
same U and unknown Ag. Suppose we learn a prompt py € R™ by mini-
mizing an alignment loss that depends on empirical Laplacian moments (or
equivalently, statistics of prompt-filtered signals) up to order m. Then, for
any € € (0,1) and failure probability p € (0,1), it suffices to use

N = O~<m—i—log(1/p))

2

unlabeled graphs (or sampled subgraphs) from domain d’ to obtain alignment
error at most € with probability at least 1 — p. Moreover, in general N =
Q(m/e?) unlabeled samples are necessary.

Theorem [6.3] should be read as an information-theoretic statement about
estimating m spectral degrees of freedom from unlabeled data: one cannot
learn a degree-m spectral correction without observing enough graphs to
reliably estimate the corresponding order-m moments (or any equivalent
m-dimensional summary). Operationally, it means that prompt transfer to
new domains can be amortized by unlabeled corpora, and the unlabeled data
requirement scales linearly in the prompt budget.

Consequence: a unified excess-risk decomposition. Combining the
above results yields a single guiding decomposition for prompted few-shot
transfer:

excess risk < € + 4] + O(Vm/K)
spectral approximation basis mismatch

few-shot estimation

The approximation term is controlled by the prompt degree (Theorem ,
the perturbation term is controlled by the extent to which the domains share
spectral structure, and the estimation term is controlled by the number of
labeled examples and the prompt dimension (Theorem . The unlabeled
adaptation guarantee (Theorem [6.3)) explains when and how a good initial-
ization for pg can be obtained without labels, thereby reducing the number
of labeled samples needed for subsequent few-shot tuning. In the next sec-
tion we show that these upper bounds are essentially tight: the logarithmic
dependence of m on e~! cannot be improved in general, and without shared
spectral structure prompt-only adaptation can be forced to fail.

7 Lower Bounds and Impossibility Results

We now complement the upper bounds of Section [6] with limitations that are
intrinsic to prompt-only adaptation in the present spectral formalism. The
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conclusions are threefold. First, even in the idealized regime where a common
eigenbasis U exists and is perfectly shared, one cannot in general reduce
the prompt budget below logarithmic in the target uniform approximation
error. Second, when domains fail to share approximate spectral structure
(in the sense of approximate commutativity), any approach that freezes a
single backbone and permits only low-dimensional prompt modulation can
be forced to fail on some domain family. Third, if a prompt for a new domain
is learned solely from unlabeled graphs via moment /statistic matching, then
the unlabeled sample complexity must scale at least linearly with the prompt
dimension, matching Theorem up to logarithmic factors.

Prompt-size lower bound under a shared eigenbasis. Theorem [6.]]
shows that degree-m polynomial prompts suffice for uniform spectral approx-
imation under regularity assumptions. The following result shows that the
dependence on € cannot, in general, be improved within the same hypothe-
sis class (polynomial spectral filters), even if we grant the learner maximal
structural help: exact commutativity and knowledge of the shared basis.

Theorem 7.1 (Prompt-size lower bound, matching Theorem . Assume
d = 0 and suppose U is known. There exists a family of domains (equiva-
lently, a family of diagonal spectra {Aq}) and a family of Lipschitz spectral
transfer functions {4} on [0,2] such that, for any e € (0,1), every polyno-
maal filter g of degree at most m satisfying

[Ya(Aa) - 9(A)|, < e

1
m = Q(log).
€

Proof sketch. We reduce the existence of small prompts to a classical uniform
approximation problem on a compact interval. Fix a domain d and consider
the associated target transfer 14(A) on A € [0,2]. Any polynomial prompt
produces a polynomial g(\) (after identifying the prompt coefficients with a
basis such as Chebyshev polynomials rescaled to [0,2]). Thus the require-
ment ||[9qg(Ag) — 9(Ad)]|loo < € entails that ¢ uniformly approximates ¢4 on
the spectral support of Ag; choosing A4 to be sufficiently dense in [0, 2] forces
uniform approximation on the whole interval.

The lower bound then follows by selecting 4 from a family whose best
degree-m polynomial approximation error is bounded below by exp(—cm)
for some absolute ¢ > 0, a standard converse-type statement in approxi-
mation theory for appropriate regularity classes. Concretely, one may take
14 to have analytic continuation only to a Bernstein ellipse of fixed pa-
rameter (equivalently, to have Chebyshev coefficients that decay no faster
than exp(—ck)), which forces any truncation (hence any degree-m poly-
nomial) to incur error at least exp(—cm). Setting exp(—cm) < ¢ yields

must have
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m = Q(log(1/¢)). This establishes that, within polynomial prompt families,
the logarithmic scaling in Theorem [6.1] is information-theoretically tight.

Impossibility without shared spectral structure. The commuting-
Laplacian hypothesis does more than simplify analysis: it is the minimal
condition under which diagonal (spectral) prompt modulation can align do-
mains while leaving a single backbone fixed. If the eigenbases vary substan-
tially across domains, then reweighting frequencies in any fixed basis is not
expressive enough to compensate, regardless of pre-training quality. The
following theorem formalizes this failure mode.

