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Abstract

Few-shot learning on graphs has recently shifted from meta-learning
to pre-training and prompt-based, parameter-efficient adaptation. Yet
most work implicitly assumes full-graph access at downstream time,
which is unrealistic on 2026-era web-scale graphs where privacy, la-
tency, and storage constraints prevent loading |V| and |E|. Motivated
by the survey’s emphasis on large-scale graphs and parameter-efficient
adaptation, we introduce a local-access computational model for few-
shot node/edge prediction where the learner only queries bounded-
radius neighborhoods. We propose LA-Prompt, which uses a pre-
trained subgraph tokenizer and frozen graph encoder, and adapts with
a tiny prompt learned from K labeled examples. We provide tight
learning-theoretic guarantees for r-local tasks: sample complexity match-
ing lower bounds up to logarithmic factors and inference time depend-
ing only on the retrieved neighborhood size. Finally, we show sharp
limitations: for global graph properties, any local-access algorithm
with sublinear oracle calls cannot succeed in the worst case. Experi-
ments (recommended) on large real graphs measure latency—accuracy
tradeoffs under strict neighborhood budgets and verify the theory’s
locality assumptions.
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1 Introduction

Graphs that matter operationally in 2026—web and commerce interaction
graphs, enterprise knowledge graphs, financial transaction networks, and
multi-relational user—item graphs—are routinely too large, too dynamic, or
too access-restricted to admit the algorithmic assumption that one can load
the entire adjacency structure and perform global computation. Even when
storage is feasible, organizational constraints (privacy, multi-tenant deploy-
ment, regulatory separation, or API-only access) often restrict a downstream
learner to retrieving small neighborhoods around a limited set of queried en-
tities. In such regimes, the classical distinction between “training time” and
“test time” blurs: inference itself may require fetching neighborhood infor-
mation, and any adaptation to a new task must be expressed as a small
computation over a small collection of locally retrieved subgraphs.

We therefore take local access as a primitive: the learner interacts with a
target graph through an oracle that returns a rooted induced neighborhood
of bounded radius. This access model is not merely a convenience for analy-
sis; it matches the dominant engineering pattern for massive graphs, where
feature generation and candidate retrieval are inherently neighborhood-based
and cached, and where the cost metric is not the number of floating point
operations but the number and size of graph fetches. From this perspective,
the fundamental question is not “Can a graph neural network fit the task
given the entire graph?” but rather “Which tasks can be solved, and with
what sample and query complexity, when every unit of information arrives
as a bounded-radius neighborhood around instances of interest?”

At the same time, the past few years have clarified that pre-training can
dramatically reduce label requirements in domains where labeled data are
scarce but structure is abundant. Graph representation learning has followed
the same trajectory as language and vision: large-scale self-supervised ob-
jectives on unlabeled graphs can produce feature extractors that transfer to
many downstream tasks. Yet, in graph settings, transfer is complicated by
heterogeneity across domains (different node types, attribute vocabularies,
and relation semantics) and by the locality constraints above. A downstream
practitioner may be permitted to compute embeddings for queried nodes,
but not to re-train or even fine-tune a large backbone that was pre-trained
elsewhere. Thus, parameter-efficient adaptation—prompting, adapters, low-
rank updates—is not merely fashionable; it is often the only admissible mech-
anism for personalization, continual updates, or task switching under a strict
deployment budget.

Our aim is to unify these considerations in a single formal framework: (i)
we allow an offline pre-training stage with full access to external unlabeled
graphs, producing a tokenizer and encoder that map rooted neighborhoods
to fixed-dimensional embeddings; (ii) we require that downstream learning
on a new graph proceeds only by local oracle queries; and (iii) we constrain



adaptation to a small number of trainable parameters, which we interpret
as a prompt. The resulting model is deliberately austere: the backbone
is frozen, the downstream algorithm cannot traverse the graph arbitrarily,
and the only labeled data are a few support examples for the task at hand.
This combination captures the practical pattern ‘retrieve neighborhood —
embed — lightly adapt — predict,” while making explicit the resource trade-
offs among neighborhood radius, number of oracle calls, number of labeled
examples, and prompt capacity.

Two themes motivate our analysis. First, locality is both an opportunity
and a limitation. It is an opportunity because many economically impor-
tant prediction problems are plausibly r-local: node classification based on
profile and nearby interactions, link scoring based on shared neighborhoods,
anomaly detection based on local motifs, and so on. In such cases, oracle ac-
cess is information-theoretically sufficient, and the learning problem reduces
to identifying a predictor over frozen local embeddings from few labels. It is
a limitation because not all graph properties are local: connectivity, expan-
sion, long-range community structure, and other global predicates cannot,
in general, be inferred from a sublinear number of bounded-radius samples.
Any framework that purports to address learning on massive graphs must
therefore articulate where positive results are possible and where impossibil-
ity results intervene.

Second, the success of pre-training and prompting suggests a separa-
tion of concerns: representation is learned once at scale, and adaptation is
performed cheaply and locally. In our setting, the tokenizer and encoder
summarize each oracle-retrieved neighborhood into a fixed number of tokens
and a fixed embedding. Downstream learning then operates in this induced
feature space. This makes the dependence on the size of the target graph
disappear from the computational complexity, except through the random
size of retrieved neighborhoods, and it isolates the role of the prompt: the
prompt is responsible for aligning the pre-trained features with the down-
stream labeling function using only K labeled support instances. When
the downstream task is compatible with the representation—formally, when
an accurate predictor lies in a bounded-norm linear class over the frozen
embeddings—we can expect label efficiency comparable to standard linear
prediction, with explicit dependence on embedding dimension rather than
on |V]or E|.

This perspective speaks directly to two challenges that recur in surveys
of modern graph learning systems. The first is the large-scale challenge:
the target graph is too large to process globally, so algorithms must be
instance-local and must bound the number of neighborhood expansions. The
second is the structure-scarcity challenge: labels are scarce or expensive,
while unlabeled structure is plentiful. Our framework addresses both by
construction: it makes locality an explicit constraint (rather than a heuristic)
and treats labeled data as a few-shot resource. Moreover, by incorporating



a prompt budget, we account for realistic deployment constraints in which
one may tune only a small number of parameters per task, per client, or per
time window.

Finally, we emphasize that adopting local access as a core assumption
demands matching lower bounds. If the local neighborhoods do not con-
tain the information needed to solve a task, no amount of prompting or
pre-training can overcome the information bottleneck at downstream time.
The proper comparison class is therefore not “all graph predictors,” but the
class of predictors that can be expressed as functions of rooted neighbor-
hoods of bounded radius (after pre-training). In what follows, we make this
comparison precise: we present an instance-local prompting algorithm and
analyze its excess risk under locality and bounded-norm hypotheses, and we
complement this with lower bounds that delineate when such guarantees are
tight and when they are impossible. The next section situates these ideas
relative to existing work on few-shot graph learning, large-scale neighbor-
hood sampling, parameter-efficient adaptation, and property-testing indis-
tinguishability phenomena.

2 Related Work

Few-shot learning on graphs has been studied under several paradigms that
differ primarily in what is assumed transferable across tasks and what com-
putational access is available to the target graph. A first line follows meta-
learning: one trains across many episodic tasks so that adaptation from a
small support set is fast at test time, using either optimization-based up-
dates (e.g., MAML-style methods) or metric-based rules (e.g., prototypes
and matching) ?7. In graph settings, these ideas appear in few-shot node
classification and relation prediction, where tasks correspond to label sub-
sets, relation types, or domains, and adaptation is implemented by a small
number of gradient steps on a GNN backbone or on a task-specific head ?7.
While effective in moderate-scale benchmarks, many meta-learning methods
still assume that (at adaptation time) the learner can repeatedly traverse the
target graph and backpropagate through the full model, which conflicts with
deployment constraints in which the backbone is frozen and graph access is
mediated by restricted neighborhood queries.

