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Abstract
Existing assessments of graph neural network (GNN) expressivity

largely quantify topology-only separation power (e.g., via the Weis-
feiler–Lehman hierarchy, polynomial expressivity, or homomorphism-
based metrics) and therefore miss a central empirical fact emphasized
by recent surveys: node features can dramatically amplify topology
representation, and the practical performance of GNNs/graph trans-
formers depends on feature–topology interaction. We introduce JFT-
Exp, a feature-aware, quantitative expressivity measure based on a
joint feature–topology signature Φs(G) built from feature-decorated
homomorphism polynomials and neighborhood feature-distribution mo-
ments. We prove a representation theorem showing that all permutation-
invariant polynomials of degree ≤ s factor through Φs, and we derive
a tight Lipschitz-type approximation bound: if a model recovers the
signature within η, it recovers any Lipschitz task functional of the
signature within O(η). To make the theory actionable, we propose
an efficiently computable sketch Φ̂s(G) with near-linear complexity on
sparse graphs and provide probabilistic error guarantees. We also es-
tablish strict refinement over WL-only/topology-only metrics and give
lower bounds showing WL-equivalent message passing cannot approx-
imate certain signature coordinates (e.g., cycle-derived invariants) on
explicit families. Finally, we outline an evaluation protocol correlating
JFT-Exp gaps with failure modes across MPNNs and graph transform-
ers, enabling model selection and debugging before expensive training
in 2026-scale settings.
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1 Introduction and Motivation

We consider the problem of assigning to a featured graph a numerical ob-
ject that can serve simultaneously as (a) an expressivity witness and (b) a
computationally tractable target for learning. Our guiding constraint is per-
mutation symmetry: any reasonable quantity extracted from a graph should
depend only on its isomorphism class, and any model intended to process
graphs should respect relabeling of vertices. Within this constraint, we would
like a quantitative notion of “how much” joint information about topology
and features a representation carries, in a sense that is compatible with both
classical invariant theory and the algorithmic primitives available in mod-
ern graph learning (sparse aggregation, sparse attention, and randomized
linear-algebraic estimators).

A first obstruction is that topology-only metrics, even when they are sen-
sitive to global structure (e.g., spectral summaries or short-cycle statistics),
do not address the feature–topology interaction that drives many learning
tasks. If we fix a topology and vary node features, then tasks such as graph-
level regression or classification may change substantially while any purely
topological signature remains constant. Conversely, if we fix features (or
restrict to constant features), then topological summaries can be informa-
tive, but a metric that ignores features cannot certify whether a model has
exploited feature information correctly rather than merely fitting spurious
topological correlates. Hence, a meaningful expressivity measure for featured
graphs should incorporate feature values into the same algebraic object that
records topology, rather than treating feature statistics as an auxiliary add-
on. In particular, we should avoid a construction that consists only of (i) a
topological invariant and (ii) independent moments of the feature multiset,
since such a separation cannot encode whether feature values occur in spe-
cific structural locations (e.g., on a cycle versus on a tree-like neighborhood)
or whether they align along multi-hop dependencies.

A second obstruction arises from the known limitations of message-passing
neural networks (MPNNs) that are equivalent to the one-dimensional Weisfeiler–
Leman (1-WL) refinement. The 1-WL procedure aggregates information
from rooted neighborhoods and, by construction, cannot distinguish cer-
tain non-isomorphic graphs that share the same 1-WL color refinement se-
quence. Consequently, any expressivity metric derived solely from the in-
variants accessible to 1-WL-equivalent architectures will necessarily identify
these graphs, even when they differ by global properties such as short cycle
counts, walk traces, or other homomorphism-type statistics. This suggests
that, if we wish the metric to be able to witness a strict refinement over
WL-limited expressivity, then it must include coordinates that are provably
outside the 1-WL closure, while still being computable without resorting to
expensive enumeration over tuples or subgraphs.

These two obstructions are resolved simultaneously by adopting a joint
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feature–topology signature whose coordinates are feature-decorated pattern
functionals. The relevant phenomenon is that many graph quantities of
interest can be expressed as sums over walks or homomorphisms, possibly
weighted by feature monomials evaluated at the image vertices. For example,
quadratic forms of the type

x⊤Aℓx

are invariant under relabeling and encode a coupling between length-ℓ con-
nectivity and feature alignment: they are large precisely when feature mass
is connected through many length-ℓ walks. More generally, if we allow multi-
ple feature channels and higher-order feature monomials, then the resulting
quantities represent a controlled family of invariant polynomials that jointly
record (i) how patterns occur in the graph and (ii) where particular feature
configurations appear relative to those patterns. Such quantities are there-
fore sensitive to “feature placement” within the topology, which is precisely
what decoupled topology-only plus feature-only summaries fail to capture.

We emphasize that our objective is not to compute an intractably large
complete invariant (which is impossible in general under standard hardness
assumptions), but rather to specify a signature family with three concrete
properties. First, it should admit a theoretical full-basis form that is expres-
sive enough to span all permutation-invariant polynomials up to a chosen
degree/order parameter s. This provides an algebraic characterization: if a
target functional is of bounded polynomial degree, then it factors through
the full signature. Second, it should admit a computable sketched form that
is compatible with sparse graph access. In practice, this means that the
dominant operations must be sparse matrix–vector multiplication and sim-
ple global reductions, and that the use of randomness (e.g., Hutchinson-type
trace probes or sketching transforms) is permitted to trade exactness for con-
trolled additive error. Third, it should yield a predictive notion of approxi-
mation: if a learned representation allows one to reconstruct the signature
within a small norm error, then any Lipschitz functional of the signature
is automatically approximated with proportionally small task error. This
moves the metric from a purely descriptive statistic to a tool for certifying
downstream performance relative to a chosen function class.

In this framework, the order parameter s plays two roles. On the al-
gebraic side, it bounds the complexity of patterns and the total degree of
feature decorations we are willing to consider. On the algorithmic side, it
bounds the maximum walk length or diffusion depth used to probe topol-
ogy and to propagate features before taking global moments. Treating s as
a tunable constant is essential: we obtain a monotone refinement property
(increasing s adds information) while preserving near-linear computation in
the number of edges for sparse graphs. Likewise, a separate sketch budget
parameter R controls the variance of randomized estimators used for trace-
like quantities; increasing R reduces estimator noise without changing the
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underlying invariance structure.
We summarize the design goals as follows.

1. Permutation invariance by construction. Each coordinate should be an
invariant under vertex relabeling, so that the signature is a well-defined
function on isomorphism classes.

2. Joint feature–topology coupling. Coordinates should include feature-
decorated functionals that cannot be written as a sum of a purely
topological term and a purely feature-multiset term, thereby encoding
where features occur in the graph.

3. Strict refinement over 1-WL-limited expressivity. The signature should
contain coordinates (e.g., walk traces or cycle-related quantities, op-
tionally feature-weighted) that separate known 1-WL-indistinguishable
graph families.

4. Efficient, sparse computation with guarantees. A sketched version
should be computable using a small number of sparse passes and ran-
domized probes, with explicit additive error and failure probability
bounds.

5. Transfer to learning via reconstruction error. If a model representation
can be decoded to recover the signature within error η, then any Lip-
schitz downstream functional of the signature is approximated within
O(η).

These requirements enforce a particular structure: the signature must be
expressive enough to witness separations, but also regular enough to admit
stable approximation and efficient estimation.

Finally, we note that the present viewpoint is deliberately modular. The
signature is not tied to any specific neural architecture; rather, it is an ex-
ternal object against which architectures may be compared. WL-limited
MPNNs are expected to fail to reconstruct certain global coordinates on
appropriate graph families, while architectures endowed with global mixing
channels (for instance, via positional information, spectral augmentation,
or sparse global attention) can, in principle, approximate these coordinates
within small error using near-linear computation. This separation is not
merely qualitative: by measuring reconstruction error in a chosen norm on
the signature space, we obtain a quantitative expressivity score that can be
aggregated over datasets and linked directly to task performance through
Lipschitz transfer.

