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Abstract

Diffusion policies have emerged as an expressive policy class for of-
fline reinforcement learning (RL), but Q-guided diffusion methods can
become brittle under state distribution shift: in out-of-distribution
(OOD) states, miscalibrated critics may drive the diffusion sampler
toward catastrophic actions. Building on SRDP (State Reconstruc-
tion for Diffusion Policies), which improves OOD generalization by
injecting a state-reconstruction objective at every diffusion timestep,
we propose UG-SRDP: a calibrated uncertainty-gated diffusion policy
framework that uses reconstruction-derived OOD scores to modulate
(i) critic guidance strength, (ii) imitation regularization weight, and op-
tionally (iii) sampling budget. We formalize OOD-robust offline control
as maximizing return while controlling OOD-induced risk, and prove
bounds in bandit/linear-MDP settings showing that state-dependent
gating converts unbounded OOD critic error into a bounded additive
performance penalty proportional to the probability of encountering
far-OOD states, with matching impossibility lower bounds absent cov-
erage assumptions. We further provide finite-sample calibration guar-
antees for the gating rule via conformal prediction on reconstruction
residuals. Experiments (recommended) on missing-data maze navi-
gation, controlled region-removal benchmarks, and real-robot multi-
modal manipulation would validate that UG-SRDP improves stability
and safety over Diffusion-QL and SRDP by automatically reducing re-
liance on critic guidance when states fall outside the dataset support.
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1 Introduction

Offline reinforcement learning seeks to compute a policy from a fixed dataset
D of transitions collected by an unknown behavior policy 7g, without further
interaction with the underlying Markov decision process M = (S, A, P,r, po, 7).
The central obstruction is support mismatch: at deployment, a learned pol-
icy may visit states and select actions that are poorly represented in D,
while the learned value function (or critic) is only constrained by the data
on that limited support. When function approximation and bootstrapping
are combined, such mismatch can produce uncontrolled value extrapolation
and, consequently, unstable policy improvement. Since rewards are bounded
(Ir(s,a)] < Rmax), the performance degradation can be small if the policy
remains near the data distribution, but it can become significant when the
policy is induced to act in regions where the critic error is unconstrained.

Diffusion policies have recently emerged as a convenient class of expres-
sive, state-conditional action generators in offline RL. In this view, for each
state s the policy mg(- | s) is implemented by a denoising diffusion model over
actions, with a forward corruption process producing noisy actions a; and a
learned reverse process predicting noise (or an equivalent denoising signal)
over T timesteps. Such policies inherit two distinct modes of training: a
behavior cloning component that matches the conditional action distribu-
tion observed in D, and a value-driven component that adjusts sampling or
training via a learned critic Q4 so as to prefer higher-value actions. The sec-
ond component is the source of both potential improvement and potential
failure: if Q4 is accurate on the states and actions under consideration, guid-
ance can improve upon imitation; if @y is inaccurate off-support, guidance
can amplify error by systematically steering samples into actions whose high
predicted value is an artifact of extrapolation.

A natural response is to regularize the policy toward the dataset; how-
ever, uniform regularization does not address the fact that the degree of
support mismatch is state dependent. In particular, the same policy update
that is beneficial in well-covered regions may be harmful in states that are
rare, novel, or absent from D. We therefore seek a mechanism that decides,
from the observed state alone, when critic guidance should be trusted and
when it should be suppressed. This mechanism must be computable strictly
offline, must be compatible with diffusion sampling, and must admit a quan-
titative guarantee that isolates the unavoidable price of encountering truly
out-of-distribution states at test time.

We build on a dual-head architecture, SRDP, in which a shared repre-
sentation module f, feeds (i) a diffusion head fp used to model 7y(- | s) and
(ii) a reconstruction head fy trained to predict the state (or a distribution
over the state) from the same representation. The reconstruction head is not
used to act directly; rather, it provides a diagnostic of whether the current
state resembles those present in D. Concretely, we define an OOD score



uy(s) via a residual, a negative log-likelihood, or an ensemble uncertainty
measure derived from f,;. This score is then mapped to state-dependent
coefficients (n(s), A(s)) that modulate, respectively, critic guidance and (op-
tionally) behavior regularization in the diffusion policy update and/or sam-
pling procedure. The key structural constraint is monotonicity: as wy/(s)
increases, we do not increase reliance on the critic, and beyond a thresh-
old 7 we set n(s) = 0 (a hard gate), thereby reverting to a behavior-cloned
diffusion policy in those states.

The contribution of this design is that it converts an uncalibrated notion
of “being out of distribution” into an explicit control signal with a finite-
sample calibration guarantee. We select 7 using split conformal calibration
on a held-out subset of D at miscoverage level «, so that under the data
distribution dp the event uy(s) < 7 holds with probability at least 1 — «
for a fresh in-distribution state. This calibration does not require parametric
assumptions on the score distribution and yields a principled bound on false-
positive gating (unnecessary disabling of guidance) on in-distribution data.
The remaining failure mode is then concentrated on states that genuinely
lie outside the support of D, for which offline identifiability is impossible
without additional assumptions.

Our thesis is that reconstruction-based gating yields a robust form of
“safe improvement”: on in-support states, critic guidance can be used while
its effect is controlled by the guidance coefficient, and on far-OOD states
guidance is disabled so that critic error cannot be adversarially amplified.
The resulting performance bounds decompose into (i) a term proportional
to the critic error on the gated in-support set, scaled by E[n(s)], and (ii)
an additive term proportional to the probability of encountering states that
trigger the gate, scaled by Rpax (and by (1 —+)~! in MDPs). Moreover,
we emphasize that an additive dependence on the mass of far-OOD states
is information-theoretically unavoidable in offline learning: when test-time
contexts or states have no coverage in D, one can construct indistinguishable
instances of the environment whose optimal actions disagree there, implying
a matching Q(poop) lower bound on achievable regret.