Theorem 7.2 (Impossibility without a shared eigenbasis). Consider a fam-
ily of domains for which the normalized Laplacians take the form Lg =
UdAdUJ with 6 = 0, but the bases {Uy} do not approzimately commute
and are pairwise nearly orthogonal in the sense that no single orthogonal U
jointly diagonalizes the set even approximately. Let a method output a single
frozen backbone fg together with per-domain prompts pg € R™, where the
prompts act only through spectral filters gp,(L) (or, more generally, through
any diagonal or coordinate-wise modulation in a fized representation basis).
If m = o(n), then there exists a downstream linear prediction task in each
domain such that the method incurs excess risk bounded away from 0 on at
least one domain.

Proof sketch. The core obstruction is geometric: spectral prompts modu-
late eigenvalues but cannot implement a domain-dependent rotation of the
eigenvectors. When Uy varies adversarially with d, the information needed
to map one domain’s predictive direction to another is of dimension ©(n?)
(an orthogonal matrix), whereas a prompt of dimension m = o(n) supplies
only vanishing degrees of freedom.

A packing argument makes this quantitative. One constructs a set of
domains with eigenbases {Uy} forming a large packing in O(n) such that,
for any fixed backbone representation, the induced coordinate system is mis-
aligned with at least one Uy by a constant angle on a constant fraction of
coordinates. For each domain, one then defines a downstream task whose
Bayes-optimal predictor corresponds to a coordinate (or a low-dimensional
subspace) in that domain’s eigenbasis; equivalently, labels depend on (wy, UJ o(X))
with wy supported on a small set of coordinates. Any prompt family that
only performs diagonal modulation in the backbone’s fixed coordinates can-
not consistently recover all these rotated predictors: diagonal scaling cannot
undo a generic rotation. Consequently, at least one domain in the pack-
ing yields constant misclassification (or regression) error, giving a constant
excess-risk lower bound. This provides a formal justification for treating ap-
proximate commutativity (small ¢ in our model) as a necessary structural
assumption rather than a technical artifact.
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Unlabeled lower bounds for learning prompts by moment align-
ment. Finally, we address the unlabeled setting of Theorem [6.3] There,
the prompt for a new domain is inferred from unlabeled graphs by matching
statistics that depend on Laplacian moments up to order m (or equivalent
prompt-filtered embedding moments). The following statement shows that
the linear dependence on m in the unlabeled sample size is unavoidable in
general.

Theorem 7.3 (Unlabeled sample lower bound for prompt learning). Fiz a
prompt class of dimension m learned from unlabeled graphs via any estimator
whose inputs are empirical statistics of order at most m (in particular, empir-
ical Laplacian moments up to order m). For any target accuracy € € (0,1),
there exists a pair of new domains djy, d} satisfying the commuting-Laplacian
hypothesis with the same U such that any procedure that, given N unlabeled
graphs from the new domain, outputs a prompt with alignment error at most
e with probability at least 2/3 must have
¥ = of%)

Proof sketch. We use a two-point (Le Cam) argument. Construct two candi-
date new-domain distributions Py and Py whose induced spectra (or, more
precisely, whose distributions over Laplacian moments up to order m) differ
by an amount calibrated so that (i) the optimal prompts for the two domains
are separated by ©(e) in the alignment objective, yet (ii) the total variation
distance between the N-sample unlabeled observations under the two hy-
potheses is small unless N is of order m/e2. This is achieved by embedding
m independent degrees of freedom into the first m moments, each perturbed
at scale £/4/m, so that the aggregate alignment gap is O(e) but the per-
sample statistical signal is weak. Standard concentration then implies that
N = Q(m/e?) samples are necessary to estimate these m moment compo-
nents reliably. The conclusion matches the upper bound in Theorem up
to polylogarithmic factors.

Interpretation. Taken together, Theorems delineate the regime
in which prompt-based transfer is plausible. If domains share a basis (small
9), then polynomial prompts of size m = O(log(1/¢)) are both sufficient
and, in general, necessary for uniform spectral correction; moreover, learning
such prompts from unlabeled data requires ©(m/e?) graphs. Conversely,
if domains do not share spectral structure, then no amount of unlabeled
pre-training can circumvent the representational bottleneck imposed by low-
dimensional, diagonal prompt modulation. In the next section we turn from
information-theoretic limits to computational ones, quantifying the training
and adaptation costs implied by our design.
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8 Complexity and Scalability

We quantify the computational costs implied by prompt-parameterized spec-
tral filtering, and we isolate the scaling bottlenecks that arise when we in-
crease the number of domains, the graph sizes, or the prompt dimension.
Our analysis is stated in the same access model as in Section [6} graphs are
observed through mini-batches (or sampled subgraphs), and prompt modu-
lation is implemented as a degree-m polynomial in a sparse graph operator
derived from the normalized Laplacian.