A second paradigm is pre-training followed by light-weight transfer. Self-
supervised and weakly supervised graph representation learning has pro-
duced a large family of objectives—contrastive alignment across augmen-
tations, context prediction, mutual-information surrogates, and masked at-
tribute/edge reconstruction—that yield embeddings reusable across down-
stream tasks ?7?7?7. This “pre-train then probe” philosophy is conceptually
aligned with our setting, in that the downstream learner operates on frozen
features and the statistical question becomes whether the downstream labels



are predictable from those features. However, much of the pre-training lit-
erature is formulated either with full access to each training graph or in an
“in-memory” regime where mini-batches can sample arbitrary subgraphs us-
ing stored adjacency, whereas our downstream phase treats the target graph
as an oracle-access object and measures cost in neighborhood fetches.

Prompting and other parameter-efficient adaptation methods provide a
third axis. In language and vision, prompt tuning, adapters, and low-rank
updates (LoRA) enable task adaptation by training a small number of pa-
rameters while keeping a large backbone fixed ???. Graph analogues have
recently emerged: one can introduce learnable “virtual” nodes or tokens,
add prompt vectors to node representations, or learn small adapter modules
inserted between GNN layers 7?. These methods are typically motivated
by the same resource constraints that motivate our formulation—multi-task
deployment, per-client personalization, and limits on fine-tuning time—but
they are often evaluated in settings where the entire graph (or a substantial
subgraph) is available during adaptation. Our contribution is not a new
prompting mechanism per se, but an access model that makes explicit that
the prompt must be trainable from a few labeled, instance-local neighbor-
hoods, with oracle calls counted as a primary resource.

Large-scale graph learning has also developed techniques that approxi-
mate global training with local computation. Neighborhood sampling and
mini-batch methods such as GraphSAGE-style sampling, FastGCN/LADIES,
GraphSAINT, and cluster-based batching reduce the cost of training deep

duction recommenders further combine sampling with retrieval and caching
layers (e.g., PInSAGE) to compute embeddings on demand ?. These works
share with our approach the premise that only a bounded portion of the
graph can be touched per training example, and they provide practical es-
timators for stochastic gradients. The distinction is that sampling methods
usually presume direct access to adjacency (to sample neighbors, to precom-
pute random walks, or to build clusters), whereas our downstream learner
is restricted to the neighborhoods returned by an external oracle, a model
closer to API-bound graph stores and privacy-separated deployments.

The neighborhood oracle viewpoint is also related to classical models
of local computation and distributed graph algorithms. In the LOCAL
model, an algorithm at a node observes its radius-r neighborhood after r
synchronous rounds; many impossibility results show that certain global
predicates cannot be decided from bounded-radius views 7. In property
testing, one studies sublinear-time algorithms that query local neighbor-
hoods (or incidences) to distinguish a property from being far from it; here,
indistinguishability constructions yield sharp lower bounds for tasks such
as connectivity, expansion, and partition properties under local queries ?7.
These results motivate our negative statements: when two graph families
have (approximately) identical distributions over rooted r-neighborhoods,



no downstream algorithm constrained to such views can reliably separate
them, regardless of how powerful the frozen encoder may be. Our framework
imports this indistinguishability principle into a learning setting, where the
goal is to predict labels rather than to decide a single property.

Few-shot graph learning additionally intersects with work on inductive
transfer across graphs and domains. Methods that train on multiple graphs
and generalize to unseen graphs often rely on structural regularities shared
across domains, sometimes using relational inductive biases, subgraph en-
coders, or graph-level contrastive objectives 7. While these approaches ad-
dress domain shift, they typically do not formalize a strict downstream access
budget, and they allow adaptation procedures that implicitly depend on the
ability to traverse beyond queried instances. Our model isolates a stricter
regime: the algorithm may only see neighborhoods of the support and query
instances (up to explicitly budgeted auxiliary queries), which is natural when
predictions are served at query time and any additional exploration is costly
or disallowed.

Finally, our learning-theoretic stance relates to analyses of linear prob-
ing and representation quality. A common formalization is: given frozen
features, a downstream task is easy if a low-complexity predictor (often lin-
ear with bounded norm) achieves small risk, and then generalization depends
primarily on the feature dimension and the norm bound ?. We adopt this
viewpoint in the presence of local graph access and a prompt budget: the
statistical difficulty is governed by the complexity of predictors over frozen
neighborhood embeddings, while the algorithmic difficulty is governed by
the number and size of oracle-retrieved neighborhoods. In summary, our
work sits at the intersection of (i) graph few-shot transfer, (ii) parameter-
efficient adaptation, (iii) large-scale neighborhood-based computation, and
(iv) local-access lower bounds from property testing, with the goal of making
the tradeoffs among labels, prompt capacity, and oracle access explicit.

3 Model and Problem Formulation (LA-FSL)

We formalize a downstream learning regime in which the target graph is
too large, too private, or too remotely stored to be processed as an explicit
adjacency structure. The learner is instead granted local access to the graph
through an oracle, and must adapt to a task from a small labeled support set
while modifying only a small number of trainable parameters. This section
specifies the access model, the resource budgets, and the families of tasks we
aim to capture.

Target graph and oracle access. Let the target be a graph G = (V, E, X)
with node features X € RIVI*4 (edge features are omitted unless stated). Fix



aradius r € N. Our only mechanism for observing G is a neighborhood oracle
Og(v,r) = the rooted induced r-hop neighborhood around v,

which returns the subgraph induced by nodes at graph distance at most
r from v, together with their features and an explicit root identifier. We
denote a returned neighborhood by G\ = O¢(v,r) and write |E,| for the
number of edges in such a neighborhood (which may depend on v and may
be treated as a random variable under a distribution over query points).
The downstream computational cost will be measured as a function of the
number of oracle calls and the sizes of the returned neighborhoods, and must

not scale with |V or |E| except through such local statistics.

Instances and task types. A downstream task T is specified by labeled
instances of one of two canonical forms. For node prediction, an instance is a
node o = v € V with label y(v) € Y (e.g., a class). For edge/link prediction,
an instance is an ordered pair o = (u,v) € V x V with label y(u,v) € Y
indicating presence, type, or some relational attribute. In the edge case, we
assume access to Og(u,r) and Og(v,r) (or, equivalently, a joint oracle that
returns a rooted neighborhood around the pair); the analysis is insensitive to
the choice provided the algorithm is charged for each neighborhood retrieval.
We emphasize that the oracle returns induced neighborhoods: the learner
cannot request arbitrary subsets of neighbors, nor can it traverse beyond
radius r without issuing further counted oracle calls.

Support/query protocol and learning objective. The downstream
input consists of a support set

S = {(osyi) iy,

where each o; is a node or node-pair as above, and a set () of query instances
on which we must predict. We view instances as drawn from a distribution
D induced by sampling nodes or pairs in G (and then revealing the associ-
ated labels through an unknown labeling function). The goal is to output a
predictor (o) achieving low expected risk

Eop[(5(0),4(0))],

for a specified loss ¢ (typically convex and 1-Lipschitz in its prediction ar-
gument when we later state generalization bounds). The support set size
K is the statistical resource, and we treat the query set () as unlabeled at
adaptation time.



Two-phase representation and frozen backbone. We assume an of-
fline pre-training phase on external unlabeled graphs (full access permitted
there) that produces a frozen representation mechanism. Concretely, the
downstream learner is given a fixed mapping from an oracle neighborhood
to a finite-dimensional vector representation. For the purposes of the present
section we denote this mapping abstractly by

O(-) : Og(v,r) — RP,

and defer its construction and practical instantiations to the next section.
The defining constraint is that ® is frozen downstream: its parameters can-
not be updated using the support set.