Beyond the theoretical motivation, the gating mechanism is operationally
useful for diffusion sampling. Since sampling cost scales with the number of
denoising steps, the same state-dependent signal that modulates 7(s) may
also select a cheaper fallback sampler (e.g., pure behavior cloning diffusion,
or fewer denoising steps) when uy(s) indicates novelty. Thus, the method
targets both value stability and predictable compute: we spend guidance
and sampling budget where the data support makes it meaningful, and we
avoid expensive, brittle extrapolation where it is not.

The remainder of the paper formalizes these claims. We first review of-
fline RL, diffusion policies, and the critic-guided diffusion objective, and we
describe the SRDP dual-head parameterization used to produce both actions
and OOD scores. We then define the uncertainty-gated policy family and



present bounds that separate in-support critic error from the probability of
encountering gated states, together with the conformal calibration guarantee
for the threshold 7 and a matching lower bound capturing offline unidentifi-
ability under support shift.

2 Preliminaries

Offline reinforcement learning. We work in a discounted MDP M =
(S, A, P,r, pg,v) with v € (0,1) and bounded rewards |r(s,a)| < Rpax. An
offline dataset D = {(si,a;,74,s:)}Y, is collected by an unknown behavior
policy mg and fixed thereafter. Our goal is to learn a policy 7 maximizing
the discounted return

J(m) = E[Z“Ytr(stvat)], 0 ~ po, ar ~ (- | st), i1~ P(- | st,a1),
>0

using only samples from D. Throughout, d, denotes the discounted state
occupancy induced by . Since D provides information only on the state—
action support visited by mg, our analysis and algorithmic choices explicitly
track which parts of S are well supported by the data and which are not.

Diffusion policies over actions. A diffusion policy specifies a conditional
generative model over actions given a state. Fix a number of diffusion steps
T € N. The forward diffusion (corruption) process constructs a sequence of
noisy actions (a;)’_, via

Q(at’at—l):/\/<\/1_6tat—ly /8t1>7 tzla"-7T7

with a variance schedule {f3;} and ag interpreted as the clean action. Equiv-
alently, a; = \/@; ap + /T — &z € where € ~ N(0,1) and a; = [[5_,(1 — B).
The reverse process defines the policy via a learned denoiser predicting the
forward noise, € = fp(s,at,t), yielding a parameterized transition pg(a;—1 |
at, s). Sampling an action from my(- | s) proceeds by drawing ar ~ N (0, 1)
and iterating the reverse transitions to obtain ag, which is then executed.

Training typically uses the diffusion denoising score matching objective
(a conditional DDPM loss). For (s,ap) ~ D, t ~ Unif({1,...,7}), and
e ~ N(0,1), define a; = v/arag + /1 — ae, and minimize

LDP(Q) = E[He — fo(s, atvt)”%]?

which corresponds to behavior cloning in the sense that the induced my(- | s)
matches the dataset conditional action distribution.



Critic learning and Diffusion-QL style guidance. To obtain improve-
ments over imitation, we learn a critic Q4(s,a) from D by minimizing a
Bellman error. Concretely, with a target network ¢ and (optionally) dou-
ble critics, we form targets using actions sampled from the current diffusion
policy:

Yy = T'(S, a)+7 ]Ea/'\'ﬂ'g(-lsl) [Q(gg(s/a a/)] s LQ((ZS) = E(s,a,r,s’)ND [(Qqﬁ(sa a)_y)2] .

This update is purely offline: the only distributional dependence beyond D
enters through policy-sampled actions a’ ~ my(- | '), which are generated
by the learned diffusion model.

Diffusion-QL and related methods then incorporate the critic into the
policy update or into the sampling rule. We adopt an abstract formulation
in which the diffusion loss is augmented by a value-seeking term applied
to the sampled clean action ag produced by the reverse process. Writing
ag = ap(s; 0) for a stochastic sample from the denoiser chain, a representative
objective is

Lw(e) = LDP(Q) — To I,[;f’st,aow71'g(-|s) [Q¢(S,a0)],

where 79 > 0 is a guidance strength and E indicates that the expectation
may be estimated using the same noise and timestep samples as in Lpp. This
term biases the diffusion model toward generating actions assigned higher
value by the critic, while retaining the denoising objective that anchors the
policy to the data.

SRDP dual-head architecture and OOD scoring. We use a dual-
head parameterization in which a shared representation module (the “trunk”)
fs maps states to a latent representation z = f4(s). The diffusion head
consumes (z,a,t) to predict noise, fy(z,as,t) =~ €, implementing mg. In
parallel, a reconstruction head fy predicts the state (or a distribution over
it) from the same representation, e.g.,

§=fyz) or  py(s]a),

trained by a reconstruction loss Lg(1) such as ||s — 3|3 or a negative log-
likelihood. The reconstruction head does not act; it induces an OOD score
uy(s) used later for gating. Typical instantiations include (i) a determin-
istic residual uy(s) = ||s — fy(fe(s))|l, (ii) a probabilistic score uy(s) =
—logpy (s | fg(s)), or (iii) an ensemble-based uncertainty estimate computed
from multiple decoders sharing the trunk.

Critic-guided diffusion sampling. At deployment, we may incorporate
Q4 directly into the reverse diffusion steps. Abstractly, each reverse transi-
tion produces a mean action update pg(s, as,t) and noise scale oy. A critic-
guided sampler modifies the denoising direction by a term proportional to



Va,Qo(s,ar) (or Vau,Qy(s,ag) via the reparameterization between a; and
ap), yielding an update of the schematic form

at—1 = M@(S,at,t) + Ut§ + 77(3) gt thQ¢(87at)7 gNN(va)v

where g; is a known scale factor depending on the diffusion schedule and
n(s) is a state-dependent guidance coefficient. This sampling rule is the
mechanism by which critic errors can be amplified off-support: when Qg
extrapolates, the gradient term can steer the chain into regions of A that were
never anchored by Lpp on the relevant states. The next section formalizes
this failure mode under covariate shift and motivates our statewise gating of
n(s) using the reconstruction-derived score wy(s).