Prompt filtering cost and its dependence on m. In our design, the
prompt pg € R™ parametrizes a polynomial filter

gpa(L) = > ar(pa) Th(L),
k=0

where T}, denotes a (shifted /rescaled) Chebyshev polynomial and L is scaled
to have spectrum in [—1,1]. The salient point for scalability is that evalu-
ation does not require eigendecomposition: the Chebyshev recurrence uses
m sparse matrix—vector multiplications by L (or by a normalized adjacency
operator), and hence the filter cost per forward pass is

COStﬁlter(G) = O(m’E‘)>

up to feature dimension factors. When the backbone encoder fy is a message-
passing GNN with r layers, the end-to-end cost is additively decomposable
as

Costorward (G) =~ EncCoste(G) + O(m|E|),

where EncCostg(G) is the cost of the backbone with its usual neighborhood
aggregation. In typical regimes, the prompt overhead is linear in m and
linear in sparsity, and thus tunable: increasing m improves approximation
power (cf. Theorem [7.1)) while incurring a predictable linear-time penalty.

Pre-training time with alignment regularization. Algorithm 1 uses
(i) a self-supervised loss and (ii) an alignment regularizer comparing prompt-
conditioned statistics across domains. The self-supervised term is standard
and scales as in single-domain pre-training. The alignment term introduces
two additional operations: computing batch moments and comparing them
across two domains. If h € RIVBIXdr denotes embeddings in a batch B, then
an empirical covariance $q(B) can be formed in O(|Vp|d3) time and O(d?)
memory. This can dominate when dj is large. Two standard mitigations
preserve the role of second-order alignment while reducing cost:

1. Diagonal or block-diagonal alignment: align only diag(E) (cost O(|Vi|dp))
or small blocks corresponding to feature groups.
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2. Low-rank sketches: maintain a rank-ry approximation via random pro-
jections, yielding O(|Vg|dyrs) time and O(dpry) memory.

In either case, the cross-domain comparison can be implemented as an £o dis-
tance between sketches, with negligible overhead relative to the forward /backward
pass. If we estimate alignment using two mini-batches per iteration (one
from d and one from d'), then the asymptotic pre-training time per iteration
becomes

O(EncCostg(B) + m|Ep| + StatCost(B)) + O (EncCosty(B') + m|Ep/| 4+ StatCost(B')) ,

where StatCost is chosen according to the moment estimator. Importantly,
we do not incur any factor scaling with D per iteration: domain sampling
yields constant additional work.

Few-shot adaptation cost and parameter efficiency. At downstream
time we freeze 6 and update only pg (and optionally a linear head). If we
perform S gradient steps on K labeled examples, then the optimization cost
is essentially S forward/backward passes through the frozen backbone with
respect to m prompt parameters:

Timeagapt (d) = O(S - K - (EncCostg + m|E])), Paramsiai;n = m (4 head).

Thus, compared to full fine-tuning, adaptation eliminates the dependence
on |f| in both the number of updated parameters and optimizer state. This
matters in practice for multi-domain deployments: adding a new domain
increases trainable storage by O(m), not O(|6)|).

Memory footprint across many domains. We store one backbone and
D prompts. The prompt memory is

Memprompts = O(Dm)a

which is negligible for small m even when D is large, and contrasts with
mixture-of-experts approaches that replicate substantial fractions of the back-
bone. If we additionally maintain per-domain running statistics (e.g., an
exponential moving average of ¥, to stabilize alignment), the naive cost is
O(Dd%), which can be prohibitive. In such cases we recommend the same
diagonal /low-rank strategies described above; with rank-ry sketches, the
amortized storage becomes O(Ddyrs)).

Prompt routing versus mixture-of-experts. A separate scalability is-
sue is routing: at test time, which prompt should be applied? If the domain
identity is available, routing is trivial and cost-free. If it is not available,
then we may learn a router R(-) producing either (i) a discrete prompt
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index d = R(G) or (ii) a convex combination of prompts. The discrete
case adds O(D) logits per example (or O(log D) if implemented hierarchi-
cally), while the convex combination case replaces p; by ZdD:1 Qagpg with a =
softmax(R(G)), costing O(Dm) per example. This is still typically smaller
than mixture-of-experts (MoE) routing when experts are full backbones:
MoE pays O(top-k - EncCostg) per example and stores O(#experts - |6])
parameters. In contrast, prompt routing keeps compute dominated by a
single backbone forward pass and increases storage only linearly in Dm.

From a representational perspective, prompt routing also admits an in-
termediate regime between “one prompt per domain” and “one prompt per
sample”: we may cluster domains and share prompts among clusters, or
maintain a small pool of prompts reused across domains. This yields a con-
trollable trade-off between memory O(Dm) and statistical efficiency (more
sharing implies less per-domain specialization).