Prompt/adaptation budget. Adaptation to a downstream task is per-
formed by training a parameter-efficient module (a prompt) with at most P
real-valued degrees of freedom. Formally, we consider a family of predictors
of the form

(o) = gy (®(neigh(o))),

where ¢ € R? are the only trainable parameters available at downstream
time, and neigh(o) denotes the oracle neighborhood(s) required to represent
o (one neighborhood for node tasks, two for edge tasks, up to bookkeeping
conventions). The map g, may be a linear probe, a small MLP, or a prompt
mechanism that modifies intermediate activations, but its trainable footprint
is capped by P. This budget models deployment regimes in which per-task
or per-client fine-tuning must be fast, cheap to store, and safe to perform
without modifying a shared backbone.

Neighborhood and oracle-call budgets. In addition to limiting train-
able parameters, we restrict graph access. A downstream algorithm may
only invoke Og(-,7) on (i) nodes appearing in S U @, and (ii) an explic-
itly bounded set of auxiliary nodes, with each invocation counted toward an
oracle budget q. We allow memoization: repeated calls on the same root
may be cached and charged once. Computation performed after receiving
a neighborhood must be polynomial in the returned subgraph size, and any
overall complexity bounds must depend on r and local size measures (e.g.,
|E,|) rather than on global graph size. This constraint rules out adapta-
tion procedures that require repeated global passes over G or that rely on
precomputing graph-wide data structures.

Local task families and the r-locality hypothesis. Our positive results
require a compatibility condition between the task and the access model.
We call a labeling function r-local if, for node tasks, y(v) is a function
only of the rooted neighborhood O¢(v,7), and similarly for edge tasks if



y(u,v) is determined by Og(u,r) and Og(v,r) (or an equivalent local view).
This hypothesis captures many settings in which labels depend on bounded-
range patterns (features, motifs, or short-range relational context), and it
is the minimal assumption under which oracle access at radius r can be
information-theoretically sufficient. In contrast, tasks depending on global
graph properties (e.g., connectivity or membership in a giant component)
are not r-local for fixed r and will be subject to the lower bounds we later
state.

Reference predictor class over frozen features. To separate represen-
tation quality from few-shot learnability, we benchmark against predictors
that are simple functions of frozen embeddings. A canonical reference is the
bounded-norm linear class

Hp = {0 (w, B(neigh(0))) : [lwl2 < B,

possibly composed with a fixed link function for classification. Our learn-
ing objective can then be stated as achieving small excess risk relative to
infreqy, E[¢(h(0),y(0))] using only K labeled examples, ¢ oracle calls, and
P trainable parameters.

What is and is not allowed downstream. We stress three invariants
of the LA-FSL model. First, the algorithm cannot inspect G beyond queried
neighborhoods; in particular, it cannot sample random nodes unless such
sampling is itself implemented by counted oracle queries. Second, the back-
bone representation ® is immutable, so the only path to task specialization
is through the prompt parameters ¢ (and any associated small head). Third,
resource bounds must be instance-local: per-query prediction should require
only a constant number of oracle calls and computation scaling with the re-
turned neighborhood size, ensuring feasibility when |V| and | F| are massive.

This completes the downstream problem definition. In the next sec-
tion we instantiate ® via pre-trained neighborhood tokenizers and frozen
encoders, and we discuss which aspects are assumed fixed versus learned
during pre-training.

4 Tokenization and Frozen Encoders

We now instantiate the frozen neighborhood representation map ® used
downstream. Rather than treating ® as a monolithic black box, we factor it
into (i) a neighborhood tokenizer that converts an r-hop rooted neighborhood
into a fixed number of token vectors, and (ii) a frozen encoder that aggre-
gates these tokens into a task-agnostic embedding. This factorization makes
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the locality and resource constraints explicit: the tokenizer and encoder op-
erate only on oracle outputs, and the token budget fixes the downstream
compute independent of the global size of G.

Neighborhood tokenizer. Let GY = O¢(v,r) denote the rooted in-
duced r-hop neighborhood around a node v. A neighborhood tokenizer is a
map

Ty - G\ —s Z, e R™*P,

where m is a fixed token count and p is the token dimension. The parameters
1 are learned (or chosen) during pre-training and then frozen downstream.
The requirement that m be fixed is not merely cosmetic: it decouples the
cost of encoding from the possibly heavy-tailed size of Gg,r). The tokenizer
may compress neighborhoods of varying size by pooling, coarsening, trun-
cation with padding, or any permutation-invariant summarization of the

rooted subgraph; the only hard constraint is that 7, be computable in time
polynomial in \V(Ggf)ﬂ + \E(Gq(,r)ﬂ.

Since Gq(f) is a rooted object, 7, may (and typically should) allocate one
distinguished token to the root. Concretely, one may view Z,, as containing a
“root token” capturing the features of v and its immediate relational context,
plus m — 1 auxiliary tokens describing the remainder of the neighborhood at
increasing hop distance or at increasing coarseness. Rooting also resolves the
usual ambiguity of graph permutation symmetry: while the neighborhood
is unordered, the distinguished root provides a canonical reference point for
relative structural features (e.g., hop distance to the root, directionality if
present, or role features).

Frozen encoder. Given tokens Z, € R™*P, the frozen encoder produces
an embedding

he = fo(Z,) €RP,  andweset  ®(GU)) == fo(ry(GI)).

The encoder parameters 6 are learned during offline pre-training and remain
fixed at downstream time. The encoder may be a Transformer operating on
m tokens, an MLP applied to pooled tokens, or any architecture with pre-
dictable complexity as a function of m and p. Importantly, we do not assume
the downstream learner can re-run message passing on the full neighborhood
with trainable weights; all trainable adaptation is deferred to the prompt
module in the next section.

What is assumed fixed versus learned. In the downstream phase, the
pair (7y, fp) is immutable. In particular, neither the tokenization scheme
nor the encoder weights are updated on the support set, and their param-
eter counts do not contribute to the downstream prompt budget P. Our

11



theoretical statements treat ® as a fixed feature map; the substantive mod-
eling assumption is that, for the target task family of interest, there exists a
low-complexity predictor (often linear with bounded norm) over these frozen
embeddings that approximates the optimal r-local decision rule. Said dif-
ferently, pre-training is responsible for producing features in which r-local
structure becomes linearly (or simply) predictable; few-shot adaptation is
responsible only for selecting a task-specific decision boundary within that
fixed feature space.

Offline, by contrast, we allow substantial flexibility. The tokenizer and
encoder can be trained by any self-supervised or weakly supervised objec-
tive on external graphs, including contrastive neighborhood discrimination,
masked attribute prediction, or predictive coding between overlapping neigh-
borhoods. The analysis in later sections does not depend on the particular

pre-training loss, only on the induced hypothesis class over <I>(G7(f)).

Practical instantiations of tokenizers. Several concrete choices of 7,
satisfy the oracle-based locality constraint while yielding fixed-size token
sequences.

Pooling-based tokenization uses hand-designed or lightly parameterized
summaries. For example, one may allocate one token per hop distance
¢ € {0,...,r}, with entries given by pooled statistics of node features at
that hop (means, variances, or learned linear projections), and optionally
include structural statistics such as degree histograms or counts of small
motifs within each shell. This yields m = r+ 1 (or a small multiple thereof)
and offers strong robustness to neighborhood size variation, at the cost of
potentially discarding fine-grained relational information.

Hashing- or color-refinement tokenization converts rooted neighborhoods
into multisets of discrete identifiers. A typical approach is to run a small
number of Weisfeiler—-Lehman-style refinement steps within Gq(,r), hash the
resulting colors (optionally combined with hop distance to the root), and
then form tokens by aggregating embeddings of the hashed identifiers. This
can be implemented efficiently, is naturally permutation-invariant, and can
be tuned to trade off expressivity against token budget by controlling how
many hashed buckets are retained.