3 Problem Formulation: OOD-safe Offline Control

We consider strictly offline learning in M = (S, A, P,r, pp,7) from a fixed
dataset D collected by an unknown behavior policy m3. The central difficulty
is that the distribution of states encountered at deployment is generally not
the same as the marginal state distribution implicit in D. In particular, once
a learned policy 7 is executed in the environment, its discounted occupancy
d is determined by both the induced action choices and the transition kernel
P, and can place nontrivial mass on states that are rare or absent in D. This
mismatch is the offline analogue of covariate shift, and it is precisely the
regime in which critic-guided generative policies are vulnerable to harmful
extrapolation.

State-distribution shift and support mismatch. Let dp denote the
(discounted) state distribution associated with the dataset, e.g., the empir-
ical state marginal of D viewed as a proxy for the occupancy of mg. At
evaluation time, we allow a test-time state distribution diest (or, in the se-
quential setting, the endogenous d, induced by the deployed policy) that may
differ from dp. We use “out-of-distribution” (OOD) to refer to those states
that are insufficiently supported by D in the sense relevant to our learned
models (representation, critic, and diffusion policy). Since exact support is
not observable from finite data in high dimension, we do not assume access
to an indicator of membership in supp(dp); rather, we assume we can com-
pute a real-valued score uy : & — R from the SRDP reconstruction head,
with larger values indicating greater novelty relative to D. For a threshold
7, we define the induced in-support set

Sin(1) = {s€S:uy(s) <7},

and interpret its complement as the region in which both value estimation
and critic-guided sampling are unreliable.



Risk and catastrophe modeling. Beyond return maximization, we ex-
plicitly track OOD risk. We allow two equivalent ways to encode unsafe
behavior. First, we may specify a catastrophe set C C S x A containing
state—action pairs that should be avoided, such as entering forbidden zones,
violating joint limits, or commanding destabilizing torques. Second, we may
specify a bounded cost ¢ : § x A — [0, 1] capturing graded notions of risk.
In either case, we measure risk under the deployed policy 7 via quantities
such as

PW[(st, at) € C for some t > O] or EW[thC(st,at)}.
>0

We emphasize that, in the strict offline setting, these risks cannot be directly
optimized against the true environment; instead, we require a mechanism
that mitigates the specific failure mode of critic-guided diffusion when the
policy visits states outside the effective support of D.

Guided diffusion as a source of OOD amplification. Our starting
point is the empirical observation (and the theoretical fact in stylized set-
tings) that a learned critic Q4 may be accurate on Si,(7) yet arbitrarily
wrong on its complement. When such a critic is used to guide a generative
policy—either by augmenting the training objective with a value term or
by adding gradient-based guidance during reverse diffusion—the resulting
policy can be driven toward actions that are high under @, but poor under
@Q*. This is benign when Q4 is accurate, but it can be catastrophic when
the state is far OOD, since the guidance term can overwhelm the behavior-
cloning anchor and produce actions that the dataset provides no evidence
for. Accordingly, our problem is not merely to learn an accurate critic, but
to deploy the critic selectively based on a statewise estimate of whether the
current state is within the reliable region of the offline data.

OOD-safe objective and desiderata. We seck a deployable policy m
together with a gating rule g that converts the OOD score uy(s) into state-
dependent coefficients (n(s), A(s)) controlling, respectively, the strength of
critic guidance and the strength of reconstruction/behavior regularization
(where A may be used in training variants or to choose a conservative sam-
pler at test time). The core desiderata are: (i) near-support improvement:
on states s that are effectively in-distribution, the learned policy should be
allowed to deviate from pure imitation and exploit critic information to im-
prove return, ideally achieving J(7) > J(mpc) when the critic is sufficiently
accurate; (ii) far-OOD safety: on states with large wuy(s), the policy should
revert to a behavior-regularized action generator so that critic extrapolation
cannot induce unbounded degradation; and (iii) graceful degradation under
shift: any unavoidable loss due to visiting OOD states should enter perfor-



mance guarantees additively through the probability of encountering such
states, rather than through uncontrolled critic error terms.

Formally, we restrict attention to gating rules satisfying the monotonic-
ity constraint that 7)(s) is non-increasing in u(s), and we impose the hard-
safety condition that 7(s) = 0 whenever uy(s) > 7. Under this structure,
the impact of critic error is confined to Si,(7), while the complement is han-
dled by a safe fallback (e.g., the unguided diffusion policy mpc or a cheaper
conservative sampler).

Calibration as an offline control of false triggers. A remaining issue
is that the threshold 7 must be set without online interaction. We therefore
require that the gate be calibratable from a held-out split of D so that, under
s ~ dp, the probability of incorrectly declaring an in-distribution state as
OOD is controlled at a user-specified level a. Concretely, we will choose 7
by split conformal calibration applied to the scores {uy(s)} computed on the
calibration split, thereby ensuring marginal coverage guarantees of the form
Pydp[ty(s) < 7] > 1—a. This provides an explicit tradeoff knob: smaller o
reduces false-positive gating (and thus preserves near-support improvement),
while larger « yields more conservative behavior under suspected shift.

These requirements define our OOD-safe offline control problem: max-
imize J(w) under state-distribution shift while controlling risk, by using
reconstruction-derived uncertainty to gate critic guidance. The next section
instantiates this formulation as UG-SRDP by specifying the score construc-
tion, calibration procedure, and concrete schedules for (n(s), A(s)), including
optional sampler switching to respect a bounded inference budget.

4 UG-SRDP Algorithm: Uncertainty-Gated SRDP
for Offline Control

We now specify UG-SRDP as a concrete instantiation of the preceding for-
mulation. The algorithm has four components: (i) learn an SRDP-style
diffusion policy together with a reconstruction model that yields a state-
wise novelty score, (ii) convert reconstruction residual/uncertainty into an
OOD score uy(s), (iii) calibrate a gate threshold 7 from a held-out split via
split conformal, and (iv) define a deployment-time rule that maps u/(s) to
state-dependent guidance and regularization coefficients (and, optionally, a
sampler switch and denoising-step budget).