Local subgraph sampling versus full-graph processing. The cost
expressions above depend on |E| and |V|, and hence on whether we process
full graphs or local neighborhoods. For node- and edge-level tasks on large
graphs, it is standard to train on induced r-hop ego-subgraphs or sampled
neighborhoods. In this regime, the polynomial filter is evaluated on the
subgraph Laplacian L(Gyyp,), yielding cost

O(m|Esup|) per labeled root node/edge,

and the alignment term can likewise be computed on subgraph embeddings.
This is consistent with our theory to the extent that the subgraph Laplacians
inherit the same approximate spectral structure (in practice, the approxima-
tion error is absorbed into the d-type perturbation term).

For graph-level tasks, full-graph processing may be necessary to cap-
ture global structure. Here the prompt overhead remains linear in m|E|,
but memory becomes the bottleneck if |V is large due to storing inter-
mediate activations. Standard remedies (gradient checkpointing, minibatch
graph partitioning, and hierarchical pooling/coarsening) are compatible with
prompt filtering, since g,,(L) can be applied at each resolution with the cor-
responding sparse operator.

Practical guidance for choosing m under compute constraints. The
prompt degree m is the principal knob controlling both approximation capac-
ity and overhead. From the perspective of run time, increasing m increases
only the filter cost, and does not multiply the backbone depth. Consequently,
one may select m by fixing a target overhead fraction, e.g.,

m|E|
EncCosty(G) — T
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and then using the largest m satisfying this inequality. When the backbone
is already expensive (e.g., attention-based graph transformers), moderate
m adds little relative overhead; conversely, when the backbone is a light
message-passing network, m should be chosen more conservatively. In all
cases, the central scalability advantage remains: domain growth increases
storage only by O(m) per domain, and few-shot adaptation updates only
O(m) parameters per domain, enabling wide multi-domain coverage without
replicating the encoder.

9 Experimental Plan

We outline an experimental program designed to (i) validate the claimed
parameter—efficiency of prompt-only adaptation, (ii) isolate the contribution
of spectral /statistical alignment during pre-training, (iii) probe the scaling
of performance with prompt size m as suggested by Theorems 1-3, and (iv)
assess robustness under cross-domain shift and sequential domain arrival.

Benchmark construction and domain definition. We require text-free
multi-domain corpora of attributed graphs. We propose to build benchmarks
in two complementary ways.

1. Natural multi-domain corpora. We form domains by a semantically
meaningful partition that induces distribution shift while preserving
the prediction interface (node/edge/graph labels). Examples include:
(a) molecular graphs partitioned by assay/source laboratory, scaffold
family, or measurement protocol; (b) citation/social graphs partitioned
by time slices, communities, or platforms; (c) interaction graphs parti-
tioned by geography or time; (d) program/AST graphs partitioned by
repository or programming language, using only structural /node-type
features (no identifiers or text). Each domain d yields unlabeled graphs
for pre-training and a small labeled set S; for evaluation.

2. Controlled synthetic corpora with known spectral structure. To stress-
test the commuting-Laplacian hypothesis, we generate domains by fix-
ing an orthogonal basis U and sampling diagonal spectra Ay, then
constructing Laplacians Ly = UAZU T 4+ Ay with tunable perturbation
|Agll2 < 6; graphs can be obtained by projecting Ly to a sparse ad-
jacency via thresholding or via a graphon/latent-space model whose
Laplacian concentrates around Lg. We then define labels through
band-limited spectral functions to align with the theoretical task class,
enabling direct verification of m—versus—e behavior and explicit sweeps
over 6.

In all settings, we standardize node features to bounded ranges (e.g., || X||co <
1 after preprocessing) and avoid any textual attributes. We adopt a domain-
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balanced sampling distribution 7 during pre-training to prevent the largest
domain from dominating optimization.

Evaluation protocol and tasks. We consider node-, edge-, and graph-
level prediction tasks depending on the dataset. Pre-training uses only un-
labeled graphs. Downstream evaluation is few-shot per domain: for each
d, we sample K € {1,5,10,20,50} labeled examples (nodes/edges/graphs)
for adaptation, tune only the prompt py (and optionally a linear head), and
report risk on a held-out test split. We report mean and worst-case perfor-
mance over domains:

D
1
AvgRisk = D ; Risky, WorstRisk = gel%c} Risky,

as well as accuracy/AUROC for classification and RMSE/MAE for regres-
sion. For stability, each (d, K) is repeated over multiple random labeled
subsets.

Baselines. To interpret gains, we compare against baselines that separate
(a) backbone sharing, (b) domain-specific adaptation capacity, and (c) spec-
tral alignment.

1. No adaptation: frozen fy with a linear probe trained on Sy (no prompt).

2. Full fine-tuning: update all 6 on Sy (upper bound on performance, not
parameter-efficient).

3. Standard parameter-efficient tuning: adapters/LoRA-style low-rank
updates inside the encoder (matched by parameter count), and feature-
wise affine modulation (FiLM) layers conditioned on a domain embed-
ding.