Learned coarsening tokenization learns a soft partition of the neighbor-
hood into m clusters (“supernodes”) and pools node representations within
each cluster. Concretely, one may compute preliminary node states by a

small frozen message-passing network inside 7, then predict an assignment
. (r)
matrix S € RIV(G)I*m and output token vectors Z, = ST H for node state

matrix H. In this view, tokens are learned subgraph summaries whose num-

ber is fixed by design; the coarsening can be trained during pre-training to

preserve information relevant for generic structural prediction.
Truncation-and-padding tokenization linearizes the neighborhood by a

12



canonical traversal rooted at v (e.g., BFS with deterministic tie-breaking),
selects up to a fixed number of visited nodes/edges, and encodes them as
tokens with positional or hop-distance features, padding when the neighbor-
hood is smaller than the budget. This approach can retain fine details but
may be sensitive to the traversal rule; it is best paired with data augmenta-
tion during pre-training to encourage invariance.

Edge tasks and pair representations. For link prediction or edge label-
ing, we will typically compute h, = ®(Og(u,r)) and h, = ®(Og(v,r)) via
two oracle calls, and then combine them (e.g., concatenation, bilinear scoring,
or an additional interaction token) before applying the prompt-conditioned
predictor. Our abstraction permits either scheme: the essential point is that
each component representation is derived from a bounded-radius oracle view
with fixed token count.

With @ = fgo7y fixed in this way, downstream learning reduces to fitting
a small prompt-conditioned predictor on top of embeddings computed from
oracle neighborhoods, which we make explicit in the next section.

5 LA-Prompt: Prompt-Only Adaptation Under Lo-
cal Oracle Access

With the frozen neighborhood representation map ® = fy o 7, in place,
we now specify the downstream procedure that performs task adaptation
using only (i) 7-hop oracle access and (ii) a bounded prompt budget P. The
guiding constraint is that every computation at downstream time must be
instance-local: for a node instance we may inspect only Og(v,r), and for
an edge instance only the corresponding endpoint neighborhoods (or a joint
neighborhood oracle when available). In particular, we do not assume access
to global adjacency lists, full-graph message passing, or any operation whose
cost scales with |V| or |E|.

Problem interface and embedding extraction. For each labeled sup-
port instance we first compute a frozen embedding by a single pass through
the tokenizer and encoder. In the node case, the support set is S = {(v;, yz)}fil
and we form

G; = Og(vi,r), Z; = Tq/)(Gi) GRmXp, h; = fg(ZZ') GRD.

These steps are deterministic given the oracle output and the frozen pair
(Tys fo), and thus the downstream learner may treat {(h;,y;)}, as the
effective training set. The same pipeline is used at inference time for each
query node v € Q.

13



Prompt-only adaptation objective. Adaptation is implemented by a
small trainable module pg with parameter vector ¢ € R” (optionally together
with a similarly small prediction head), while the backbone (¢, 6) remains
fixed. Concretely, we fit ¢ by empirical risk minimization on the support
embeddings:

K

1
¢ € afggﬁl})[(;f(%(hi)ayi) + AR(9).

Here g4 denotes the prompt-conditioned predictor, ¢ is the task loss (e.g.,
logistic for classification or squared for regression), and R is a regularizer
(e.g., ||#]|3) used to stabilize few-shot adaptation. In the simplest instan-
tiation, g4 is a linear probe whose weights are the prompt parameters,
ge(h) = (w(@),h), so that P = D (or P = DC for C-way classification).
More generally, p, may modulate the token sequence or the embedding in a
low-dimensional way, after which a fixed (or also small) readout is applied.
Typical examples that respect the P-budget include: (i) additive prompt
tokens inserted into the encoder input (learned only downstream while the
encoder is frozen), (ii) feature-wise affine modulation h — «a(¢) ® h + B(¢)
with P = 2D or low-rank parametrization, and (iii) a low-rank adapter
h i h+ U(¢)V(¢)Th with rank chosen to keep P small. Our analysis in
later sections treats py abstractly, requiring only that the number of trained
degrees of freedom is P and that all oracle-dependent computation passes
through .

Local inference. Given $, prediction for a query node v € @ is obtained
by a single oracle call and a single frozen forward pass:

y(v) = g5(fo(ry(Oc(v,7))))-

The salient point is that the representation cost depends on r (through the
size of the returned neighborhood) and on the fixed token budget m, but is
independent of the global graph size. Thus per-query inference is well-defined
even when G is massive, provided the oracle can return local neighborhoods.

Variant: link prediction and edge labeling. For edge tasks the in-
stance is an ordered or unordered pair (u,v). Under the local-access con-
straint we represent the pair using only oracle views rooted at the endpoints:

hy = ®(O¢(u,r)), hy == ®(Og(v,r)).

We then define a pair feature map I' : RP? x RP? — RP" and predict via
Y(u,v) = g4(I'(hu,hy)). Standard symmetric choices include I'(hy, hy) =
[hullw||hu @ hyl||hy — hyl], or a bilinear score (Ah,, hy) where A is prompt-
parameterized with P degrees of freedom (e.g., diagonal or low-rank). If the
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interface provides a joint oracle Og((u,v),r) returning an induced neigh-
borhood around both endpoints, we may instead tokenize and encode that
joint rooted object and proceed exactly as in the node case; our framework
accommodates both, with the endpoint-based variant requiring at most two
oracle calls per edge instance.

Caching and oracle-call accounting. Because oracle calls are the domi-
nant non-differentiable interaction with the target graph, we make the access
pattern explicit. In the node setting, the naive downstream transcript uses
K +|Q] calls, one per distinct node in S U Q. In the edge setting, a naive
implementation uses 2(K + |@|) calls, but in practice many pairs share end-
points. We therefore memoize either the oracle outputs Og(v,r) or, more
compactly, the embeddings h, = ®(O¢(v,r)). With caching, the oracle-call
count equals the number of distinct nodes appearing as endpoints across sup-
port and query instances, and repeated occurrences incur only constant-time
table lookup. This observation is essential in regimes such as link prediction
where evaluating many candidate neighbors for a single node is natural: the
marginal cost per additional candidate edge can be reduced to the cost of
combining already-cached embeddings.

Batching and predictable downstream compute. Although oracle
neighborhoods have variable raw size, the fixed token count m yields a
uniform tensor shape for the encoder input. Consequently, once we have
retrieved and tokenized a batch of neighborhoods, we can stack the token
matrices in R®*™*P and apply the frozen encoder in a single batched call.
In the downstream phase we therefore separate (i) neighborhood retrieval,
which may be asynchronous and irregular, from (ii) representation learning
compute, which is regular and amenable to acceleration. The same batching
applies to adaptation: prompt fitting is performed over the fixed-size embed-
dings {h;} and thus reduces to standard optimization whose cost depends
on (K, P, D) rather than on |V| or |E|.

In summary, LA-Prompt reduces few-shot learning on a massive, locally
accessible graph to (a) a bounded number of oracle neighborhood queries, (b)
a frozen feature extraction step with fixed token budget, and (c) optimization
over at most P trainable parameters. We next formalize the conditions
under which this pipeline provably learns any r-local task that is linear (with
bounded norm) in the frozen representation, and we derive excess-risk and
per-query complexity bounds that do not scale with the size of G.

6 Upper Bounds for r-Local Tasks

We now state conditions under which prompt-only adaptation on top of the
frozen neighborhood map ® := fyo7, achieves small excess risk using only K
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labeled support instances, and we make explicit that both the statistical and
computational guarantees are independent of the global graph size (|V], |E|).