In the subsequent preliminaries we formalize the symmetry model, the
WL/MPNN baseline, and the pattern-based functionals underlying the sig-
nature coordinates, and we fix the analytic setup (norms, Lipschitz function
classes, and error notions) required for the approximation guarantees.
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2 Preliminaries

Featured graphs and basic notation. We work with featured graphs
G = (A,X) on n vertices, where the adjacency matrix satisfiesA ∈ {0, 1}n×n,
A = A⊤, and Aii = 0 for all i ∈ [n], and the node-feature matrix satis-
fies X ∈ [−1, 1]n×d. We write xv ∈ [−1, 1]d for the v-th row of X, and
X·,j ∈ [−1, 1]n for the j-th feature channel. Throughout we regard s ≥ 2 as
a fixed order parameter that bounds pattern size and/or polynomial degree,
while d is the feature dimension. When we discuss algorithmic access we
assume adjacency-list input (equivalently, sparse matrix access via sparse
matrix–vector multiplication), but the algebraic definitions below are stated
in terms of (A,X).

Permutation action; invariance and equivariance. Let π be a per-
mutation of [n] and P ∈ {0, 1}n×n its permutation matrix. The relabeled
graph is

π · (A,X) := (PAP⊤, PX).

A graph-level map F is permutation invariant if F (π · G) = F (G) for all
π, and a node-level map H(G) ∈ Rn×k is permutation equivariant if H(π ·
G) = P H(G). In particular, any graph-level statistic intended to be well
defined on isomorphism classes must be invariant, whereas the intermediate
representations of a node-processing architecture are naturally equivariant.
We shall repeatedly use the fact that sums over vertices and traces of matrix
expressions are invariant under simultaneous conjugation by permutations,
e.g.,

tr
(
(PAP⊤)ℓ

)
= tr(Aℓ), (Px)⊤(PAP⊤)ℓ(Px) = x⊤Aℓx.

Message passing and the 1-WL baseline. A (feature-only, edge-unlabeled)
message-passing neural network (MPNN) computes node representations
{h(t)v }v∈[n] by iterating an update of the form

h(t+1)
v = ϕt

(
h(t)v , □u∈N(v)ψt

(
h(t)v , h

(t)
u

))
, h(0)v = xv, (1)

where N(v) is the neighborhood of v, □ is a permutation-invariant mul-
tiset aggregator (typically sum/mean/max), and ϕt, ψt are learnable func-
tions. A graph embedding is then obtained by an invariant readout, e.g.
Readout({h(T )v }v) = ρ(

∑
v h

(T )
v ). Such architectures are permutation equiv-

ariant at the node level and invariant at the graph level by construction.
The standard expressivity reference point is the one-dimensional Weisfeiler–

Leman (1-WL) color refinement. Informally, 1-WL assigns initial colors from
node features and iteratively refines them by hashing a node’s current color
together with the multiset of neighbor colors. It is a classical fact that
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MPNNs of the form (1) with sufficiently expressive ϕt, ψt and injective mul-
tiset aggregation are no more expressive than 1-WL at distinguishing non-
isomorphic graphs: if two graphs are 1-WL-indistinguishable (starting from
the given features), then any such MPNN produces identical multisets of
node representations at each depth, hence identical graph-level embeddings
after invariant readout. We therefore regard 1-WL equivalence as the nat-
ural limitation class for “local” message passing. The separations we later
use exploit that 1-WL can fail to detect global properties such as certain
short-cycle statistics or other walk-based invariants, even on regular graphs
with constant features.

Graph homomorphisms and homomorphism polynomials. LetH =
(V (H), E(H)) be a (small) pattern graph with |V (H)| ≤ s. A graph homo-
morphism φ : H → G is a map φ : V (H) → [n] such that (a, b) ∈ E(H)
implies (φ(a), φ(b)) ∈ E(G). We denote the set of homomorphisms by
Hom(H → G). The homomorphism count can be written as the polyno-
mial

hom(H,G) := |Hom(H → G)| =
∑

φ:V (H)→[n]

∏
(a,b)∈E(H)

Aφ(a)φ(b). (2)

Expression (2) is invariant under relabeling since it is a sum over all assign-
ments φ and depends on A only through edge indicators composed with φ.
Many classical walk- and cycle-statistics are special cases: for the cycle Cℓ
one has

tr(Aℓ) =
∑
i1,...,iℓ

Ai1i2Ai2i3 · · ·Aiℓi1 = hom(Cℓ, G),

noting that homomorphisms allow repeated vertices and thus correspond to
closed walks.

Feature-decorated homomorphism polynomials. To couple topology
and features within a single invariant, we decorate homomorphism sums
by monomials in feature coordinates evaluated at the image vertices. Con-
cretely, let α = {αa,j}a∈V (H), j∈[d] be a collection of nonnegative integers (a
feature-monomial decoration). We define the feature-decorated homomor-
phism polynomial

pH,α(G) :=
∑

φ:V (H)→[n]

 ∏
(a,b)∈E(H)

Aφ(a)φ(b)

 ∏
a∈V (H)

d∏
j=1

X
αa,j

φ(a),j

 . (3)

The total degree of pH,α in the entries of (A,X) is |E(H)| +
∑

a,j αa,j . By
construction pH,α is invariant under π ·(A,X): conjugating A and permuting
rows of X merely reindexes the summation in (3). We regard the collection
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of all pH,α with |V (H)| ≤ s and total degree bounded by s as the canonical
coordinates of the full signature Φs(G).

Two basic examples, which will also serve as computable coordinates in
the sketched signature, are the quadratic forms

X⊤
·,jA

ℓX·,j =
∑
u,v

Xu,j (A
ℓ)uvXv,j ,

and mixed-channel variants X⊤
·,jA

ℓX·,k. These are invariant and encode fea-
ture alignment along length-ℓ connectivity. Likewise, global feature moments
of diffused features, such as

µk,r(G) :=
1

n

n∑
v=1

(
(P kX)v,·

)⊙r
,

for a chosen diffusion operator P (e.g. normalized adjacency), provide permutation-
invariant summaries of k-hop feature distributions; we will treat these as
additional low-cost coordinates capturing feature statistics after controlled
propagation.

Norms, Lipschitz functionals, and reconstruction error. We con-
sider downstream targets that are Lipschitz functions of a chosen signature
vector. Fix a norm ∥ · ∥ on the relevant signature space (typically ℓ2 or
coordinatewise ℓ∞ on Rp). A function g : Rp → R is L-Lipschitz if

|g(u)− g(v)| ≤ L∥u− v∥ for all u, v ∈ Rp.

Given a model representation F (G) and a fixed decoder ψ intended to re-
construct Φ̂s(G), we measure signature reconstruction error on a graph class
C ⊆ Gn,d by

η := sup
G∈C

∥∥Φ̂s(G)− ψ(F (G))
∥∥.

This choice is tailored to an immediate transfer principle: once η is small,
every L-Lipschitz functional of the signature is automatically approximated
to error at most Lη. We will exploit this observation in the problem for-
mulation by defining expressivity relative to the class of targets that factor
through Φ̂s (or through the full Φs at bounded degree), and by using η as a
quantitative surrogate for task error.

3 Problem formulation

Target function class at order s. Fix an order parameter s ≥ 2 and
feature dimension d. We are interested in graph-level targets f : Gn,d → R
that are permutation invariant and whose dependence on the input (A,X)
is controlled at “resolution” s. We formalize this in two nested ways.
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First, we consider the algebraic class of bounded-degree invariants,

Fs := R[A,X]Sn
≤s,

the set of Sn-invariant polynomials in the entries of (A,X) of total degree
at most s. This class captures precisely the invariants accessible to degree-s
polynomial functionals and will serve as our canonical “expressivity frontier”
at order s. In particular, we regard two graphs as indistinguishable at order
s if all functions in Fs agree on them.

Second, since many practical tasks are not polynomial but are well ap-
proximated by smooth or Lipschitz maps of suitable summary statistics, we
also consider a Lipschitz envelope of the signature. Let Φ̂s(G) ∈ Rp denote
a chosen computable signature vector at order s (potentially randomized
through sketching). For L ≥ 0 we define the induced target class

Ts,L :=
{
g ◦ Φ̂s : g : Rp → R is L-Lipschitz under ∥ · ∥

}
.

The point of Ts,L is not that the task must literally be given as g◦Φ̂s, but that,
once a representation can stably reconstruct Φ̂s, it can approximate all such
tasks uniformly, with constants depending only on L and the reconstruction
error.