4. Domain-specific backbones: one separately pre-trained encoder per do-
main (computationally expensive reference point), and a multi-task
shared encoder trained without prompts.

5. Prompt variants: (i) prompts without alignment regularization (A =
0), (ii) alignment without prompts (shared filter, or statistics align-
ment applied only to embeddings), and (iii) non-spectral prompts that
modulate MLP /readout layers with the same number of parameters as

DPd-

6. Mixture-of-experts comparisons: a small MoE with k experts and a
router, matched for compute where feasible, to test whether prompt
routing provides a comparable benefit without replicating full encoders.
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When domain identity is unavailable, we include a learned router R(G) base-
line and report both routing accuracy and downstream risk under predicted
prompts.

Ablations isolating spectral alignment. We isolate the mechanism of
the alignment regularizer by controlled ablations.

1. Alignment weight sweep: A € {0,1073,1072,1071, 1} to test the trade-
off between invariance and specialization.

2. Choice of statistic: match (a) full covariance S, (b) diagonal vari-
ance, (c) low-rank sketches, and (d) higher-order moments when com-
putationally feasible. We additionally ablate the distance Dist (e.g.,
Frobenius, Wasserstein-2 on Gaussians, or CORAL-style losses).

3. What is aligned: align prompt-filtered embeddings h versus align pre-
filter features ¢(X) versus align only graph-level pooled summaries.
This tests whether alignment must act after spectral modulation to be
effective.

4. Domain sampling strategy: uniform over domains versus proportional
to Ny, and paired sampling (d, d’) chosen uniformly versus hard-negative
pairing by large discrepancy in current statistics.

We report not only downstream performance but also the achieved alignment
metric value and its correlation with few-shot error, to verify that alignment
is not merely a regularizer but is predictive of transfer.

Prompt size scaling and approximation behavior. We test the de-
pendence on the prompt dimension/degree m. For each benchmark we sweep

m € {0,2,4,8,16,32, 64},

keeping the backbone fixed. We report (i) performance as a function of m
at fixed K, (ii) performance as a function of K at fixed m, and (iii) the
empirical compute overhead relative to m = 0 to connect accuracy gains to
the linear-time filtering cost. On synthetic corpora with known ground-truth
spectral transfer 14, we additionally measure the uniform approximation
error ||1)g — gp,lloo (estimated on eigenvalues) to directly relate m to an e-
proxy, thereby operationalizing Theorem 1 and checking for the expected
logarithmic trend until finite-sample effects dominate.

Cross-domain generalization and new-domain adaptation. We eval-
uate generalization to unseen domains by holding out a subset of domains
during pre-training. At test time for a new domain d’ we compare:
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1. Zero-shot: reuse a pooled prompt (e.g., the average p) or choose the
nearest, existing prompt in statistics space.

2. Unlabeled prompt learning: initialize py randomly and optimize only
par on unlabeled graphs to minimize the same alignment objective (no
labels), then perform few-shot supervised adaptation. We vary the
number N of unlabeled graphs available from d’ and report downstream
risk as a function of NV, testing the qualitative scaling suggested by
Theorem 5.

We also test robustness to domain-mismatch in graph sizes and degree dis-
tributions, controlling for trivial covariate shift via normalization where ap-
propriate.

Sequential domain arrival and catastrophic forgetting. To test con-
tinual deployment, we simulate a sequence of domains (dy,...,dr) arriving
over time. We pre-train on unlabeled data from all domains or from the
prefix only (two regimes), but we adapt prompts sequentially using few-shot
labels without revisiting past labeled sets. We consider two systems: (i)
one prompt per domain learned independently with the backbone frozen,
and (ii) a shared pool of M < D prompts updated over time with routing.
Forgetting is quantified by backward transfer:

—1
BWT — Ti ; — Z (Perf( Perfg)),
Jj=

(¢ ) is performance on domain d; after adapting to domains up to
time t. Slnce the backbone is frozen and prompts are disjoint across domains
in the simplest setting, we expect BWT to be near zero; any deviation indi-
cates interference via shared components (e.g., routing, shared prompt pools,
or shared running statistics). We additionally measure forward transfer to

newly arriving domains relative to training prompts from scratch.

where Perf

Reporting and reproducibility. We report parameter counts (trainable
and total), adaptation wall-clock time, and memory overhead per domain.
All results include confidence intervals over seeds and labeled-set draws.
Together, these experiments are intended to connect the theoretical knobs
(m, K,§) to empirical behavior, and to delimit the regimes where prompt-
only spectral modulation with alignment is competitive with heavier domain-
specific adaptation.

10 Discussion and Future Work

Our development is intentionally built around a strong but analyzable struc-
tural hypothesis, namely that the dominant cross-domain variation is cap-
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tured by commuting (or nearly commuting) Laplacians so that a single la-
tent eigenbasis U suffices up to perturbation. This yields a clean separation
between shared geometry (encoded by the frozen backbone fy) and domain-
specific spectral reweighting (encoded by a compact prompt pg). The empiri-
cal program in Section [J]is meant to test how often this separation is effective
in practice; here we highlight several directions in which the hypothesis, the
prompt class, and the alignment mechanism can be extended.