Statistical model and r-locality. We analyze node tasks for clarity; the
edge case follows by applying the same argument to a pairwise feature map
I'(hy, hy) as described previously. Let D denote the distribution over labeled
examples induced by sampling a node v (according to the task interface) and
observing the label y(v) together with its rooted neighborhood Og(v,r). The
downstream learner observes a support set S = {(v;,y;)}X | where (v;,y;) ~
D i.i.d. (or, more generally, satisfying the standard concentration conditions
needed for uniform convergence). The defining structural assumption is that
the Bayes rule depends only on the r-hop rooted induced neighborhood:

y(v) = h*(Og(v, r)) for some measurable h*. (1)

Since the downstream algorithm may access G only through Og(-,r) on
queried roots, is precisely the condition under which local access is
information-theoretically sufficient.

Linear realizability over frozen embeddings. Write the frozen embed-
ding of a rooted neighborhood as

h(v) := ®(Oq(v,7)) = fg(Tw(Og(U,T))) eRP.

We assume ||h(v)|2 < R almost surely under D (this can be enforced by
normalization in the encoder). The reference hypothesis class is the bounded-
norm linear family

Hp = {v— (w,h(v)): ||lw|s < B}.

In the simplest instantiation of LA-Prompt, the prompt parameters directly
encode w (so P = D for binary prediction, or P = DC for C-way one-
vs-rest), while more structured prompts restrict w to a lower-dimensional
subset. Our bound is stated relative to Hp; any prompt parameterization
that can represent (or approximate) the risk minimizer in Hp inherits the
same guarantee up to approximation error.

Loss assumptions and risk. Let ¢(,y) be convex and 1-Lipschitz in g
for each fixed y (e.g., logistic loss). Define the population and empirical risks

K
L(w) = Byep[lwh@),y)],  Ls@) = = > 6w hw),v).
=1

We take @ to be the empirical risk minimizer (or a regularized minimizer,
e.g. ridge/logistic with A|lwl|3); the standard stability/optimization issues
are orthogonal to locality and are handled by the usual convex analysis.
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Theorem 6.1 (Excess-risk bound for r-local linear tasks). Assume ,
|h(v)|l2 < R almost surely, and ¢ is convex and 1-Lipschitz in prediction.
Then with probability at least 1 — & over the draw of S, the empirical mini-
mizer W € arg miny,,,<p Ls(w) satisfies

BR log(1/0)

L(w)— inf L < c— B —
(w) Ilellr;SB (w)_c\/f—i-c R T

for a universal constant ¢ > 0. In particular, it suffices to take

K — 6<B2R2 tlog(l/é))

to guarantee excess risk at most €.

Proof sketch. We treat the frozen map ® as part of the data-generating
process: conditioned on each oracle output, h(v) is deterministic. The
Rademacher complexity of Hp over K samples is at most BR/vK, since
sup|u)<p 2o; 0w, h(vi)) = B|| 32, 0ih(v)]|2 and E[| 32, 0ih(v)]2 < RVEK.
By the contraction inequality for 1-Lipschitz losses and standard symmetriza-
tion, uniform deviation |L(w) — Lg(w)| is controlled at the same scale, yield-
ing the stated high-probability excess risk bound for empirical minimization.
If the prompt module py is used, one either (i) analyzes the induced predic-
tor class {gy o ®} directly via its capacity (typically scaling with P under
norm constraints), or (ii) reduces to Hp when pg, is expressive enough to
realize the optimal linear w (and accounts for any mismatch as an additive
approximation term).

Per-query complexity and independence from (|V|, |E|). The statis-
tical guarantee above is agnostic to the size of the target graph; it depends
only on K and the norm bounds. Computationally, prediction for a query
node v requires exactly one oracle call to obtain Og(v,r), followed by tok-
enization and a frozen forward pass:

g 95
Oclv,r) 2% ZeR™P L0 nw) e RP 225 g(v).

Let |Ey| := |E(Og(v,7))| denote the number of edges in the returned neigh-
borhood. The downstream-time cost of tokenization is Tok(r) = poly(|E,|, d, m)
by construction of 7, and the cost of the frozen encoder is Enc(r), e.g.
5(L - |E,|) for an L-layer message-passing backbone restricted to the neigh-
borhood, or 5(m2) for attention over m tokens. The prompt/readout adds
O(P) time. Crucially, no step requires iterating over V or E; hence per-query
time is

6(Tok(r) + Enc(r) + P),
which is independent of |V| and |E| except through the local neighborhood
statistics governed by r and the oracle.
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7 Matching Lower Bounds for Learning

We complement the preceding upper bound with a minimax lower bound
showing that, even under the same r-local linear realizability assumptions, no
learner can in general improve the e =2 dependence (nor the 1/v/K rate) using
only K labels. Importantly, the lower bound holds for any algorithm—Ilocal-
access or otherwise—and therefore reflects an intrinsic statistical limitation
of learning bounded-norm linear predictors from few labeled examples, rather
than a deficiency of the oracle interface.

A reduction to a one-dimensional r-local family. Fix any radius
r > 0. Consider a family of target graphs in which every node is isolated (no
edges) and carries a single scalar feature; then Og(v, r) reveals exactly that
scalar feature (together with the root identifier), and hence the task is triv-
ially r-local. Composing with the frozen map ® = fyory only strengthens the
learner; thus, for a lower bound it suffices to consider the case in which the
embedding returned to the downstream learner is simply h(v) = z(v) € R
with |z(v)| < R. Since Hp contains all one-dimensional predictors z — wzx
with |w| < B, any lower bound for this one-dimensional subfamily transfers
immediately to the full D-dimensional class.

Loss choice. We instantiate the bound with the hinge loss ¢(z, y) = max{0, 1—
yz}, which is convex and 1-Lipschitz in z. (Any other convex 1-Lipschitz loss
admits an analogous two-point construction; hinge makes the algebra trans-
parent because the risk is linear in a neighborhood of the origin.)

Theorem 7.1 (Minimax lower bound for r-local bounded-norm linear pre-
diction). Let ¢(z,y) = max{0,1—yz}. Fiz B,R > 0 and set R’ := min{R, 1/B}
so that BR' < 1. For each A € (0,1/4], define two distributions D4 and D_
over labeled examples (z,y) by

1 1
z=R, PDi(y:+l):§iA7 Pvi(y=—1)=§$A.

Then:

1. The population risk minimizers over [—B, B] satisfy w = +B for D4
and w* = —B for D_.

2. For any (possibly randomized) learning algorithm A that maps a sample
S of K i.i.d. examples to an output w = A(S) € [—B, B], there exists
a choice of sign o € {+,—} such that

—

Pspx (Lo(@) — Ly(w}) > 2ABR') > -,

[

W
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where Ly(w) = Eq \op, [{(wz,y)]. Consequently, achieving excess
risk at most € with probability at least 3/4 uniformly over this family

TeqUITES
2 12 : 2 D2
K:Q(BR ) :Q<m1n{BR,1})'

g2 g2

Proof sketch. We first compute the risk gap under D, ; the D_ case is
symmetric. Since BR' < 1, for any w € [—B, B] we have |[w|R' < 1 and
hence both margins 1 — wR’ and 1+ wR’ are nonnegative. Therefore

Li(w)=(3+2)(1—wR) + (5 - A)(1+wR) =1-2AuR.

Thus Ly (w) is strictly decreasing in w, so the constrained minimizer is w* =
B, and for any w < 0 we have

Li(w) — Ly(w}) = (1-2AwR') — (1 -2ABR') > 2A BR'.

Hence it suffices to show that, for some choice of sign ¢ € {+,—}, the
algorithm outputs the wrong sign with probability at least 1/4.

To this end we apply Le Cam’s two-point method. The K-sample dis-
tributions Df and DX differ only in the bias of y, so their total variation
distance is controlled by their KL divergence:

TV (DX, DX) < \/§KL(DE | DK) = \/fg KL(Bern(} + A) ||Bern(} - 4) ).
For A < 1/4 the Bernoulli KL is ©(A2), so choosing A = ¢/VK for a
sufficiently small universal constant c ensures TV (DX, DE) < 1/2. Le Cam’s
inequality then implies that any decision rule (in particular, the sign of w
produced by A) errs with probability at least 1/4 on one of the two cases.