Expressivity as signature recoverability. Let F be a graph model pro-
ducing a representation F (G) (either graph-level or node-level, with an im-
plicit invariant pooling). We evaluate expressivity relative to Φ̂s through the
existence of a fixed decoder (readout) ψ mapping model outputs to the sig-
nature space. Concretely, given a graph class C ⊆ Gn,d we define the order-s
reconstruction error of F by

ηs(F ; C) := inf
ψ

sup
G∈C

∥∥Φ̂s(G)− ψ(F (G))
∥∥. (4)

We interpret ηs(F ; C) as a quantitative proxy for expressivity: small ηs means
that F retains (up to the decoder) essentially all information contained in
Φ̂s, whereas a constant lower bound on ηs certifies that F provably discards
some order-s joint feature–topology information.

This definition is tailored to the transfer principle stated later (cf. Thm. 3):
for every L-Lipschitz g and every G ∈ C one has∣∣g(Φ̂s(G))− g(ψ(F (G)))

∣∣ ≤ L
∥∥Φ̂s(G)− ψ(F (G))

∥∥ ≤ Lηs(F ; C). (5)

Thus, controlling ηs uniformly yields simultaneous approximation guarantees
for the entire class Ts,L.
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From the full signature Φs to a computable sketch. At the level
of invariant polynomials, the “ideal” coordinate system is the full signature
Φs(G) consisting of all feature-decorated homomorphism polynomials of total
degree at most s. The representation theorem (Thm. 1) can then be read as
the statement that every f ∈ Fs factors as

f(G) = g̃
(
Φs(G)

)
for some linear functional g̃,

and hence Φs is universal for Fs at fixed s. In contrast, exact computation
of the full basis is intractable in general, motivating the sketched signature
Φ̂s(G), which retains a structured subset of coordinates together with ran-
domized estimators (e.g. trace probes) to achieve near-linear time. Since Φ̂s
is a function of the sketch budget R and of the chosen coordinate family,
we implicitly treat ηs as depending on these algorithmic choices; increasing
R and/or enriching the coordinate set can only improve the approximation
quality of Φ̂s to Φs and reduce estimator variance.

JFT-Exp order. We summarize a model’s joint feature–topology expres-
sivity by asking: up to what order s can the model stably reconstruct the
corresponding signature? Fix a tolerance level τ > 0 and a graph class C.
We define the JFT-Exp order of F at tolerance τ by

ordJFT(F ; τ, C) := max
{
s ∈ N : ηs(F ; C) ≤ τ

}
, (6)

with the convention that the maximum is taken over the range of s under
consideration (e.g. 2 ≤ s ≤ smax in experiments). This definition makes
the monotonicity requirement explicit: as s increases, Φ̂s contains strictly
richer joint statistics, so reconstructing it is at least as hard. Consequently,
ordJFT captures the highest signature order for which the model behaves as
an approximately sufficient statistic for the induced target class Ts,L.

JFT-Exp score (continuous). For comparisons at a fixed s we also use
a scalar JFT-Exp score derived from ηs. Any monotone transformation is
acceptable; we adopt a bounded score in [0, 1],

scoreJFT(F ; s, C) :=
1

1 + ηs(F ; C)
. (7)

A score near 1 indicates near-perfect recoverability of Φ̂s from F (G) on C,
while scores bounded away from 1 certify an intrinsic information gap. When
Φ̂s is randomized (through sketches), we may replace the supremum in (4)
by a high-probability or in-expectation counterpart; for instance, one may
consider η(δ)s defined by requiring the inequality to hold with probability at
least 1− δ over the signature randomness, uniformly over G ∈ C.
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Empirical instantiation over datasets. In practice C is represented by
a finite dataset D = {Gi}Ni=1. We then replace the uniform reconstruction
error by an empirical risk, e.g.

η̂s(F ;D) := inf
ψ

(
1

N

N∑
i=1

∥∥Φ̂s(Gi)− ψ(F (Gi))
∥∥2)1/2

,

and define the empirical score analogously. The conceptual content of the
framework remains the same: we compare models by the degree to which
their representations preserve the joint feature–topology statistics encoded
by Φ̂s, and we translate this preservation into worst-case (or average-case)
guarantees for all Lipschitz functionals of the signature via (5). This reduces
expressivity evaluation to a concrete reconstruction problem whose difficulty
can be calibrated by s (and algorithmically by R), and whose separations
can be certified by explicit indistinguishable graph families for WL-limited
architectures.

4 The joint feature–topology signature Φs

We now define the order-s joint feature–topology signature. Conceptually,
Φs(G) is a coordinate system for permutation-invariant information in (A,X)
up to “resolution” s, where s controls both the maximum pattern size and the
total polynomial degree. The signature has a full (ideal) version Φs, which
is universal for Fs = R[A,X]Sn

≤s, and a restricted (computable) version Φ̂s
obtained by selecting structured coordinates admitting near-linear sketching.

Decorated homomorphism polynomials (full basis). LetH = (V (H), E(H))
be a finite simple pattern graph with k := |V (H)| ≤ s. A (graph) homomor-
phism φ ∈ Hom(H → G) is a map φ : V (H) → [n] such that (u, v) ∈ E(H)
implies Aφ(u)φ(v) = 1. To incorporate node features, we consider mono-
mial decorations on the vertices of H. Concretely, for each u ∈ V (H) let
α(u) ∈ Nd be a multi-index with |α(u)|1 =

∑d
j=1 α(u)j ≥ 0, and define the

feature monomial at a node v ∈ [n] by

Xα(u)
v :=

d∏
j=1

X
α(u)j
vj .

We then define the feature-decorated homomorphism polynomial

pH,α(G) :=
∑

φ:V (H)→[n]

 ∏
(u,v)∈E(H)

Aφ(u)φ(v)

 ∏
u∈V (H)

X
α(u)
φ(u)

 , (8)
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where the sum is over all maps φ (not necessarily injective). The total degree
of pH,α is |E(H)|+

∑
u∈V (H) |α(u)|1. In the full signature we include all such

coordinates with total degree at most s:

Φs(G) :=
(
pH,α(G)

)
|V (H)|≤s

|E(H)|+
∑

u |α(u)|1≤s
∈ Rp(s,d).

The choice of homomorphisms (rather than induced/injective embeddings) is
deliberate: (8) is a polynomial in the entries of (A,X), and the family {pH,α}
is stable under algebraic operations, which is the correct level of generality
for Fs.

Permutation invariance and normalization. Each coordinate pH,α is
invariant under relabeling of G. Indeed, for any permutation matrix P and
permuted graph π · (A,X) = (PAP⊤, PX), changing variables φ 7→ π−1 ◦φ
yields

pH,α(π ·G) = pH,α(G).

Thus Φs(π ·G) = Φs(G), and the same holds for any sub-collection of these
coordinates. When comparing graphs across varying sizes, we may optionally
apply simple normalizations (e.g., division by n|V (H)|, or by appropriate
powers of average degree) to control scaling; however, the core invariance
statements are independent of such choices.

Stability and boundedness at fixed order. Since Aij ∈ {0, 1} and
Xvj ∈ [−1, 1], each monomial term in (8) is bounded in magnitude by 1,
hence

|pH,α(G)| ≤
∑

φ:V (H)→[n]

1 = n|V (H)| ≤ ns.

In particular, at fixed s each coordinate is uniformly bounded by a poly-
nomial in n. Moreover, pH,α is multilinear in adjacency entries along the
edges of H and polynomial in features with degree

∑
u |α(u)|1, implying a

Lipschitz-type stability with respect to entrywise perturbations when s is
fixed. This boundedness is sufficient for the transfer principle in (5): once
a representation can approximately reconstruct Φ̂s, any Lipschitz functional
of it is automatically stable.

Structured subfamilies: cycles, walks, and feature decoration. While
the full basis is the correct universal object for Fs, it is neither necessary nor
feasible to compute all coordinates exactly. We therefore emphasize struc-
tured subfamilies that already capture salient interactions between topology
and features.
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For topology-only information, the cycle homomorphism counts corre-
spond to traces of powers:

tr(Aℓ) =
∑

v1,...,vℓ

Av1v2Av2v3 · · ·Avℓv1 = |Hom(Cℓ → G)|, 1 ≤ ℓ ≤ s,

where Cℓ is the ℓ-cycle. For joint feature–topology information, quadratic
forms of the type x⊤Aℓx act as feature-decorated walk energies. Writing
xj := X[:, j] ∈ Rn for a feature channel,

x⊤j A
ℓxj′ =

∑
u,v

Xuj(A
ℓ)uvXvj′

aggregates length-ℓ walks with endpoint decorations given by feature chan-
nels j, j′. These quantities can be viewed as specific linear combinations
of the polynomials pH,α with H a path (or a cycle with a marked pair of
vertices) and α placing degree-one feature monomials on selected vertices.