(i) SRDP backbone with probabilistic/ensemble reconstruction.
We use a diffusion policy mg(- | s) parameterized by a shared trunk f, and
a diffusion head fy predicting noise. In forward diffusion, we form noisy
actions {at}le from dataset actions by injecting Gaussian noise; in reverse
diffusion, we denoise from ar to ag using fo(fs(s),as, t). In parallel, we



train a reconstruction head fy sharing fs to predict (or model) the state.
Concretely, we allow either a deterministic decoder § = fy;(fs(s)) trained
by an ¢ loss, or a probabilistic decoder py (s | z) with z = f4(s) trained by
negative log-likelihood. To increase sensitivity to epistemic uncertainty, we
may use an ensemble { f¢(e)}§:1 and/or an ensemble of critics; this changes
only constant factors in cost and does not alter the gate definition below.

Policy learning follows the SRDP /Diffusion-QL template: we combine a
diffusion behavior cloning objective Lpp (6, ¢) (e.g., denoising score match-
ing) with reconstruction regularization Lg (¢, ¢) and critic guidance through
a learned @, (in practice two critics to reduce overestimation). Writing E for
an empirical minibatch average from D and ag ~ my(- | s) for the denoised
action, a representative objective is

Lic(0,9,0) = Lpp(0,¢) + Ao Lr (v, ¢) — n0 E[Qs(s, ao)] ,

where (19, A\g) are base coefficients used during training. The critic(s) are
trained by offline Bellman regression using D and target actions sampled
from the current diffusion policy (as in Diffusion-QL), and the policy is
updated by stochastic gradients of Lpc.

(i) OOD score from reconstruction residual/uncertainty. After
training, we define an OOD score uy : & — R from the reconstruction
head. The intended property is monotonicity with novelty: larger wy/(s)
should indicate that s is less consistent with the data manifold learned from
D. We support several interchangeable constructions:

1. Deterministic residual: uy(s) = ||s — §||, where § = fy,(fs(s)).

2. Likelihood score: uy(s) = —logpy(s | fe(s)) when f, outputs a con-
ditional density.

3. Ensemble dispersion: if §(©) are ensemble reconstructions, set

E
1 NG 7o [ale
uy(s) = E E s — 3@ + k- Tr(Vare[s( )]) ,
e=1

with a tunable x > 0.

We emphasize that UG-SRDP uses u,, only to gate reliance on the critic; we
do not assume that w, is a perfect support indicator, only that it correlates
with regions where critic extrapolation is unreliable.

(iii) Split conformal calibration of the gate threshold. We set the
hard-gating threshold 7 using a calibration split from D. Specifically, we par-
tition D = Dirain U Deal, train (¢, 6,1) on Dirain, compute scores {uqy(s;) Firy
on the states in D.,;, and choose

T = U([m+1)(1-a)])>

10



the corresponding order statistic. By the standard split conformal guaran-
tee, for a fresh s ~ dp independent of Dga we have Pluy(s) < 7] > 1 — a
Thus « directly controls the tolerated false-positive rate of declaring an in-
distribution state as OOD (under dp), without requiring parametric assump-
tions on .

(iv) Deployment rule: gating schedules and sampler switching. At
test time, given a state s, we compute u = uy(s) and apply a gating rule g
producing state-dependent coefficients. The default hard gate sets

n(s) =mollu<7],  Als) = Ao,

so critic guidance is used only on Siy(7) = {s : uy(s) < 7}. We also allow a
soft monotone schedule to avoid discontinuities, e.g.,

T—U

n(s) =no h< ) , with h(x) € [0, 1] nondecreasing,

and a corresponding conservative regularization schedule such as A\(s) = \g+
ku to bias the policy toward imitation as novelty grows. The monotonicity
constraint (u; < ug = n(uy) > n(ug)) is enforced by construction.

Finally, we optionally couple gating to the sampling procedure to respect
bounded inference budgets and to provide an explicit fallback. If u > 7, we
either (a) disable guidance within the same sampler (set n = 0 during reverse
diffusion), or (b) switch to a cheaper conservative sampler, e.g., an unguided
behavior-cloning diffusion policy mpc and/or a reduced number of denoising
steps TRc < Tguided- This yields a state-dependent compute profile

E[T(S)] = Tguided IP’[u < T] + TBC [P[u > T],

while ensuring that far-OOD states do not activate critic-driven extrapola-
tion. The resulting deployed policy is denoted myg and is fully specified by
the learned SRDP components, the calibrated threshold 7, and the chosen
schedules for (n(s), A(s)).

5 Theory I (Upper Bounds): Gated Performance
Decomposition

We formalize the intended effect of uncertainty gating as a decomposition of
performance into (i) an in-support term in which critic guidance can improve
over behavior cloning up to a controlled critic-error penalty, and (ii) a far-
OOD term in which we assume no reliable information is available and thus
bound loss only by reward boundedness. Throughout, we write Si,(7) =
{s 1 uy(s) <7} and Sout(7) = S\ Sin(7), and we consider gating rules with
n(s) = 0 on Sout(7) and 7(-) non-increasing in wuy(-).