Beyond commuting Laplacians: approximate joint structure. The
impossibility statement (Theorem 4) indicates that without additional struc-
ture one cannot hope to align arbitrarily rotated eigenbases using m = o(n)
prompt parameters. A natural next step is to identify intermediate assump-
tions between exact commutation and complete adversarial rotation. One
candidate is approzimate joint diagonalizability: there exists an orthogonal
U such that UT LqU is approzimately diagonal for all d, with off-diagonal
energy bounded in a norm that controls downstream risk. Another candi-
date is subspace commutation: only the top-r (low-frequency) eigenspaces
are shared, while high frequencies may be domain-specific. In such a regime
we may replace a single global U by a decomposition U = [Ughared, Ur(éls)] and
seek prompts that act primarily on the shared subspace, possibly augmented
by a small domain-specific residual module. Formalizing this would require
perturbation bounds that depend on principal angles between eigenspaces
rather than solely on ||A4||2, and would likely lead to risk terms scaling with
these angles and with the task’s effective bandwidth.

A complementary direction is to move from Laplacians to other operators
whose eigenstructure might be more stable across domains, e.g., random-
walk matrices, personalized PageRank operators, or diffusion kernels. In
heterogeneous settings one may have multiple relation-specific Laplacians
Lg); even if each family {L&r)}d approximately commutes, the relations may
not commute with each other. This suggests prompts that parameterize
a mizture of diffusions across relations, with alignment losses applied per
relation or to their joint moments.

Heterophily and the limits of low-frequency alignment. Spectral
methods tied to Laplacian smoothing are often most effective under ho-
mophily, whereas many real graphs exhibit heterophily, where predictive
signals can concentrate in higher frequencies. Our prompt class as polyno-
mial filters is not restricted to low-pass behavior, but the alignment objective
(as stated in terms of second moments) may implicitly prefer representations
that are stable under smoothing. A precise future direction is to incorpo-
rate frequency-aware alignment: instead of matching a single covariance X4,
we may match covariances after applying multiple band-pass projections (or
learned spectral windows) so that both low- and high-frequency components
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are aligned when beneficial. Technically, this amounts to aligning statistics
of Pyh for a family of commuting projectors { Py} approximated by polynomi-
als in L. Such a modification would also interact with Theorems 1-3: if the
downstream transfer function t4(A) is not smooth or is sharply band-pass,
the degree m required for uniform approximation may increase, and one may
prefer rational filters or multi-resolution bases to reduce prompt length.

Dynamic graphs: time-varying operators and prompt trajectories.
Many domains are dynamic: graphs evolve over time, and so do their Lapla-
cians. A static prompt pg may be insufficient when the spectral content
drifts. One extension is to treat prompts as time-indexed parameters pg ¢ gov-
erned by a low-dimensional dynamical model (e.g., an autoregressive prior),
trained by minimizing a combination of self-supervised loss and temporal
smoothness ||pg;: — pd,t_1||%. If Ly = UAdﬂfUT + Ay with slowly vary-
ing Ag¢, then polynomial filters can track the drift by adjusting coefficients
rather than changing the backbone. This setting raises a concrete statistical
question: how many unlabeled snapshots are needed to estimate a prompt
trajectory with bounded cumulative alignment error, and how does this trade
off with the prompt degree m and the drift rate ||[Ag; — Ag¢—1]||? Theorem 5
suggests a moment-estimation route for static prompts; a dynamic analogue
would require concentration for dependent data and stability analyses for
online prompt updates.

Heterogeneous graphs and typed features. In many text-free corpora,
node and edge types (categorical identifiers) are available even when text is
not. Our formulation already allows general attributed graphs through ¢(X),
but heterogeneous graphs introduce additional operators beyond a single
Laplacian. One approach is to define a block operator £ on a lifted space
that encodes types and relations, and to parameterize prompts as polyno-
mials in £. Another approach is to retain relation-specific operators and let
prompts control a small set of mixing coefficients across relations, yielding a

structured prompt pg = (pfipec, pfinix) where pfipec sets spectral responses and

pgﬁx controls inter-relation aggregation. The theoretical challenge is then to
state an analogue of the commuting hypothesis for a family of operators and

to characterize when a shared backbone is identifiable from unlabeled data.

Discrete and structured prompts. Our prompts are continuous vectors
in R™ that define polynomial coefficients. For deployment, it can be advan-
tageous to enforce additional structure: sparsity, quantization, or composi-
tionality. A discrete prompt could be an index into a codebook of spectral
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filters, or a sparse combination of a few basis filters, i.e.,

J
pa(L) = 0aggi (L), aallo <5,
j=1

with s < J. This would reduce per-domain storage and may enable fast rout-
ing when domain identity is unknown. From a theoretical standpoint, such
a restriction changes the approximation problem from polynomial approxi-
mation to dictionary approximation, suggesting bounds in terms of covering
numbers of the filter family and the coherence between basis filters. More
structured prompts also enable explicit constraints such as monotonicity (for
stability) or positivity (to avoid amplifying noise), which can be expressed
as convex constraints on polynomial coefficients in certain bases.