Diffusion moments as distributional summaries. To retain informa-
tion about the distribution of features over neighborhoods without enumerat-
ing patterns, we also include moment summaries of diffused features. Let P
be a fixed linear diffusion operator derived from A (e.g., P = D−1/2AD−1/2

or P = D−1A where D is the degree matrix). For k ≤ s we form Mk :=
P kX ∈ Rn×d and aggregate coordinate-wise moments across nodes, for mo-
ment order 1 ≤ r ≤ s, via

µk,r :=
1

n

n∑
v=1

(
Mk[v, :]

)⊙r ∈ Rd,

where (·)⊙r denotes elementwise powers. These statistics are permutation
invariant (they are sums over nodes), and they couple topology and features
through the repeated application of P . Although they are not, in general,
a complete basis for Fs, they provide a controlled and interpretable fam-
ily of coordinates that is sensitive to both feature geometry and multi-hop
connectivity.

Restricted/computable signature and monotonic refinement. We
define the computable signature Φ̂s(G) by selecting a finite list of such struc-
tured coordinates up to order s (e.g., {tr(Aℓ)}ℓ≤s, a prescribed set of feature-
decorated energies {x⊤j Aℓxj′}, and diffusion moments {µk,r}k,r≤s), option-
ally followed by a linear sketching/compression map to a fixed width. By con-
struction, Φ̂s inherits permutation invariance from its coordinates. Further-
more, the family is monotone in s: increasing s only adds new coordinates
and/or increases the maximal walk length and moment order, thereby refin-
ing the signature and making it strictly more informative. This monotonic
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refinement is the structural reason that the reconstruction error ηs(F ; C) is
a meaningful expressivity proxy as s varies: higher order forces the repre-
sentation to preserve progressively more global joint statistics.

Finally, we stress the separation of roles: Φs is the algebraically univer-
sal object that characterizes Fs, whereas Φ̂s is the algorithmically accessible
proxy used in practice. In the next section we specify sketching procedures
for computing Φ̂s on sparse graphs, together with probabilistic error guar-
antees.

Efficient computation via sparse linear algebra and sketching. We
now specify how the restricted signature Φ̂s(G) can be computed in near-
linear time on sparse graphs. The guiding principle is that every chosen
coordinate is either (i) a trace of a matrix polynomial in A (capturing cy-
cle/walk homomorphisms), (ii) a quadratic form u⊤q(A)v with u, v derived
from feature channels (capturing feature-decorated walks), or (iii) a low-
order moment of diffused features P kX (capturing distributional summaries
over k-hop neighborhoods). Each of these can be realized using O(1) work-
ing vectors and a small number of sparse matrix–vector products (SpMVs),
each costing O(m) time under adjacency-list access.

Stochastic trace estimation for cycle/walk traces. For ℓ ≤ s, we
include coordinates of the form τℓ := tr(Aℓ) (or analogously tr(P ℓ) for a nor-
malized diffusion). Since Aℓ is dense even when A is sparse, we do not form
it explicitly. Instead we use Hutchinson’s estimator: for i.i.d. Rademacher
probes z1, . . . , zR ∈ {±1}n,

τ̂ℓ :=
1

R

R∑
r=1

z⊤r A
ℓzr, E[τ̂ℓ] = tr(Aℓ). (9)

Each term z⊤r A
ℓzr is computed by the pipeline v(0) := zr, v(t) := Av(t−1)

for t = 1, . . . , ℓ, followed by the inner product z⊤r v(ℓ). This costs ℓ SpMVs
per probe, hence total time O(Rmℓ) for a fixed ℓ and O(Rms2) if naively
repeated for all ℓ ≤ s. In practice we reuse intermediate powers for each
probe (keeping v(t) as we increment t), so that computing all {τ̂ℓ}ℓ≤s costs
O(Rms) time for the SpMVs plus O(Rns) for inner products, dominated by
O(Rms) in the sparse regime.

Concentration bounds for (9) are standard. For symmetricM and Rademacher
probes, one has

Pr
(∣∣t̂r(M)− tr(M)

∣∣ ≥ ε∥M∥F
)

≤ 2 exp(−cRε2), (10)

for a universal constant c > 0. Applying (10) with M = Aℓ and a union
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bound over ℓ = 1, . . . , s yields the parameter choice

R = Θ
(
ε−2 log(s/δ)

)
=⇒ max

ℓ≤s

∣∣τ̂ℓ−τℓ∣∣ ≤ εmax
ℓ≤s

∥Aℓ∥F w.p. ≥ 1−δ.

(11)
If one replaces Hutchinson by Hutch++ (or related variance-reduced estima-
tors), the same target accuracy can be achieved with fewer probes when Aℓ is
approximately low-rank; the computational interface remains SpMV-based,
and our use of R may be interpreted as a generic sketch budget.

Feature-decorated walk energies as SpMV pipelines. For feature
channels xj := X[:, j] ∈ Rn, we include (a selected subset of) coordinates of
the form

eℓ,j,j′ := x⊤j A
ℓxj′ . (12)

These are computed deterministically by repeated SpMV: set y(0) := xj′ ,
iterate y(t) := Ay(t−1) for t = 1, . . . , ℓ, and output x⊤j y

(ℓ). Computing all
{eℓ,j,j}ℓ≤s, j≤d by this method costs O(msd) time and O(nd) space to store
X (or streaming access if X is stored externally). If cross-channel terms
j ̸= j′ are desired, we either restrict to a prescribed set of pairs (application-
dependent) or compress the feature dimension first: choose a sketching ma-
trix S ∈ Rd×d′ (e.g. CountSketch or a random sign projection with d′ ≪ d)
and replace X by X̃ := XS. Then energies computed on X̃ summarize
many original channels while keeping the same SpMV cost with d′ in place
of d. Since the map X 7→ XS is linear and applied identically at every node,
permutation invariance is unaffected.

We record the basic invariance for completeness: for any permutation
matrix P ,

x⊤j A
ℓxj′ = (Pxj)

⊤(PAP⊤)ℓ(Pxj′),

so (12) is a valid coordinate of a graph signature.

Diffusion moments and bounded feature arithmetic. Let P be a
fixed diffusion operator derived from A (e.g. D−1A or D−1/2AD−1/2). For
k ≤ s we compute Mk := P kX via the recurrence M0 := X and Mk :=
PMk−1. This uses s SpMVs per feature channel in the worst case, but in
matrix form it is simply s sparse matrix–dense matrix multiplies (SpMMs),
realizable as s passes over edges with O(md) work per pass, hence total
O(msd) time. From Mk we compute moment coordinates

µk,r :=
1

n

n∑
v=1

(
Mk[v, :]

)⊙r
, 1 ≤ k ≤ s, 1 ≤ r ≤ s.

These require only entrywise powers and summations. Under our standing
boundedness assumption X ∈ [−1, 1]n×d and for standard choices of P with
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∥P∥∞→∞ ≤ 1, the iterates satisfy ∥Mk∥∞ ≤ 1, so the moments are numer-
ically stable at fixed s and do not require additional randomization. If one
wishes to reduce computation further, one may subsample moment orders r,
subsample feature coordinates, or compute moments after feature sketching
X 7→ XS as above.

Compression of the assembled signature. After computing the chosen
coordinates, we may apply a linear sketch C (e.g. CountSketch) to obtain
a fixed-width vector CΦ̂s(G) ∈ Rp′ . Since C is linear, it can be applied
in streaming form as coordinates are generated, requiring O(p′) additional
memory. For norms such as ℓ2, standard guarantees imply that with p′ =
Θ(ε−2 log(1/δ)), pairwise distances between signatures are preserved up to
(1±ε) for a fixed set of graphs (or up to additive ε in an appropriate scaling),
which is sufficient when Φ̂s is used as an expressivity proxy or as an input
to a Lipschitz downstream functional.

Complexity and parameter selection. Collecting the preceding com-
ponents, we obtain the following operational bound: if Φ̂s consists of (a) all
ℓ ≤ s trace coordinates estimated with R probes, (b) a prescribed set of O(d)
feature energies per ℓ ≤ s, and (c) diffusion moments up to order s, then the
total work is

Õ(Rms) (trace coordinates) + Õ(msd) (energies and diffusion)

with space Õ(Rn+nd) (storing probes and a constant number of working vec-
tors/matrices). Choosing R as in (11) yields coordinate-wise additive error
ε∥Aℓ∥F for all trace-like coordinates simultaneously with probability at least
1−δ, while the remaining coordinates are computed exactly given the chosen
feature sketching/compression. This completes the efficient-computability
component needed for the subsequent representation theorem: we can ap-
proximate a nontrivial, monotone family of invariant joint statistics using
only sparse linear-algebra primitives and controlled randomness.