11



A generic decomposition principle. Let myg denote the deployed uncertainty-
gated diffusion policy, and let mpc denote its unguided (pure imitation)
counterpart. By the performance difference lemma, for any pair of policies

w7,

J(r)—J () = 1_17 Evvity [Ban(io[A7(5,0)]] A7(s5,0) := Q7 (5,0) V™ (s).
We apply this with (7, 7') = (mpc, 7ug) or (7w, 7’') = (7ug, mBc) depending

on which direction yields a convenient upper bound, and then split the re-

sulting expectation over Sin(7) and Sout(7). On Sout(7) we do not attempt

to compare myg to any optimal policy: instead we invoke bounded rewards

to obtain a worst-case value gap. Concretely, for any s and any policies 7, 7/,

ﬂ . 2 R
VT(s) = V™ (s)| < ﬁv

and hence any contribution from Syt (7) can be upper bounded by (2Rpax/(1—
7)) - Pswd, [ € Sout(7)]-

In-support improvement with critic-error control. We now charac-
terize how the guidance signal introduces a dependence on the critic error
only through the effective guidance magnitude. Under (H1), on Siy(7) we
have sup, |Q*(s,a) — Q4(s,a)| < e. Under (H2), the SRDP-style diffusion
update is L-Lipschitz with respect to the guidance coefficient in the sense
that the induced change in the statewise expected true value is linear in
In(s)|. A convenient abstract form is: there exists Cji, such that for any
s € Sin(T),

EaNﬂan) [Q*(S> a')] - anwn/(~|s) [Q*(S, CL)] < Clip |77(S) - 77/(5)"

Taking 1'(s) = 0 and using that the guided policy is computed using Qg
rather than Q*, standard approximate-greediness arguments yield an ad-
ditive error on Siy(7) of order Ciipn(s)e (constants depend on the precise
parameterization of the guidance step and, in multi-step diffusion, on how
guidance is aggregated across denoising steps). Consequently, the in-support
contribution takes the form

(in-support loss) < C Esuq, . (n(s)1{s € Sn(1)}] e < C Esndryg [n(s)] e,
which isolates the dependence on critic error through the average activated

guidance Eq, . [n(s)]. In particular, hard gating gives E[n(s)] = no-Pluy(s) <
7], while soft schedules interpolate continuously.

12



Contextual bandits as a one-step special case. In the contextual ban-
dit setting (equivalently v = 0), the occupancy reduces to the test context
distribution diest, and the above decomposition becomes particularly trans-
parent. Writing poop = Psudees [tp(s) > 7], we obtain a bound of the
schematic form

]ESthest [V*(S) — e (S)] < Noe + 2R max POOD;

where the first term is the critic-error amplification term suppressed by
gating (through 7o and the Lipschitz sensitivity), and the second term is the
unavoidable price of encountering contexts outside the calibrated support
indicator.

Discounted MDP upper bound and interpretation. Combining the
in-support and out-of-support contributions yields the bound

_ 2Rmax

J(muc) = J(mec) = C2e By [n(3)] — 7 — -

Pondry, [U(5) > 7],

with Co = O((1 — 4)~!) arising from the performance difference lemma and
the Lipschitz stability constant. The key qualitative point is that hard gating
removes any dependence on supyegs, . () |Q" (8, a) — Q4(s,a)|, replacing it by
a term proportional only to the probability of visiting Sout(7) under the
deployed policy.

Linear MDP instantiation (optional). If we further specialize to a lin-
ear MDP (or linear contextual bandit) in which Q*(s,a) = (w*, ¢(s,a)) for
a known feature map ¢ of dimension d, then standard offline least-squares
analysis can yield an explicit in-support critic error bound & = O(y/d/m)
on Sin(7) under a suitable restricted eigenvalue/coverage condition on the
feature covariance within Si, (7). Substituting this € into the preceding in-
equalities makes the tradeoff explicit: gating converts the dependence on
ill-conditioned or unsupported regions into the occupancy-weighted quan-
tity Pq, . [uy(s) > 7], while preserving the usual O(+/d/m) statistical rate
on the calibrated in-support region.

6 Theory II (Lower Bounds / Impossibility): Uniden-
tifiability of Far-OOD Values

The preceding guarantees necessarily contain an additive term proportional
to the probability of visiting states outside the calibrated in-support set.
We now justify that, without additional assumptions (coverage, realizabil-
ity with known structure, smoothness across the state manifold, etc.), no
strictly-offline method can remove such a dependence. The obstruction is
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information-theoretic: the offline dataset does not identify rewards and tran-
sitions on regions that are never (or essentially never) visited under the
behavior distribution, hence the optimal action on those regions is not learn-
able.

A minimal statement of the obstacle. Fix any offline algorithm A
mapping a dataset D to a deployed policy m = A(D) (possibly randomized).
Let Law(D) denote the distribution of datasets induced by running the
unknown behavior policy in M. If there exist two MDPs Mg, M such that

Law g, (D) = Lawpy, (D),

then A cannot distinguish which instance generated the data. Consequently,
A must output the same (distribution over) policy under either instance, and
an adversary may choose the instance on which that policy performs poorly.
To turn this indistinguishability into a quantitative regret lower bound, we
force My and M; to coincide on the data-support region and disagree only
on a far-OOD region that is visited with nontrivial probability under the
evaluation rollout.

A concrete lower bound (bandit form). We first record the one-step
version, which isolates the statistical phenomenon without dynamical com-
plications.

Theorem 6.1 (Unavoidable Q(poop) loss in offline contextual bandits).
There ezist two contextual bandit instances My, My with rewards in [—Rpax, Rmax),
a data distribution dp over contexts, and an evaluation distribution diesy such

that:

1. The induced offline data laws are identical: Lawpyg, (D) = Lawpy, (D)
for any sample size.

2. There is an OOD region Sout with pooD = Psdies [ € Sout] > 0 and
]P)SNdD [S S Sout] =0.

3. For any (possibly randomized) offline algorithm A outputting © =
A(D), we have

8% { Bt [Viity ()= Vity (9], Bone Vi, (5)=VE0, ()] } = Fonax ooD.

Proof sketch. Let S contain two disjoint subsets Si, and Sy, and take
the dataset contexts to be supported only on Siy,. Define two actions a4, a_.
On Sy, set r(s,ay) = r(s,a—) = 0 in both instances. On Syyt, swap the
rewards:

7”0(37 CL+) = +RmaX7 7’0(8,&_) - _RmaX7 Tl(S, a—l—) - _Rma)u 1 (57 a—) = +Rmax-
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Because Syyt is never observed in D, the joint law of (s,a,r) under the
behavior policy is identical in My and M;. Hence 7 (as a function of D) has
the same distribution under both instances. For any fixed context s € Sgut,
the policy places some probability on a4 ; whichever action it favors is optimal
in one instance and suboptimal in the other, incurring instantaneous regret
at least Rpmax at that s. Averaging over s ~ diest vields the stated RmaxpoonD
lower bound.