We also view rational filters (ratios of polynomials) or multi-scale wavelet
constructions as promising: they can approximate sharp spectral responses
with fewer parameters than a single global polynomial degree. The trade-off
is numerical stability and the need for iterative solvers; one might recover
parameter-efficiency by restricting denominators to a low-dimensional family
that admits stable recurrences.

Connections to graph foundation models: scaling, modularity, and
domain discovery. The proposed separation (frozen shared backbone plus
small prompts) is aligned with the emerging practice of training large shared
encoders and adapting via lightweight modules. In graph settings, however,
domains are often implicit; domain labels may not be present, and distribu-
tion shift may be continuous rather than discrete. This motivates prompt dis-
covery and prompt routing from unlabeled data: learn a small set of prompts
{p(l), e ,p(M)} and a router R(G) that selects or mixes prompts at infer-
ence. In our framework, routing can be grounded in spectral statistics: we
may define R to minimize an alignment discrepancy between a graph’s es-
timated moments and prompt-conditioned target moments. The theoretical
question becomes a clustering/mixture problem in the space of operator mo-
ments, where sample complexity depends on the separation between domains
in moment space and on the prompt family’s expressivity.

Scaling also raises optimization questions: if D is large, storing O(Dm)
prompts can be burdensome. Structured prompts (shared dictionaries, low-
rank prompt matrices, or hypernetworks generating py from domain descrip-
tors computed from unlabeled graphs) offer a compression route while re-
taining per-domain specialization.

Interpretability and diagnostics. A practical advantage of spectral prompts
is that they admit a direct interpretation as frequency responses. After train-
ing, we can inspect gp,(A) over X € [0,2] (or over empirical eigenvalues) to
quantify whether a domain emphasizes low frequencies, high frequencies, or
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band-pass behavior. Such diagnostics can be used to (i) detect out-of-family
domains for which the learned prompt induces unstable amplification, (ii)
measure how much adaptation occurs during few-shot tuning (e.g., norm
changes in polynomial coefficients), and (iii) relate improvements to specific
frequency bands. More formally, one may attempt to derive a stability cer-
tificate in terms of supy¢(o,9) |9p,(A)| and Lipschitz constants of the readout,
connecting interpretability to generalization control.

Finally, while our analysis uses a linear spectral label model to obtain
explicit bounds, the mechanism is not inherently tied to linear tasks. Extend-
ing the theory to nonlinear readouts and to richer self-supervised objectives
(beyond moment matching) remains open; a plausible route is to treat the
prompt-filtered encoder as defining a domain-conditioned representation and
to analyze invariance and sufficiency properties via information-theoretic or
kernel-based tools. Establishing when such representations remain transfer-
able under weaker structural assumptions is, in our view, the central theo-
retical problem for prompt-based multi-domain graph learning.

11 Conclusion

We have studied the following constraint regime: a collection of graph do-
mains {1,..., D} provides large unlabeled corpora, yet downstream supervi-
sion is scarce and domain-specific, and we require parameter-efficient adap-
tation in the sense that the shared encoder parameters 6 are frozen at down-
stream time while only a compact domain prompt py € R™ (and, optionally,
a small linear head) may be optimized from K labeled examples. The set-
ting is text-free, so adaptation cannot rely on language supervision or textual
node/edge attributes, and thus must be grounded in intrinsic graph struc-
ture.

Our central modeling choice is to represent cross-domain shift at the level
of graph spectra. Formally, we posit that the (normalized) Laplacians admit
a shared latent eigenbasis up to perturbation, i.e.,

Lg = UNUT + Ay, |Agll2 <9,

where U is orthogonal and Ay is diagonal with spectrum in [0,2]. This hy-
pothesis is deliberately strong, but it is precise enough to yield a quantitative
theory for when prompt-only adaptation is feasible and when it is not. Under
this hypothesis, a domain can differ from another primarily by a reweighting
of the same spectral directions; accordingly, a prompt that parameterizes a
spectral filter can compensate for domain-specific eigenvalue profiles without
modifying the shared representation geometry encoded by the backbone.
On the algorithmic side, we introduced a two-stage procedure in which
the prompt enters the encoder through a prompt-parameterized spectral op-
erator gp,(L), implemented as a degree-m polynomial (e.g., via Chebyshev
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recurrences), and pre-training is driven by a combination of self-supervised
learning and an explicit cross-domain alignment regularizer. The role of
the self-supervised term is to learn broadly useful representations on each
domain, whereas the role of the alignment term is to encourage prompt-
conditioned representations to share comparable statistics across domains,
thereby increasing the likelihood that a small amount of labeled supervi-
sion suffices for downstream adaptation. The resulting parameterization is
explicit: domain-specificity is confined to pg of dimension m, while the com-
putationally expensive backbone is shared and amortized across domains.