Representation theorem: invariant degree-s polynomials factor through
Φs. We now justify the claim that the full joint feature–topology signature
Φs(G) is an algebraic sufficient statistic for permutation-invariant polynomi-
als of bounded degree. Fix n and d, and consider the action of the symmet-
ric group Sn on node indices, acting on (A,X) by simultaneous relabeling
A 7→ PAP⊤ and X 7→ PX for the permutation matrix P . Let R[A,X]≤s
denote the real polynomials in the entries of A and X of total degree at most
s, and let R[A,X]Sn

≤s be the subspace of Sn-invariant polynomials.

Theorem 4.1 (Representation by decorated homomorphism polynomials).
For every f ∈ R[A,X]Sn

≤s there exists a finite collection of feature-decorated
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pattern graphs (H,α) with |V (H)| ≤ s and coefficients {cH,α} such that, for
all G = (A,X) ∈ Gn,d,

f(G) =
∑
(H,α)

cH,α pH,α(G),

where each pH,α(G) is a feature-decorated homomorphism polynomial and
appears as a coordinate of the full signature Φs(G). Equivalently, there exists
a linear map ℓ (depending on f) such that f(G) = ℓ(Φs(G)) for all G.

Proof sketch. We proceed by reducing to orbit sums of monomials. Any
f ∈ R[A,X]≤s can be written as a finite linear combination of monomials of
the form

m(A,X) =
T∏
t=1

Autvt ·
Q∏
q=1

Xwq ,jq , T +Q ≤ s, (13)

where (ut, vt) and wq are node indices in [n] and jq ∈ [d] are feature coordi-
nates. Under the Sn action, monomials are permuted by relabeling all node
indices simultaneously. Since f is invariant, it lies in the span of orbit sums
of monomials: for each monomial m, define its orbit sum

Orb(m)(A,X) :=
∑
π∈Sn

m(π · (A,X)),

or, equivalently, sum over distinct relabelings of the indices appearing in m
(dividing by stabilizers only changes the coefficient and is immaterial for
spanning). Standard invariant-theoretic arguments for finite group actions
imply that the orbit sums of monomials span R[A,X]Sn

≤s.
It remains to identify each orbit sum with a decorated homomorphism

polynomial. Given a monomial as in (13), consider the finite set of node
variables actually used by the monomial,

U := {u1, v1, . . . , uT , vT , w1, . . . , wQ},

and let k := |U | ≤ T + Q ≤ s. We form a pattern graph H whose vertex
set is an abstract copy of U (with repeated indices identified), and whose
edge multiset records the adjacency factors: each factor Autvt contributes
an edge between the abstract vertices corresponding to ut and vt. (If the
same pair appears multiple times, this produces parallel edges; algebraically
this simply represents multiplicity in the monomial. One may also eliminate
parallel edges by allowing edge labels/multiplicities, which does not change
the conclusion.) Likewise, the feature factors

∏
qXwq ,jq define a decoration

α that assigns to each pattern vertex a ∈ V (H) a feature monomial in the
coordinates of X at the image of a, namely the product of those X·,j terms
whose node index equals a.
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With this construction, summing m over relabelings is the same as sum-
ming over all node assignments φ : V (H) → [n] of the product of corre-
sponding adjacency and feature terms, i.e.,

Orb(m)(A,X) =
∑

φ:V (H)→[n]

∏
(a,b)∈E(H)

Aφ(a)φ(b) ·
∏

a∈V (H)

αa
(
Xφ(a),:

)
=: pH,α(G).

The right-hand side is exactly a feature-decorated homomorphism polyno-
mial: it is a homomorphism sum from the pattern H into G, with vertex
weights given by feature monomials. Since k = |V (H)| ≤ s, this coordinate
is included in the full signature Φs(G) by definition. Linear combinations
over orbit sums therefore yield the desired representation of f as a linear
functional of Φs(G), proving Theorem 4.1.

Specialization to restricted signatures. The preceding theorem is ex-
act but uses the full basis of patterns up to size s, which is not intended
for direct computation. For the restricted signature Φ̂s(G), we obtain an
immediate, though correspondingly restricted, factorization statement: any
function that depends on G only through the chosen coordinates of Φ̂s triv-
ially factors through Φ̂s. Formally, if we write Φ̂s(G) = (q1(G), . . . , qp(G))
for the selected invariant coordinates (cycle/walk traces, feature-decorated
quadratic forms, diffusion moments, and possibly their linear sketches), then
for any polynomial h ∈ R[t1, . . . , tp] the composite

G 7−→ h
(
Φ̂s(G)

)
is a permutation-invariant polynomial in (A,X) whose algebraic complexity
is controlled by the degrees of the individual coordinates qi. In particular, for
families of targets known a priori to be functions of counts of short cycles,
low-order walk energies, and low-order diffusion moments, the restricted sig-
nature is already sufficient: such targets admit exact representations of the
form g ◦ Φ̂s for an appropriate g.

Implications for universality under symmetry constraints. Theo-
rem 4.1 provides an “upper bound” on expressive power: if an architecture
can (approximately) recover Φs(G) and then apply a sufficiently rich read-
out, it can realize any invariant polynomial of degree at most s. When n is
fixed, this algebraic statement can be combined with polynomial approxima-
tion to obtain a standard universality consequence for continuous invariant
functions. Indeed, the domain

Dn,d := {(A,X) : A ∈ {0, 1}n×n symmetric, diag = 0, X ∈ [−1, 1]n×d}

is compact (as a finite union of compact sets), and any continuous invariant
function F : Dn,d → R can be uniformly approximated by polynomials in
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the entries of (A,X) (e.g. by Stone–Weierstrass on a surrounding hypercube,
then restricting to Dn,d). Averaging the approximating polynomials over Sn
preserves uniform approximation and yields invariant polynomials. Conse-
quently, for every ϵ > 0 there exists an invariant polynomial fϵ ∈ R[A,X]Sn

such that supG∈Dn,d
|F (G) − fϵ(G)| ≤ ϵ. Truncating to some finite degree

s (depending on ϵ and F ) and applying Theorem 4.1 shows that fϵ factors
through Φs; hence, up to ϵ, F factors through Φs as well.

This is precisely the form of universality relevant to symmetry-constrained
learning: the obstacle is not the readout class (one may take a generic mul-
tilayer perceptron on the signature coordinates), but rather the ability of
the representation mechanism to capture the requisite invariant coordinates.
In the sequel, we therefore treat Φ̂s as a computationally accessible proxy
for Φs, and we measure a model F by its signature reconstruction error
∥Φ̂s(G) − ψ(F (G))∥. The next section turns this reconstruction viewpoint
into task-level approximation and generalization bounds for any Lipschitz
downstream functional.

Approximation bounds via signature reconstruction. We now make
explicit the basic transfer principle implicit in our reconstruction viewpoint:
whenever a model can recover the restricted signature Φ̂s(G) up to small
error, it can approximate any sufficiently regular downstream functional of
that signature with a commensurate error. Fix a norm ∥ · ∥ on the signature
space and let g : Rp → R be L-Lipschitz with respect to this norm. Consider
any representation map F (e.g. an MPNN, a graph transformer, or a hybrid
architecture) and a fixed decoder ψ mapping F (G) into Rp. If we have the
uniform reconstruction guarantee

sup
G∈C

∥∥Φ̂s(G)− ψ(F (G))
∥∥ ≤ η (14)

on a graph class C ⊆ Gn,d, then we obtain an immediate task-level bound.

Proposition 4.2 (Lipschitz transfer bound). Under (14), we have

sup
G∈C

∣∣g(Φ̂s(G))− g(ψ(F (G)))
∣∣ ≤ Lη.

Proof. For eachG ∈ C, Lipschitz continuity gives |g(Φ̂s(G))−g(ψ(F (G)))| ≤
L∥Φ̂s(G)− ψ(F (G))∥. Taking the supremum over G ∈ C and applying (14)
yields the claim.