Combining this with the explicit risk gap above yields the stated lower bound,
and setting A = O(¢/(BR')) gives K = Q(B%R?/£?).

NO|—=

Implication for LA-Prompt. Because the construction is r-local and can
be realized on graphs with trivial neighborhoods, the lower bound applies a
fortiori in our oracle model. Thus, up to logarithmic factors and normaliza-
tion choices (often R = 1 by design), the £~2 label requirement exhibited by
prompt-only adaptation over frozen embeddings is minimax-optimal in the
worst case within this r-local bounded-norm linear regime.

8 Limits of Local Access (Oracle Lower Bounds)

We now delineate a complementary limitation of the local-access model which
is orthogonal to the statistical lower bound of Section [/} There, even full
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access to G cannot circumvent the =2 label dependence for bounded-norm
linear prediction. Here, by contrast, we allow unlimited labels and compu-
tation, but restrict the downstream learner to oracle access Og(-,7) with
fixed radius r and a bounded number ¢ of oracle calls. We show that for
tasks whose target depends on global properties of G (or, more generally,
on information not determined by the distribution of rooted r-hop neigh-
borhoods), no algorithm making g = o(|V]) local queries can succeed with
constant probability in the worst case.

A generic indistinguishability principle. Fix any (possibly random-
ized, adaptive) oracle algorithm A which, on input a query instance o (node
or edge) and support set S, makes at most ¢ calls to Og(-,7) and returns a
prediction 7. The interaction between A and the oracle induces a transcript
random variable

Tr = ((al, Og(ai,r)),. .., (at, Og(ay, r))), t<g,

where each a; is the jth adaptively chosen oracle argument (typically a node
in SUQ, or an auxiliary node if permitted by the budget). Crucially, condi-
tioned on the internal randomness of A, the output 7 is a measurable function
of Tr alone. Hence, if two graph distributions Gg, G1 are such that the induced
distributions of Tr are identical (or sufficiently close in total variation), then
the output distributions of any local-access algorithm coincide (or are close),
and consequently no such algorithm can reliably distinguish the two cases.
This is the familiar “black-box oracle” viewpoint: when the oracle answers
are coupled to look the same, the algorithm has no additional handle on the
underlying global structure.

Property-testing reductions: globally different, locally identical.
The standard way to instantiate the above principle is to construct two graph
families which are far apart in the target property but locally indistinguish-
able up to radius r on most roots. One canonical example is connectivity
(or, more robustly, expansion). Let G; be a distribution over connected d-
regular expanders on n = |V/| vertices, and let Gy be a distribution obtained
by taking the disjoint union of two independent d-regular expanders on n/2
vertices each. The property “G is connected” differs deterministically be-
tween Gy and Gy, yet for any fixed r = O(1) the rooted r-hop neighborhood
of a uniformly random vertex is (with high probability) a d-ary tree of depth
r under both distributions. Intuitively, the presence or absence of a single
macroscopic cut is not witnessed inside a bounded ball around a typical ver-
tex. More refined variants replace connectivity by “far from connected” in
the sense of property testing, which yields robustness to small perturbations
and makes the indistinguishability stable under the addition of a sublinear
number of adversarial edges.
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By Yao’s minimax principle, once we exhibit such Gy, G; whose local views
coincide on all but an o(1) fraction of vertices, any (possibly randomized)
local-access algorithm that probes only ¢ = o(n) roots will, with high prob-
ability, see only “typical” neighborhoods and thus obtain (essentially) the
same transcript distribution under both cases. Therefore, its best achievable
success probability at deciding the global bit (and hence predicting any label
encoding that bit) is bounded away from 1. This yields an oracle lower bound
of the form: for any fixed r, there exist global tasks for which ¢ = Q(|V])
oracle calls are necessary to achieve error below (say) 1/3.

Communication-complexity reductions: hidden bits dispersed across
components. A second, complementary template encodes a hard instance
of indexing or related one-way communication problems into far-separated
regions of the graph. For example, we may take G to be a disjoint union of M
components, each component encoding one bit of a hidden string b € {0, 1}
in a way that is detectable from an r-hop view only if the algorithm queries
a node inside that component. The downstream query (or the label for a
designated root) depends on a particular coordinate b;. Any local-access
algorithm that makes ¢ oracle calls can inspect at most ¢ components (up to
constant factors), and therefore learns negligible information about b; when
j is uniformly random unless ¢ = Q(M). Translating back to graphs with
|V| = ©(M) (by keeping component sizes constant in n) yields again a linear-
in-|V| oracle requirement. Unlike the property-testing construction, this ar-
gument cleanly separates information acquisition (which components were
visited) from computation (arbitrary post-processing of the visited neighbor-
hoods), underscoring that the bottleneck is the oracle interface itself.

Consequences for LA-FSL: when the model is appropriate. These
oracle lower bounds justify why our positive guarantees must assume r-
locality (or an approximation thereof). In practice, LA-FSL is well matched
to settings where the label of a node or edge is determined primarily by a
bounded-radius ego-network together with its features—e.g., homophilous
node classification, motif-based roles, or link prediction driven by shared
neighborhoods. Conversely, if the task depends on graph-wide structure
(community membership defined by a global partition, connectivity to a rare
hub, centrality measures requiring long-range paths, existence of a planted
cut, etc.), then either (i) the required radius r must grow with |V| (defeating
the locality premise), or (ii) the number of oracle calls must scale linearly in
|V] in the worst case.

Practical guidance. The preceding discussion suggests a simple diagnos-
tic: if two graphs (or two regions of the same graph) can be made to have es-
sentially the same distribution of rooted r-hop neighborhoods while differing
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in the target label, then no method that only consumes Og(+,r) outputs—
including any prompt-based adaptation on frozen representations—can be
expected to succeed uniformly. Accordingly, when deploying LA-FSL one
should either select tasks with an explicit locality rationale, or enlarge the
access model (e.g., allow random-walk sampling, limited global sketches, or
additional side information) and account for the corresponding query bud-
get. This perspective also clarifies the role of caching: memoization reduces
redundant calls for repeated roots, but it does not alter the worst-case neces-
sity of probing many distinct regions when the signal is globally distributed.

9 Experimental Protocol (Recommended)

We recommend an evaluation protocol that makes the local-access con-
straints explicit and reports accuracy—latency tradeoffs under a controlled
oracle budget. Since the downstream phase in our model only observes G
through calls to Og(+,r), the experiment should emulate this interface as
strictly as possible: all methods must obtain graph structure and features
solely via oracle queries, and any additional access (e.g., precomputed global
statistics) must be counted as an augmentation to the model and reported
separately.

Tasks, splits, and reporting. We instantiate the downstream task T’
either as node classification with instances o = v or as link prediction with
instances o = (u,v). We sample a support set S = {(0;,%:)}X, and a query
set @ disjoint from S (unless the task definition necessitates overlap). All
results should be averaged over multiple random draws of S and Q) and over
multiple random seeds for the adaptation procedure (when applicable). We
report both predictive performance (e.g., accuracy, macro-F1, or AUC as
appropriate) and resource usage, in particular (i) the number of oracle calls
q, (ii) the number of distinct roots queried when caching is used, and (iii)
summary statistics of neighborhood sizes such as E[|E,|] and high quantiles
of |E,| under the induced distribution of roots in .S U Q.