The theoretical statements we established can be read as a three-part
characterization of prompt efficiency under spectral structure. First, in
the idealized commuting case d = 0, polynomial spectral filters provide a
controlled approximation class for domain-specific transfer functions. Con-
cretely, when a downstream task depends on a (band-limited, Lipschitz) spec-
tral transfer 14(\), we can approximate 14 uniformly on [0, 2] by a degree-
m polynomial g,, with m = O(log(1/¢)), which translates into an O(e)
degradation relative to the corresponding domain-optimal spectral trans-
form. Second, when § > 0 and the shared eigenbasis is only approximate,
classical perturbation arguments yield an additional risk contribution scal-
ing as O(6), reflecting that no prompt acting only through L can fully undo
a rotation of eigenspaces beyond what § permits. Third, since downstream
training adjusts only m prompt parameters (and possibly a small head),
estimation error is governed by the complexity of an m-dimensional hypoth-
esis class, yielding an excess risk term of order O(y/m/K) under standard
boundedness assumptions.

Taken together, these components give an upper bound of the form

. . . ~ m

E[Riskq(pa)] — Riska(py) < O(e +9) + O< K> ;
where p’ denotes the best prompt within the degree-m polynomial class.
This bound makes the relevant tradeoffs explicit: decreasing approximation
error requires increasing m; decreasing estimation error requires increasing
K relative to m; and any lack of shared spectral structure manifests as an
irreducible term scaling with § (or, more generally, with the deviation from
joint diagonal structure).

We also proved that these rates are essentially sharp in two distinct
senses. In the shared-basis case, the logarithmic dependence of prompt size
on target uniform error cannot in general be improved: there exist Lipschitz
spectral transfer functions for which any degree-m polynomial approxima-
tion achieving error at most ¢ requires m = Q(log(1/¢)). Thus, within the
polynomial prompt family, the prompt-size requirement in the approximation
theorem is not an artifact of proof technique but reflects the inherent approx-
imation difficulty on a compact spectral interval. Separately, in the absence
of shared spectral structure, we established an impossibility statement: if the
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eigenbases across domains are sufficiently misaligned (for instance, nearly or-
thogonal), then any method that maintains a fixed backbone and adapts only
through an m = o(n)-dimensional prompt family applied in a fixed basis can
be forced to incur constant excess risk on at least one domain. This lower
bound delineates the boundary of applicability of prompt-only adaptation:
without a joint structure constraint, low-dimensional prompts do not have
the capacity to align arbitrarily rotated spectral geometries.

A further contribution concerns adaptation to previously unseen domains
using unlabeled data. If a new domain d’ satisfies the same latent basis hy-
pothesis with unknown Ay, then moment-based alignment provides a viable
mechanism to estimate a prompt from unlabeled graphs alone. We showed
that, for an alignment objective based on Laplacian moments up to order
m, the number of unlabeled samples required to achieve alignment error at
most ¢ scales as O((m + log(1/p))/e?) with failure probability p, and that
an Q(m/e?) dependence is necessary in general. This result complements
the downstream few-shot bound: it formalizes that prompt learning can be
statistically efficient even without labels, provided that one is willing to es-
timate sufficiently many spectral statistics to identify an appropriate filter
within the degree-m family.

We emphasize that the value of the present framework is not limited
to the specific polynomial parameterization, but rather lies in making ex-
plicit the interface between (i) an operator-level description of domain shift,
(ii) a parameter-efficient adaptation mechanism, and (iii) risk bounds that
separate approximation, perturbation, and estimation effects. In particular,
the prompt degree m plays a dual role: it is both a computational knob
(degree-m filtering costs O(m|E|) per graph under sparse multiplication)
and a statistical knob (the effective dimension of the downstream adaptation
problem). The upper and lower bounds jointly identify where improvement is
plausible (e.g., better approximation families than polynomials, or stronger
structural assumptions than approximate commutation) and where it is not
(e.g., attempting to align arbitrary spectral rotations with m = o(n)).

In conclusion, we have provided a principled account of how compact,
domain-specific prompts can support few-shot transfer in text-free multi-
domain graph learning when cross-domain variation admits a shared spec-
tral geometry. The resulting picture is logically consistent: when domains
share a latent eigenbasis, prompts can reweight frequencies to bridge do-
main gaps with provable sample-efficiency; when domains do not share such
structure, prompt-only schemes are provably insufficient in the worst case.
Establishing analogous guarantees under weaker and more realistic struc-
tural assumptions, and characterizing the empirical prevalence of approx-
imate joint spectral structure in large graph corpora, remain the primary
obstacles to turning this theory into a general foundation for prompt-based
graph transfer.
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