Randomized signatures and error decomposition. In practice, the
computed signature is itself random, due to trace probes, sketches, or fea-
ture subsampling. Let Φ̃s(G) denote the (random) output of the signature
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algorithm, and suppose we have a high-probability uniform approximation

P
[
sup
G∈C

∥∥Φ̃s(G)− Φ̂s(G)
∥∥ ≤ ε

]
≥ 1− δ. (15)

Assume in addition that the model-decoder pair recovers the computed sig-
nature up to η, i.e.,

sup
G∈C

∥∥Φ̃s(G)− ψ(F (G))
∥∥ ≤ η, (16)

either deterministically or with high probability (e.g. over training random-
ness). Then on the event in (15), we have by the triangle inequality

sup
G∈C

∥∥Φ̂s(G)−ψ(F (G))∥∥ ≤ sup
G

∥Φ̂s(G)−Φ̃s(G)∥+sup
G

∥Φ̃s(G)−ψ(F (G))∥ ≤ ε+η.

Applying Proposition 4.2 yields a task error bound of L(ε+η) on this event.
This decomposition is operationally useful: it cleanly separates computa-
tional approximation (controlled by R, sparsification, etc.) from model ap-
proximation (controlled by architecture and training).

Dataset-level diagnostic variants. Uniform bounds such as (14) are
convenient for theory but often too strong as diagnostics. For a finite dataset
D = {Gi}Ni=1, we consider empirical reconstruction losses such as

η̂avg :=
1

N

N∑
i=1

∥∥Φ̂s(Gi)−ψ(F (Gi))∥∥, η̂max := max
1≤i≤N

∥∥Φ̂s(Gi)−ψ(F (Gi))∥∥.
By the same Lipschitz argument applied pointwise and then averaged, we
obtain the empirical task discrepancy bound

1

N

N∑
i=1

∣∣g(Φ̂s(Gi))− g(ψ(F (Gi)))
∣∣ ≤ L η̂avg,

and similarly a uniform-on-dataset bound with η̂max. This yields a sim-
ple diagnostic procedure: compute Φ̂s(Gi) once (or a high-accuracy proxy),
train ψ to predict these signature coordinates from F (Gi), and report η̂avg
or η̂max. Any downstream evaluation function g with a known Lipschitz con-
stant L (in the chosen norm) immediately inherits a certified dataset-level
approximation guarantee.

A particularly transparent case is when g is coordinate projection, e.g.
g(u) = uk. Under the ℓ∞ norm, g is 1-Lipschitz, and the bound reduces to∣∣[Φ̂s(G)]k − [ψ(F (G))]k

∣∣ ≤
∥∥Φ̂s(G)− ψ(F (G))

∥∥
∞,

so signature reconstruction directly measures the error in predicting that in-
variant statistic. This specialization is what makes coordinate-wise lower
bounds (as in the next section) immediately interpretable as task lower
bounds for suitable targets.
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Generalization from finite samples (one simple route). When ψ is
learned from data, one may combine the transfer principle with standard gen-
eralization bounds for regression. For instance, suppose ψ ranges over linear
decoders ψW (h) = Wh with a norm constraint ∥W∥op ≤ B (operator norm
under the relevant pair of norms), and suppose ∥F (G)∥ ≤M almost surely.
Then ∥ψW (F (G))∥ ≤ BM . If the signature coordinates are bounded (which
holds for our coordinates on Gn,d with A ∈ {0, 1}n×n and X ∈ [−1, 1]n×d

at fixed s), we may apply uniform convergence tools (e.g. Rademacher com-
plexity for linear predictors) to bound the population reconstruction error
by the empirical reconstruction error plus an O(BM/

√
N) complexity term

(up to constants depending on the loss and the dimension). Composing with
Proposition 4.2 yields population task guarantees of the schematic form

E
[
|g(Φ̂s(G))− g(ψW (F (G)))|

]
≲ L

(
η̂avg +

BM√
N

)
,

with the understanding that the precise constant depends on the chosen
learning setup. The salient point is that the only task dependence enters
through L; the representation-dependent quantity is the signature recon-
struction performance.

When the bound is tight. The Lipschitz transfer bound is sharp in
the minimax sense: for any fixed error vector ∆ = Φ̂s(G) − ψ(F (G)), the
worst-case L-Lipschitz functional can realize discrepancy essentially L∥∆∥
(up to norm duality). Concretely, for a linear functional g(u) = ⟨a, u⟩ with
∥a∥∗ = L (dual norm), we have

|g(Φ̂s(G))− g(ψ(F (G)))| = |⟨a,∆⟩| ≤ ∥a∥∗∥∆∥ = L∥∆∥,

and equality is attained when a aligns with ∆. Thus, absent structural
assumptions on g, one cannot improve Proposition 4.2 beyond constant fac-
tors. Conversely, the bound can be loose when (i) g depends only on a small
subset of stable coordinates, (ii) the reconstruction error concentrates on co-
ordinates to which g is insensitive, or (iii) g is effectively lower-Lipschitz on
the data manifold than on all of Rp. These observations motivate our use
of coordinate-wise diagnostics and targeted signatures: if a task is known
to depend on specific coordinates (e.g. short-cycle traces or decorated walk
energies), then controlling reconstruction error on those coordinates yields a
correspondingly tighter and more interpretable guarantee.

Strict refinement: a concrete WL-indistinguishable family sepa-
rated by cycle traces. We exhibit an explicit pair of featured graphs
on which any 1-WL-equivalent MPNN (run on constant input features) col-
lapses, while a single low-order coordinate of our signature separates. Fix n
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divisible by 12, set d = 1, and take constant features X = 1 ∈ Rn×1. Let

Gn :=

n/3⊔
i=1

C3, G′
n :=

n/4⊔
i=1

C4,

i.e. Gn is the disjoint union of n/3 triangles and G′
n is the disjoint union

of n/4 4-cycles. Both graphs are 2-regular, and with constant features ev-
ery vertex has the same rooted t-hop neighborhood multiset type for ev-
ery fixed t. Consequently, 1-WL produces the trivial coloring on both
graphs, and the standard indistinguishability argument implies that any
1-WL-equivalent message passing architecture F assigns identical node em-
beddings within each graph at every layer, hence identical graph embeddings
after any permutation-invariant readout. In particular,

F (Gn) = F (G′
n) for all such F (on constant features).

On the other hand, the cycle-trace coordinate at ℓ = 3 separates the pair.
Since tr(Aℓ) = hom(Cℓ → G), we have for Gn that each triangle contributes
tr(A3

C3
) = 6 (indeed the eigenvalues of C3 are 2,−1,−1), and therefore

tr(A(Gn)
3) =

n

3
· 6 = 2n.

For G′
n, each C4 is bipartite, hence has no closed walks of odd length, so

tr(A(G′
n)

3) = 0. Thus for any s ≥ 3 the full signature Φs (and likewise the
sketched signature Φ̂s, which includes tr(A3) as a basic coordinate) satisfies

[Φs(Gn)]tr(A3) ̸= [Φs(G
′
n)]tr(A3).

This already witnesses strict refinement over 1-WL-limited expressivity in a
particularly transparent form: the obstruction is global (odd-cycle presence)
and is invisible to local multiset aggregation starting from fully symmetric
features.

Lower bounds for signature recovery by WL-limited models. We
now translate the above separation into a reconstruction lower bound for any
attempt to predict signature coordinates from a 1-WL-equivalent embedding.
Consider the normalized coordinate

c(G) :=
1

n
tr(A3),

so that c(Gn) = 2 and c(G′
n) = 0. Let F be any 1-WL-equivalent MPNN

run on constant features and let ψ be any decoder. Since F (Gn) = F (G′
n),

we must have ψ(F (Gn)) = ψ(F (G′
n)), hence at least one of the two recon-

struction errors for the scalar target c(·) is large:

max
{
|c(Gn)− ψ(F (Gn))|, |c(G′

n)− ψ(F (G′
n))|
}

≥ |c(Gn)− c(G′
n)|

2
= 1.
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Equivalently,
inf
ψ

sup
G∈{Gn,G′

n}
|c(G)− ψ(F (G))| ≥ 1,

which is a constant lower bound independent of n. The same argument ap-
plies verbatim to any separating coordinate of Φ̂s (e.g. tr(Aℓ) for any fixed ℓ,
or a decorated quadratic form x⊤Aℓx when x is part of the signature): when-
ever two graphs are 1-WL-indistinguishable under the admissible inputs, any
1-WL-equivalent F identifies them, forcing any decoder to incur at least half
the coordinate gap on that pair. In view of the coordinate-projection spe-
cialization discussed earlier (take g(u) = uk and ∥ · ∥∞), such reconstruction
lower bounds are immediately interpretable as task lower bounds for Lips-
chitz targets depending on those coordinates.