Extension to discounted MDPs. The same construction yields a dis-
counted lower bound by embedding the bandit ambiguity behind a transition
that is never seen in the dataset but is reached under evaluation with prob-
ability comparable to an OOD occupancy mass. Concretely, we may take
an initial region on which the dataset is collected and create a transition
into an absorbing OOD state syt that occurs with probability poop under
the evaluation rollout. In sqyt, the two instances again swap which action
yields +Rpax versus —Rmax at every step, so that the per-step value gap is
amplified by the geometric sum. One obtains, for a universal constant ¢ > 0,

Rmax
L=y

max{Jyv, — S Jm, — Iyt = ¢ POOD-

The key point is that the dataset law is unchanged by construction, since
the OOD transition and the OOD region have zero probability under the
behavior distribution.

Interpretation: what gating can and cannot accomplish. The lower
bound isolates the best-possible guarantee one may hope for in the absence
of further structure: only the probability of encountering far-OOD states can
appear, multiplied by the worst-case return scale Rpax/(1 — 7). In par-
ticular, any method that claims uniform improvement on far-OOD regions
without assumptions contradicts Theorem (and its discounted analogue).
From this perspective, the role of uncertainty gating is not to “solve” OOD
decision-making, but to ensure that the deployed procedure does not incur
additional unidentifiable loss through extrapolative critic guidance. Once
guidance is disabled on {u, > 7}, the remaining worst-case degradation is
precisely of the unavoidable form above, up to constants and the realized
OOD occupancy under deployment.

This also clarifies what remains to be controlled algorithmically: not
the values on the far-OOD region (which are unidentifiable), but rather (i)
the false-negative rate of the gate (entering far-OOD while still applying
guidance), and (ii) the induced OOD occupancy of the deployed policy. The
next section addresses (i) via finite-sample calibration of the threshold 7
under dp, thereby quantifying how often the gate activates on in-distribution
states and providing a principled means of trading off abstention against risk.
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7 Calibration Guarantees: Split Conformal Thresh-
olds for Reconstruction-Based OOD Scores

We now formalize how we set the gating threshold 7 from data, and what
(limited, but distribution-free) guarantees this calibration provides. Through-
out, we treat u, : S — R as an arbitrary measurable score produced by the
reconstruction head (possibly using an ensemble), with the convention that
larger uy(s) indicates “more OOD.” The gate activates (disables critic guid-
ance, and optionally switches to a BC sampler) when wy(s) > 7.

Split calibration protocol. We split the dataset D into a training part
Dy, and a calibration part Dea = {s;}7*,, where the s; are states (or obser-
vations) treated as i.i.d. samples from the data state distribution deE| We
train (fg, fo, fy) on Dy, then compute scores u; := uy(s;) on Deyr. For a
miscoverage level o € (0,1), we define

E=[(m+1)(1-a)], T 1= U(k)s

where u) < -+ < ) are the order statistics of the calibration scores.
This is precisely the split conformal quantile (with the standard (m + 1)
correction) and requires no parametric assumptions on ..

Theorem 7.1 (Distribution-free control of false-positive gating under dp).
Assume (S1,...,8m,s) are exchangeable draws from dp, where s is an inde-
pendent fresh draw and T is computed as above from {uy(s;)}ir,. Then

Psdp [uw(s) < T] > 1-a, equivalently Psrdp [ud,(s) > T] < a.

In particular, under dp the hard gate g(s) = 1[uy(s) > 7] has a marginal
false-positive (abstention) rate at most c.

Interpretation as an abstention bound. Theorem should be read
as a statement about how often we will disable guidance on states distributed
like the offline data. Since guidance is the mechanism that can amplify critic
error, this calibration gives a concrete knob: increasing « raises guidance
usage (fewer abstentions), while decreasing « yields a more conservative
deployment rule. Notably, the guarantee is finite-sample and depends only
on exchangeability, not on the correctness of the reconstruction model.

'In sequential datasets, exact i.i.d. sampling is not literal; in practice we subsample
widely separated time indices or treat the empirical distribution over logged states as ap-
proximately exchangeable for calibration purposes. The formal statement below assumes
exchangeability of the calibration scores.

16



What calibration does not guarantee. First, the bound is marginal
rather than conditional: it does not assert that Plu,(s) > 7 | s € some subgroup]
is controlled for every subgroup (indeed this is impossible without further
assumptions). Second, the guarantee is with respect to dp, not an arbitrary
shifted evaluation distribution dies;. Under shift, the abstention probability

pgate(dtest) = PSthest [’LL¢(S) > T]

may be larger (sometimes substantially), and this is precisely the quantity
that appears in the performance bounds through the OOD occupancy term.
Thus, calibration controls false positives on-distribution, while deployment-
time abstention reflects the actual shift.

Beyond deterministic residuals: the autoencoder—OOD paradox.
If we take uy(s) = ||s — 3| for a deterministic decoder § = fy(fs(s)), then
a well-known pathology is that low reconstruction error need not imply “in-
distribution.” Highly expressive autoencoders may reconstruct OOD inputs
almost as well as in-distribution ones (because the decoder learns a near-
identity map on a large region of input space), while bottlenecked autoen-
coders may distort rare but legitimate in-distribution states, producing spu-
riously large residuals. From the viewpoint of gating, these effects translate
into (i) false negatives, where far-OOD states are not gated (dangerous, since
critic guidance remains active), and (ii) excessive false positives on infrequent
in-distribution modes (undesirable, since we unnecessarily disable guidance).

This motivates using scores that expose uncertainty rather than mere
reconstruction error. Two practical refinements are particularly compatible

with SRDP.