Strict oracle-budget emulation. To emulate Og(v,r) on a benchmark
graph stored in memory, we implement a wrapper that, given a root v and
radius 7, returns the rooted induced r-hop subgraph with node features and a
canonical root identifier. Critically, the wrapper must not expose adjacency
lists beyond the returned neighborhood, and the downstream algorithm must
be written against the wrapper interface. For edge tasks, we either query
O¢(u,r) and Og(v,r) separately (counting two calls) or define an explicit
joint oracle Og((u,v),r) if the method requires it (and count one call with
appropriately defined output). We recommend logging the entire sequence
of oracle arguments to verify adherence to a prescribed call budget.
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Latency—accuracy benchmarking on massive graphs. Because the
downstream runtime is dominated by neighborhood retrieval and frozen
encoding, we evaluate methods under a latency budget measured in wall-
clock time and under an oracle budget measured in calls. We separate the
downstream time into (a) neighborhood retrieval time, (b) tokenization time
Tok(r), (c) encoder time Enc(r), and (d) adaptation/head time. For each
configuration, we report a Pareto curve of predictive performance versus (i)
per-query time and (ii) total downstream time for processing S U Q. When
possible, we normalize time by the returned neighborhood size to obtain a
machine-agnostic proxy, e.g.,

cost(v) = |[E(Og(v,r))| and cost(S) = Y [E(Og(v,r))l.
(v,y)ES

This disentangles architectural differences (e.g., attention versus message
passing) from dataset-dependent neighborhood growth.

Baselines under the same access model. We recommend comparing
LA-Prompt against baselines that respect the oracle interface: (i) frozen
embeddings with a linear probe (no prompt), (ii) prompt variants (token-
level, activation-level, and head-only) with the same parameter budget P,
and (iii) non-pretrained local methods that operate on Og(v,r) only (e.g., a
small GNN trained from scratch on the retrieved neighborhoods). Any base-
line that uses full-graph preprocessing (e.g., global normalization, spectral
features, label propagation on all of G) should be placed in a separate “aug-
mented access” category, as it violates the intended downstream constraints.

Ablations on the locality and representation budgets. We ablate
the principal downstream knobs in a grid that is explicitly tied to the model
parameters:

1. Radius r: evaluate r € {1,2,3,...} up to the point where neighbor-
hood sizes become prohibitive. Report both performance and neigh-
borhood growth, since improvements with larger r may be confounded
by increased oracle information.

2. Token count m: vary m while keeping the tokenizer architecture fixed.
Since m controls the downstream token budget, this isolates whether
accuracy gains arise from richer neighborhood summaries or from un-
related training effects.

3. Prompt size P: vary P over an order of magnitude (e.g., P € {0,102,103,10*})
while keeping fy frozen. This tests whether few-shot adaptation is pri-
marily limited by statistical signal (K) or by adaptation capacity.

23



4. Caching: compare (a) no caching, (b) perfect memoization of repeated
roots, and (c) bounded caches with eviction. Since caching changes the
effective q for repeated queries, we recommend reporting both total
calls and distinct-root calls.

For each ablation, we keep the remaining parameters fixed and report con-
fidence intervals over support/query resampling.

Oracle-budget stress tests. To probe sensitivity to the oracle limitation,
we impose hard caps on the number of calls: ¢ € {K, K + |Q|, 2(K +|Q|)},
and (when auxiliary probing is permitted) we allocate a separate auxiliary
budget g.ux. Methods that adaptively query auxiliary nodes must charge
each such query against ¢a.x, and we recommend plotting performance as
a function of g,ux to reveal whether gains stem from additional information
acquisition rather than from better use of the same local views.

Tail and cold-start subpopulations. We recommend reporting strati-
fied results on subpopulations where local-access methods are plausibly brit-
tle: (i) low-degree versus high-degree nodes (degree bins), (ii) rare classes
or long-tail labels, (iii) nodes with missing or noisy features, and (iv) newly
introduced nodes/edges in temporal splits (cold start). For each stratum, we
report not only accuracy but also neighborhood-size statistics, since tail per-
formance may degrade either because the task is harder or because Og(+, )
returns systematically less informative neighborhoods.

Reproducibility checklist. Finally, we recommend logging: the exact
definition of Og(-,7) (induced versus sampled neighborhoods), the budgets
(r,m, P, K, q), the optimizer and regularization used to fit ¢, and the hard-
ware/runtime settings for latency measurements. Under strict local access,
these details are not ancillary; they define the computational problem being
solved.

10 Discussion and Extensions

We briefly discuss several extensions of the LA-FSL formalism that preserve
the defining constraint—downstream-time access to the target graph only
through bounded-radius oracle calls—while broadening the class of graphs
and adaptation mechanisms covered by the model. Our intent is not to
introduce new primitives gratuitously, but rather to isolate which relaxations
are benign (in the sense that they can be accounted for by an explicit budget)
and which relaxations fundamentally change the computational problem.
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Dynamic graphs and continual downstream adaptation. In many
deployments, the target graph evolves over time; we may write G; = (V;, Ey, X})
for discrete times t = 1,...,T and assume oracle access to Og,(-,7). A nat-
ural downstream objective becomes an online risk

T
Z ]Eoth [E(Qt(o)v yt(o))] )
t=1

where Dy is the induced instance distribution at time ¢ and ¢; uses prompt
parameters ¢; updated from a time-varying support stream. If we restrict
adaptation at each t to convex prompt objectives over frozen embeddings
(e.g., logistic/least-squares heads on fy(7y(-))), standard online convex opti-
mization yields regret bounds scaling as O(\/T ) in terms of the prompt pa-
rameter norm, provided labels remain r-local with respect to G¢. When the
labeler drifts, one may instead bound dynamic regret in terms of a variation
budget >, |7, — ¢fl|, which makes explicit that no local-access method can
track arbitrarily fast global shifts without additional supervision. Algorith-
mically, caching is especially consequential in the dynamic setting: memoized
neighborhoods and embeddings become stale when Gy changes, so the cache
must be versioned or invalidated; such invalidations should be counted as
additional oracle work, as they effectively re-query the environment.

Heterogeneous and attributed graphs. For heterogeneous graphs with
node/edge types (and potentially multiple relation sets), the oracle can be
taken to return a typed rooted neighborhood subgraph, i.e.,

Og(U,T’) - (G[U7T]v typey, typeg, X)7

and similarly for edge instances. In this regime, the tokenizer 7, must be in-
terpreted as operating on typed neighborhoods; a minimal modification is to
append learned type embeddings to node/edge features before tokenization.
The learning-theoretic statements in our main development remain struc-
turally unchanged: once 7, and fg are frozen, the downstream learner again
reduces to fitting a small predictor on fixed-dimensional embeddings, with
sample complexity controlled by the effective embedding dimension and the
prompt /head parameterization. What changes is the representational bur-
den placed on pre-training: type-conditional structure must be compressed
into m tokens. Empirically, this suggests reporting neighborhood-type statis-
tics (e.g., relation-degree profiles) alongside | E, [, since heterogeneity can in-
flate local complexity even at fixed radius.

Adaptive radius and variable-cost locality. Our baseline model fixes a
radius r globally. In practice, one may wish to choose the radius per instance,
trading off information and cost. Formally, we can allow the downstream al-
gorithm to query Og (v, ") for any 1’ < rmax, charging a cost that depends on
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the returned subgraph size, e.g., cost(v,r’) = |[E(Og(v,7’))|. The resulting
problem is a constrained decision problem: select /(o) to minimize risk sub-
ject to 3,50 cost(o,7'(0)) < C. If labels are r,-local for some unknown
T+ < Tmax, @ simple doubling strategy (query radii 1,2,4,... until validation
loss stabilizes) identifies a sufficient radius with only a logarithmic overhead
in the number of oracle calls for repeated instances (and, with caching, in
distinct roots). The nontrivial point is that adaptivity does not violate local
access per se, but it must be budgeted: larger radii increase both the oracle
information and the runtime through the induced growth in |F,|, and thus
should be treated as part of the downstream resource vector.

Retrieval-augmented neighborhoods under explicit budgets. A qual-
itatively different extension is to permit auziliary oracle queries on nodes not
present in S U @, for the purpose of retrieving additional context. One ab-
straction is to define, for each instance o, a retrieval rule that selects a set
R(0) C V and augments the representation with the multiset of their neigh-
borhoods:

Aug(o) = {O¢(u,r) : u € R(o)U{o}}.