Beyond triangles: families separated by low-order spectral mo-
ments. The preceding example uses ℓ = 3, but the phenomenon is not
tied to triangles. For any fixed degree ∆ ≥ 2, the class of ∆-regular graphs
with constant features is collapsed by 1-WL into a single color class, hence
is indistinguishable to any 1-WL-equivalent MPNN. Within this class, one
may choose graph families with different low-order spectral moments, i.e.
different values of tr(Aℓ) for some constant ℓ. Since tr(Aℓ) is the ℓ-th power-
sum of eigenvalues, equality of tr(Aℓ) for all ℓ ≤ s is a strong constraint; by
selecting non-cospectral regular graphs (or even cospectral graphs differing
in feature-decorated coordinates), one obtains separations at some bounded
order. Thus, even at fixed small s, the signature coordinates include invari-
ants that are provably inaccessible to purely local 1-WL-type aggregation on
symmetric inputs.

Matching upper bounds: architectures that realize trace/decorated-
walk coordinates. We next indicate why the lower bound is not an arti-
fact of the coordinate choice but rather of the model class. The cycle-trace
coordinates and feature-decorated walk energies in Φ̂s admit near-linear ran-
domized estimators based on repeated applications of A and global reduc-
tions, exactly as in the signature algorithm. Concretely, for tr(Aℓ) one may
use Hutchinson estimators:

τ̂ℓ(G) :=
1

R

R∑
r=1

z⊤r A
ℓzr, zr ∈ {±1}n i.i.d.

With R = Θ(ε−2 log(1/δ)) we obtain additive error O(ε∥Aℓ∥F ) with prob-
ability at least 1 − δ. Importantly, each term z⊤r A

ℓzr can be computed by
maintaining node-wise states v(0)r := zr and iterating the linear message pass-
ing update v(t+1)

r := Av
(t)
r for t = 0, . . . , ℓ − 1, followed by the global sum∑

i zr(i)v
(ℓ)
r (i). This computation is permutation-equivariant in the natu-

ral sense (permuting node labels permutes the sampled probe entries), and
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it fits within architectures that possess either (i) an explicit global mixing
channel capable of aggregating node-wise products into a graph-level scalar,
together with internal randomized probes, or (ii) a stable positional/identifier
channel (e.g. canonicalized Laplacian features or other symmetry-breaking
node encodings) that supplies nontrivial initial vectors from which the same
linear-algebraic computation can proceed deterministically.

Similarly, feature-decorated energies x⊤j A
ℓxj are computed by the same

ℓ rounds of linear message passing on the input feature channel xj , followed
by a global inner product. Hence, the coordinates that separate Gn and
G′
n are efficiently computable by models with suitable global reductions and

either internal randomness or a positional mechanism that prevents total
symmetry collapse. In this sense, the above lower bounds are tight with
respect to the computational primitives underlying Φ̂s: they separate WL-
limited architectures from those that can stably implement the corresponding
global linear-algebraic probes.

Summary of the separation mechanism. The separation may be stated
succinctly: on fully symmetric inputs, 1-WL-equivalent message passing is
constrained to functions constant on each 1-WL class, whereas Φ̂s contains
low-order homomorphism/spectral statistics (and their feature-decorated ana-
logues) that vary within these classes. Any model class capable of recon-
structing these coordinates must, in some form, break the WL symmetry—
either by augmenting the computation with global mixing plus suitable probe
vectors, or by providing additional positional structure that is not expressible
by 1-WL refinement alone.

Empirical protocol (optional): probing for signature recovery and
its relation to task accuracy. While the preceding results are formal,
we may strengthen the story empirically by treating Φ̂s(G) as a measurable
expressivity target and asking to what extent different architectures recover
it from their learned embeddings. Concretely, we fix an order s and sketch
budget R, compute Φ̂s(G) for each graph G in a dataset, train a family of
models Fθ on standard downstream tasks, and subsequently evaluate whether
a fixed decoder ψ can predict Φ̂s(G) from the learned representation Fθ(G).
This yields a quantitative proxy for the reconstruction error η appearing in
the Lipschitz transfer bound, and allows us to test whether smaller empirical
η aligns with improved downstream generalization.

Signature computation and normalization. For each graphG = (A,X),
we compute Φ̂s(G) using the same coordinate family across all methods (e.g.
cycle/walk traces τ̂ℓ for ℓ ≤ s, feature-decorated energies x⊤j A

ℓxj , and k-hop
diffusion moments). Since coordinates may differ in scale across datasets, we
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define a normalized signature

Φ̃s(G) := D−1
(
Φ̂s(G)− µ

)
,

where µ and the diagonal scalingD are computed on a training split (coordinate-
wise mean and standard deviation, or robust alternatives such as median/MAD).
We report errors in both ℓ2 and ℓ∞ norms, and we include a coordinate-wise
evaluation for interpretable invariants (e.g. tr(A3), tr(A4), and selected fea-
ture moments). When randomized trace estimators are used, we either (i)
fix the probe vectors across runs to reduce evaluation noise, or (ii) average
over independent probe seeds and report confidence intervals as a function
of R.

Embeddings to be probed. We probe graph representations produced
by several model classes trained on the same downstream supervision. For
message passing we include representative 1-WL-equivalent architectures
(e.g. GCN/GraphSAGE/GIN with sum aggregation), with identical treat-
ment of node features and global pooling. As stronger baselines we include
subgraph-based models (e.g. k-GNN variants or architectures that explicitly
aggregate over small tuples/subgraphs) and graph transformers with global
mixing (e.g. sparse attention, structural encodings, or GPS-type hybrids).
To avoid confounding by parameter count, we match models by either (a)
total parameter budget, or (b) wall-clock/SpMV-equivalent compute. We
additionally consider feature regimes that are known to induce symmetry
collapse: constant features X = 1, low-entropy categorical features, and (as
a control) randomized features.

Probe design and reconstruction metrics. Given a trained model Fθ,
we freeze θ and fit a probe ψ to predict Φ̃s(G) from Fθ(G). The probe may
be linear (ridge regression) to measure linearly accessible information, or a
small MLP to measure information recoverable with modest nonlinearity.
Denoting predictions by Ŷ (G) = ψ(Fθ(G)), we report:

η2 :=
(
E∥ Φ̃s(G)− Ŷ (G) ∥22

)1/2
, η∞ := E∥ Φ̃s(G)− Ŷ (G) ∥∞,

estimated on a held-out test split. For coordinate-wise diagnostics we report
R2 and Pearson/Spearman correlation between each signature coordinate
and its prediction. For trace-like coordinates we also report relative error
against the (near-)exact value on small graphs where exact computation is
feasible, thereby separating model error from sketch error.

Relating signature recovery to downstream accuracy. We then test
whether empirical task performance aligns with signature recovery. For a
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given dataset and supervised target y(G), we record each model’s test ac-
curacy (or RMSE/AUROC) and its reconstruction error η2 or η∞. Across
architectures (and across random restarts), we compute the correlation be-
tween performance and −η, and we optionally fit a simple regression of the
form

Perf(Fθ) ≈ a− b η2(Fθ),

to quantify how much of the variance in generalization is explained by sig-
nature accessibility. We emphasize that this is not a causal claim, but it
operationalizes the qualitative prediction suggested by the Lipschitz transfer
statement: when a task is well-approximated by a function of Φ̂s, models
that better reconstruct Φ̂s should tend to perform better. To further isolate
this effect, we include synthetic targets y(G) = g(Φ̂s(G)) for known Lipschitz
g (e.g. a linear functional with bounded norm, or a clipped polynomial), in
which case the hypothesis becomes directly testable.

Ablations over the signature and over computational primitives.
We carry out two complementary ablations. First, we ablate the signature
basis by removing coordinate families (cycle traces only; decorated energies
only; neighborhood moments only) and by varying s and R. This identifies
which components are actually present in learned embeddings, and whether
improvements come from capturing short cycles, feature-propagation statis-
tics, or both. Second, we ablate architectural primitives that, by the pre-
ceding theory, should matter for global coordinates: (i) remove global atten-
tion/mixing from transformers; (ii) restrict readouts to purely local pooling;
(iii) remove positional encodings or random-probe channels; (iv) constrain
depth to be less than s. For each ablation we re-run probing and record the
degradation in coordinate recovery, with special attention to trace-like coor-
dinates that are provably inaccessible to 1-WL-equivalent message passing
on symmetric inputs.