Probabilistic reconstruction and calibrated likelihood scores. We
may let the reconstruction head output a conditional density py(s | z) with
z = fs(s), e.g., a diagonal Gaussian with mean p,;(2) and variance 03)(2),
and define

uy(s) := —logpy(s | f4(s))-

In this case, the score penalizes not only large residuals but also confi-
dent misreconstructions: for Gaussian decoders, uy(s) contains a variance-
normalized squared error term. This mitigates the tendency of a determin-
istic decoder to “explain away” atypical inputs by projecting them onto a
nearby high-density region without reflecting epistemic uncertainty. Split
conformal calibration applies verbatim to u,, as a real-valued score, irrespec-
tive of whether the density model is well-specified.

Ensemble and epistemic scores. Alternatively, we train an ensemble
{ fwe)}f:l sharing the SRDP trunk fy but using independent decoder heads,
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and define uy(s) via predictive dispersion, e.g.,

d
Uy (s) == %ZVaree[E](M¢(e),j(f¢(3))>a
j=1

or via disagreement in negative log-likelihood. Such ensemble-based scores
empirically correlate better with support mismatch because they target epis-
temic uncertainty induced by finite data. Again, conformal calibration treats
the resulting uy(s) as an opaque score and provides a threshold with con-
trolled in-data abstention.

Consequence for UG-SRDP deployment. Combining Theorem
with the invariants of the gating rule (in particular, n(s) = 0 whenever
uy(s) > 7 and 7(-) non-increasing in wu,), we obtain a deployable proce-
dure whose rate of disabling guidance on in-distribution states is controlled
at level o without modeling assumptions. The remaining question is com-
putational: once the gate is calibrated, we still require that the resulting
state-dependent sampler and guidance schedule be feasible under real-time
constraints. We address this systems aspect next.

8 Complexity & Systems Considerations: Compute—
Safety Trade-offs Under Gated Sampling

We now make explicit the computational consequences of deploying a dif-
fusion policy with state-dependent guidance. Since deployment may occur
under tight latency constraints (e.g., closed-loop robotics), our objective is
not merely asymptotic complexity but rather predictable per-decision wall-
clock time while retaining the safety benefit of disabling critic guidance when
the OOD score is large.

Decomposing test-time cost. At a given state s, the inference pipeline
consists of: (i) computing a representation z = f4(s), (ii) computing the
OOD score uy(s) (possibly requiring a reconstruction pass or an ensemble),
(iii) selecting a sampler/guidance schedule, and (iv) executing 7'(s) denoising
steps to sample an action ag. We therefore write a simple additive model for
expected per-decision cost,

T(s)
COSt(S) ~ Cscore(s) + chtep(‘S,t)v
t=1

where Cycore(s) includes the SRDP trunk forward pass plus any decoder/ensemble
computation, and Cstep(s,t) accounts for the diffusion head evaluation at
timestep t and (when enabled) critic guidance evaluation.
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Guidance is computationally expensive in diffusion policies. In
common implementations of guided diffusion for control, each denoising step
requires (a) a forward pass through the diffusion head fy to predict €, and (b)
one or more critic evaluations to compute a guidance direction, sometimes
including a gradient V,Q4(s,a;) with respect to the current noisy action
as. Denoting by Cpp the cost of one diffusion-head evaluation and by Cq
(resp. Cyq) the cost of evaluating Q4 (resp. its action-gradient), a crude but
operational upper bound is

Cstep(s, ) < Cpp + 1[n(s) > 0] (Cq + Cvq),

up to constant factors from multiple critics or classifier-free style guidance.
Thus, even if T is fixed, turning off guidance via the gate yields a substan-
tial multiplicative reduction in cost per denoising step. This is one of the
central systems motivations for the hard gate n(s) = 0 when wuy(s) > 7
it eliminates both the risk channel (critic error amplification) and a major
compute channel (critic-gradient guidance).

Sampler switching and expected denoising steps. Beyond disabling
guidance, we may also change the sampler itself when uy(s) > 7, e.g., by
switching to a behavior-cloning diffusion sampler with fewer steps, or to
a deterministic distilled sampler. Let Tyudeqa be the step budget for Q-
guided sampling and Tpc the step budget for the fallback sampler (typically
Tec < Tguided). Under the hard gate with a statewise switch,

T(s) = guidedl[uw(s) <7 + TBC]-[Uq/;(S) > 7],
and hence, for any evaluation distribution over states,
E[T(S)] = guidedP[U¢(S) < T] + TBCIP)[Uw(S) > 7'],

This expression makes the compute—safety coupling explicit: increasing con-
servatism (larger gating probability) simultaneously reduces critic usage and
reduces the expected number of denoising steps if the fallback is cheaper.
In particular, under covariate shift where Pg, [uy(s) > 7] may be large,
the method tends to self-throttle compute in precisely those regimes where
guidance is least trustworthy.

Worst-case latency and real-time control. For real-time robotics, ex-
pected cost is insufficient: we must also control worst-case latency to avoid
missing control deadlines. The hard-gated sampler switch provides a deter-
ministic cap

T(s) < max{Tyuided, TBC}

and one may further enforce a strict per-step compute budget by (i) fixing
the diffusion network width, (ii) avoiding backpropagation through Q4 by us-
ing guidance forms that do not require V,Q4 (at some loss of performance),
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or (iii) precomputing guidance-relevant quantities when the state remains
constant across the denoising loop. When critic gradients are required, im-
plementation should use fused kernels and automatic mixed precision, and
(in GPU settings) keep the entire denoising loop on-device to avoid host-
device synchronization.

Cost of computing the OOD score. The OOD computation itself must
be cheap relative to the sampling loop. If u, is a deterministic residual pro-
duced by a decoder that shares the trunk fg, then Cseore(s) is approximately
one additional decoder head forward pass. If u, is ensemble-based with E
decoder heads, then Cyeore($) scales roughly linearly in E, but can be paral-
lelized because all heads consume the same trunk representation. In practice,
we prefer architectural choices in which f4 dominates cost and decoder heads
are shallow, so that ensembles improve OOD sensitivity without imposing
prohibitive overhead. Moreover, uy(s) is computed once per environment
step, whereas diffusion sampling incurs 7T'(s) repeated evaluations; hence, for
moderate T'(s), even a small reduction in T'(s) dominates the cost of richer
scoring.