This can be implemented by embedding each retrieved neighborhood via the
frozen (7y, fs) pipeline and aggregating (e.g., attention over retrieved em-
beddings) before applying the prompt/head. Such retrieval strictly increases
oracle information, so it must be charged against an auxiliary budget gaux.
The benefit is that some tasks that are not strictly r-local may become solv-
able when a small number of “landmarks” is queried (e.g., tasks depending
on membership in a sparse set of communities identifiable from a few rep-
resentative nodes). However, the lower bounds for global properties remain:
if distinguishing cases requires probing a linear fraction of V', retrieval can-
not circumvent the Q(|V|) oracle barrier, it merely makes the dependence
explicit through ¢aux.

Prompts versus lightweight adapters. Our prompt module py was left
intentionally broad. In implementations, one often considers lightweight
adapters (e.g., low-rank updates to a final projection, token-wise affine shifts,
or small bottleneck MLPs) rather than pure “soft prompts.” Within our for-
malism, these are simply alternative parameterizations of the downstream
map gy © fo with parameter budget P. For convex heads (or convex-in-¢
prompt parameterizations), the excess-risk bounds follow from uniform con-
vergence for bounded-norm predictors on fixed embeddings. For nonconvex
adapters, one typically cannot claim the same worst-case optimization guar-
antees; nevertheless, if the adapter is low-rank and the effective function
class can be controlled (e.g., via norm constraints and Lipschitzness of py),
the statistical dependence on K still scales with an effective dimension tied
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to P rather than to |V| or |E|. Conceptually, adapters enlarge approxima-
tion power at fixed oracle access, whereas increasing r or permitting retrieval
enlarges oracle information; disentangling these effects is essential when in-
terpreting gains.

Scope of what these extensions can and cannot change. All exten-
sions above preserve the central dichotomy established by our theorems:
when the target label is determined by a bounded-radius neighborhood
statistic and the frozen representation renders the task linearly (or simply)
separable, small-K adaptation is possible with downstream complexity gov-
erned by local neighborhood size and prompt budget; when the target de-
pends on global structure not compressible into bounded-radius views (even
augmented by few auxiliary probes), oracle limitations impose unavoidable
failure modes. This perspective leads directly to the concluding question:
under which locality and representation assumptions do graph foundation
models provide provable downstream utility under strict access constraints?

11 Conclusion

We close by isolating what is provably achievable in the local-access few-shot
regime and, correspondingly, what claims about “graph foundation models”
can be made precise under explicit downstream constraints. The formal-
ism we adopted separates three ingredients that are often conflated in prac-
tice: (i) oracle information, controlled by the radius r and the number of
oracle calls; (ii) representation, controlled by the frozen pair (7y, fs) that
maps an r-hop rooted neighborhood to a fixed-dimensional embedding; and
(iii) adaptation capacity, controlled by the prompt (or head) parameter bud-
get P and the number K of labeled support examples. This separation
is not merely aesthetic: it determines exactly which improvements can be
attributed to better pre-training versus larger downstream access or larger
supervised adaptation.

On the positive side, our main message is that few-shot learning on mas-
sive graphs is feasible without global graph access provided the task is lo-
cal in an information-theoretic sense and the frozen representation is suffi-
ciently aligned with the relevant neighborhood statistics. Concretely, when
the Bayes-optimal labeling rule depends only on Og(v,r) and, after apply-
ing (7y, fo), becomes well-approximated by a bounded-norm linear predictor,
LA-Prompt achieves excess risk at most € using K = O(D/e?) labels (or the
corresponding effective dimension for the chosen head/prompt class), with
per-instance runtime depending only on the size of the returned neighbor-
hood (e.g., O(L-|E,|) for message passing, or O(m?) for token attention) and
not on |V| or |E|. In this regime, the downstream computation is entirely
instance-local: each prediction is a function of a single rooted neighborhood
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and a small number of learned prompt parameters. From the standpoint of
deployment, this implies that the resource bottleneck is not the global graph
size, but rather local expansion (degree and r-hop growth) and the cost of
embedding computation.

The accompanying lower bounds sharpen this statement by showing that
the dependence on embedding dimension is not an artifact of the analysis.
Even with unlimited computation and full knowledge of GG, one cannot in
general beat K = Q(D/e?) for the class of bounded-norm linear predictors
on D-dimensional frozen features. Thus, whenever we commit to a particular
frozen representation and restrict downstream adaptation to a small head,
the label complexity is governed by the statistical difficulty of linear predic-
tion in that feature space, not by graph size. In other words, pre-training
buys us something only insofar as it reduces the effective dimension of the
task (e.g., by concentrating relevant variation into a low-dimensional sub-
space on which a small prompt can fit), or increases separability at bounded
norm.

On the negative side, local access imposes an unavoidable barrier for
tasks whose labels are not determined by bounded-radius neighborhoods.
Our oracle lower bounds formalize a phenomenon frequently observed but
rarely stated as a theorem: for global graph properties, or for prediction
rules encoding global bits that are locally indistinguishable, any algorithm
constrained to ¢ = o(|V]) neighborhood probes must fail with constant prob-
ability on worst-case graph families. This remains true regardless of how
powerful the frozen encoder is, because the limitation is not representational
but informational: the algorithm never observes enough of the graph to iden-
tify the target. The indistinguishability statement makes the same point in a
sharper form: if two graph instances induce the same distribution of rooted
r-neighborhoods at the queried points, then any local-access method has
identical output distributions and hence cannot separate the instances be-
yond the Bayes error under that induced neighborhood distribution. Accord-
ingly, the appropriate question for any downstream benchmark under local
access is whether the label function is identifiable from the neighborhood
oracle transcript given the permitted query budget.

These results suggest a concrete interpretation of “foundation” behavior
for graph encoders under access constraints. A pre-trained (7, fp) is useful
downstream if it implements a map from local neighborhoods to embeddings
that (a) retains the label-relevant r-local information while (b) rendering it
easy for a small-P prompt to extract. In this view, the central scientific
unknown is an approximation statement: for which families of graphs and
which distributions over tasks does there exist a radius r and a frozen local
encoder such that the induced feature map supports low-norm linear (or
otherwise low-complexity) predictors? When such an approximation holds,
the downstream learning problem reduces to classical generalization in a
fixed feature space, and the oracle merely supplies those features. When it
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fails, increasing P cannot compensate for missing oracle information, and
increasing r or auxiliary retrieval must be treated as an explicit enlargement
of the access budget rather than as “better prompting.”

From a methodological standpoint, our framework also implies that mean-
ingful evaluations of graph foundation models should report not only accu-
racy, but also the locality/access regime: radius 7, the number of oracle
calls, statistics of neighborhood size (e.g., |E,|), and the adaptation budget
P and K. Absent these quantities, improvements may conflate additional
information (larger neighborhoods or more probes) with better representa-
tions. Moreover, the lower bounds recommend stress tests that deliberately
vary locality: tasks that are r-local for small r should be solvable with few
labels; tasks whose labels depend on slowly mixing or global structure should
exhibit performance cliffs as r and the oracle budget are constrained.

Several open directions follow. First, one may seek distributional con-
ditions under which the worst-case global-task lower bounds are avoidable,
e.g., when graphs come from restricted generative models where global prop-
erties concentrate in local statistics. Second, one may formalize representa-
tion quality via neighborhood-kernel approximation or mutual information
bounds between labels and embeddings conditioned on Og(v,r). Third, one
may extend the analysis to settings in which local access is further restricted
by privacy or rate limits, making the oracle transcript itself a constrained
object. We regard these as natural next steps toward a theory in which the
utility of graph foundation models is stated with the same explicitness as
their access costs.
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