Benchmarks: WL-hard synthetic families and standard real-world
datasets. To stress-test separations, we include synthetic datasets designed
to break 1-WL (and in some cases higher WL), such as: regular graphs with
differing short-cycle statistics; CFI-type constructions; and paired graph
families that are 1-WL-indistinguishable but have different tr(Aℓ) for small ℓ.
In these settings we can directly verify that MPNNs collapse (both in down-
stream classification and in signature probing), while models with global
mixing or subgraph mechanisms recover separating coordinates. We then
complement with real datasets where topology–feature interactions matter,
such as molecular regression/classification benchmarks (e.g. ZINC, QM9,
OGB molecular tasks) and citation/social graph-derived graph classifica-
tion benchmarks (or ego-graph extracts from large networks). In molecular
data, decorated walk energies and diffusion moments provide feature-aware
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analogues of cycle statistics; in citation-style data, neighborhood moments
probe oversmoothing/oversquashing phenomena through higher-hop feature
propagation summaries.

Reporting and reproducibility. For each dataset we report: down-
stream performance, probe reconstruction errors (η2, η∞), coordinate-wise
correlations for salient invariants, and ablation curves in s and R. We keep
train/validation/test splits fixed, disclose probe hyperparameters, and in-
clude multiple random seeds for both model training and sketching. The
resulting suite serves as an empirical map from model class → recoverable
joint feature–topology statistics, complementing the formal separations by
quantifying how the proposed signature behaves as an evaluative instrument
in practical regimes.

Discussion, limitations, and extensions. The proposed joint feature–
topology signature is intentionally positioned between two extremes: on the
one hand, the full basis Φs provides a clean universality statement for in-
variant polynomials of bounded degree; on the other hand, the sketched
object Φ̂s is designed to be computable with near-linear primitives (SpMV,
global sums, and randomized probes). This gap is not merely technical: it
expresses an explicit trade-off between (i) basis completeness and (ii) the
computational model one is willing to assume. In particular, any fixed, ef-
ficiently computable coordinate family necessarily excludes large portions of
Φs (by hardness of exact subpattern counting), so the role of Φ̂s should be
understood as an instrument for measuring and separating model classes,
rather than as a canonical or uniquely optimal representation.

Dependence on the choice of basis and on (s,R). A first limitation is
that Φ̂s is only as informative as the coordinates we choose to include. While
cycle/walk traces and feature-decorated quadratic forms capture non-1-WL
information and feature–structure interactions, they are not exhaustive even
at fixed degree. Moreover, the utility of larger s is constrained by both
compute and variance: increasing s increases the number of SpMV steps
and can inflate estimator variance for trace-like terms involving Aℓ when
∥Aℓ∥F grows quickly with ℓ. Similarly, R controls estimator concentration
but may be costly when many coordinates are probed. In practice, there is an
additional statistical issue: when we normalize coordinates across a dataset,
rare patterns may have heavy-tailed empirical distributions, making ℓ2-based
errors sensitive to a small number of graphs. These considerations motivate
adaptive schemes (e.g. selecting coordinates by stability, mutual information
with labels, or sensitivity to architectural ablations) rather than committing
to a single fixed basis.
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Inductive settings and varying graph sizes. Our definitions are com-
patible with inductive learning across graphs with varying n and m, but care
is required to ensure that coordinates are comparable across sizes. Some co-
ordinates (e.g. tr(Aℓ)) scale superlinearly in n for typical sparse families,
while others (e.g. averaged diffusion moments) remain O(1). Thus, for in-
ductive benchmarks we typically require size-normalized variants, such as
n−1tr(Aℓ), m−1tr(Aℓ), or normalization by powers of an estimated spectral
radius. A related limitation is that the signature, being global, can con-
found “more structure” with “more nodes” unless normalization is explicitly
enforced. A systematic treatment would specify a normalization convention
as part of the definition of Φ̂s, possibly conditioned on a graph class (bounded
degree, bounded expansion, etc.) to avoid degenerate scaling regimes.

Feature privacy and leakage in probing-style evaluations. Because
coordinates of Φ̂s are explicit global statistics, they can leak information
about sensitive attributes present in X or about rare substructures. This
is not an artifact of our method: any sufficiently expressive invariant is po-
tentially identifying. However, our setting makes the issue concrete because
we propose to measure recoverability of these statistics from learned em-
beddings. If privacy is a concern, one may (i) restrict to coordinates that
are provably insensitive to individual features (e.g. clipping feature mono-
mials, enforcing bounded influence), (ii) publish only compressed sketches
(e.g. CountSketch outputs) rather than raw coordinates, and/or (iii) add
calibrated noise to obtain approximate differential privacy guarantees for re-
leased signatures. The last option is particularly natural because many co-
ordinates are sums of bounded contributions; for instance, if X ∈ [−1, 1]n×d

and we use clipped moments, then Laplace or Gaussian mechanisms can be
applied with sensitivity bounds depending on the clipping parameters and
on the operator norm of the diffusion. A principled privacy analysis would
require specifying an adjacency notion (node-level vs. edge-level vs. feature-
level) and is an open direction.

Beyond simple undirected graphs: weights, directions, and edge
features. We have focused on simple graphs with A ∈ {0, 1}n×n symmet-
ric and zero diagonal. Many applications involve weighted edges, directed
edges, and edge features. Most of our coordinates extend formally by replac-
ing A with a general sparse matrix W (possibly asymmetric) and defining
trace-like quantities tr(W ℓ) for directed cycle weights, along with bilinear
forms x⊤j W

ℓxj . When W is asymmetric, Hutchinson estimators still ap-
ply to tr(W ℓ), but variance and stability may differ, and one may prefer
symmetrizations (e.g. WW⊤) depending on the semantics. Edge features
can be incorporated by considering multiple adjacency channels {Ar}|R|

r=1

and including mixed monomials such as tr(Ar1 · · ·Arℓ) or feature-decorated
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forms x⊤Ar1 · · ·Arℓx. This yields a multi-relational signature appropriate
for knowledge graphs, at the cost of a basis that grows with |R| and with
the number of mixed products.

Heterogeneous graphs and typed nodes. For heterogeneous graphs
with node types, one extension is to treat type indicators as additional fea-
ture channels and reuse the same coordinate families. This yields invariants
that capture type-conditioned walk statistics (e.g. how often a length-ℓ walk
begins and ends in a given type). A second, more structured extension is to
enforce type constraints at the pattern level by restricting homomorphisms
to type-respecting maps; equivalently, we consider a typed pattern H and
count only maps h ∈ Hom(H → G) that preserve types. The algorithmic
analogue is to insert diagonal masks between adjacency multiplications (e.g.
AMtypeA), which remains compatible with SpMV primitives but introduces
additional design degrees of freedom (which masks, in what order, and how
to control coordinate growth).

Dynamic graphs and streaming updates. For dynamic graphs (edge
insertions/deletions and evolving features), recomputing Φ̂s(G) from scratch
may be wasteful. Some coordinates admit incremental updates: for example,
diffusion moments based on P kX can be updated approximately using iter-
ative methods when P changes slowly, and quadratic forms x⊤Aℓx can be
maintained via truncated Krylov subspace techniques. Trace-like coordinates
are more delicate under local edits, but there exist streaming estimators for
spectral moments that update sketches in sublinear time under certain spar-
sity assumptions. Establishing rigorous error propagation bounds for such
incremental schemes, especially when s is moderate and the graph changes
adversarially, is an open direction.

Optimal bases and compute–expressivity frontiers. A central open
question is to characterize, for a given computational budget (e.g. Õ(m)
or Õ(ms) time), what is the maximal separation power achievable by any
permutation-invariant signature. In our framework this becomes: among
all coordinate families computable by a prescribed set of primitives (SpMV,
bounded-depth message passing, sparse attention, randomized probing), which
subspace of R[A,X]Sn

≤s can be approximated to accuracy ε with failure prob-
ability δ? Relatedly, one may ask for minimax lower bounds: for a class
of graphs C, what sketch dimension p and probe budget R are necessary to
distinguish or approximate all functions in a target function class (e.g. Lips-
chitz functions of Φs)? Finally, there is a modeling question: can one learn a
basis adaptively, selecting coordinates (or random features) that best explain
downstream tasks while maintaining provable invariance and concentration?
Addressing these questions would convert the present construction from a
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principled measuring device into a theory of optimal invariant computation
under resource constraints.
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