Practical deployment rule and monotonic compute schedules. To
ensure predictability, we recommend a one-shot gating decision: compute
uy(s) at the start of action selection, then commit to either the guided
sampler or the fallback for the entire denoising trajectory. This avoids intra-
trajectory branching and ensures that 7'(s) and the presence/absence of critic
calls are known before sampling begins. If one desires a smoother trade-off
than a hard switch, a monotone map u + T'(u) can be used (fewer denoising
steps as u grows), preserving the invariant that compute and critic reliance
do not increase with OOD score.

Training-time overhead. Training remains dominated by diffusion-policy
optimization and critic learning. The reconstruction head introduces an
additional loss term and backward pass through the shared trunk; with
shared features, this overhead is typically a constant factor. Ensembles mul-
tiply only the decoder-head parameters (and their gradients) and can be
trained with shared-trunk minibatches to amortize representation learning
cost. From a systems perspective, this is attractive: we accept a modest
training-time constant factor to obtain a deployment-time rule that can re-
duce compute by disabling guidance and possibly reducing denoising steps
under shift.

Summary of the compute—safety mechanism. The gate simultane-
ously (i) limits sensitivity to critic error by setting n(s) = 0 when uy(s) > 7,
and (ii) can reduce deployment cost via sampler switching and step-budget
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reduction. The next section specifies an experimental plan designed to quan-
tify both effects: return improvements when guidance is reliable, and con-
trolled degradation (with reduced compute) when guidance is likely to be
unsafe.

9 Experimental Plan: Stress-Testing UG-SRDP Un-
der Support Mismatch and Critic Failure Modes

We outline an experimental program aimed at isolating the two claims im-
plicit in the gated design: (i) when guidance is reliable, UG-SRDP retains the
benefits of Q-guided diffusion relative to pure imitation; (ii) when guidance
is unreliable due to covariate shift or critic miscalibration, the OOD gate
prevents catastrophic degradation and yields a predictable compute-safety
trade-off.

Common protocol and reporting. Across all domains, we train the
SRDP diffusion policy and the critic(s) strictly offline on the training portion
of D. We reserve a held-out calibration split (disjoint from training) to fit the
conformal threshold 7 at target miscoverage o and to select any gating hyper-
parameters not determined by conformal calibration (e.g., slope parameters
for a soft gate). We report (a) average discounted return, (b) estimated OOD
encounter rate @SNdﬂ- [uy(s) > 7] along rollouts, (c) an application-specific
safety metric (catastrophe probability or cumulative cost when available),
and (d) inference compute proxies (average denoising steps and number of
critic-gradient calls per environment step). For statistical stability, we eval-
uate over multiple random seeds and report confidence intervals.

Baselines. We recommend comparing against: (i) mgc (pure behavior-
cloning diffusion, no guidance), (ii) ungated guided diffusion (fixed n = nyo,
i.e., always-on critic guidance), (iii) a conservative offline RL baseline (e.g.,
IQL/CQL) where applicable, and (iv) a naive OOD heuristic (e.g., density
model score without calibration) to separate the effect of calibrated gating
from generic uncertainty estimates. Where sampler switching is used, we
additionally compare to a fixed-step budget baseline with the same average
denoising steps to control for compute.

(1) Missing-goal Maze2D: goal shift and corridor-induced OOD.
Maze2D provides a clean mechanism for inducing covariate shift by chang-
ing the goal specification while retaining similar local dynamics. We propose
training on standard Maze2D datasets where goals occupy a subset of the
maze (or a subset of rooms), and evaluating on (a) unseen goal locations
in held-out rooms (far-OOD) and (b) goals near but not identical to train-
ing goals (near-OOD). Since diffusion policies often exploit critic gradients to
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“snap” actions toward high-value regions, this setting is well-suited to reveal-
ing critic overgeneralization beyond the demonstrated manifold. We mea-
sure: success rate (reaching the goal), wall-collision rate (as a proxy for catas-
trophic actions), and the alignment between the gate events {u(s) > 7} and
failure events (precision/recall or AUROC of uy, for failure prediction).

(2) Synthetic region removal in continuous-control D4RL. To sys-
tematically study support mismatch while keeping the environment fixed,
we recommend constructing modified offline datasets by removing transi-
tions whose states fall in a specified region R C S (or whose actions fall in
R C A). Concretely, for locomotion tasks (HalfCheetah/Hopper/Walker2d),
one can define R by joint-angle ranges, torso height, or velocity thresholds,
thereby creating “holes” in the data manifold. Evaluation then forces policies
to traverse R (e.g., via modified initial-state distributions or by adding exter-
nal perturbations that push the agent into the removed region). This permits
controlled sweeps over the OOD mass by varying the size/placement of R.
The key outcome is whether UG-SRDP degrades gracefully as Py _[s € R]
increases, while ungated guidance exhibits a sharper collapse due to extrap-
olation error.

(3) Critic-miscalibration stress tests: injected extrapolation error.
Because UG-SRDP is explicitly designed to mitigate critic error amplifica-
tion, we recommend experiments that deliberately corrupt the critic. We
consider three mechanisms: (i) Data thinning: train the critic on a strict
subset of D while keeping the diffusion model fixed, increasing critic vari-
ance out of support; (ii) Label corruption: add structured noise to Bellman
targets or rewards in a localized region of state space, mimicking reward
misspecification; (iii) Adversarial critic heads: train an auxiliary critic that
agrees with the true critic on in-support states but deviates elsewhere, and
use it for guidance. We then compare ungated guidance, UG-SRDP, and
mgc. The intended diagnostic is a phase transition: ungated guidance may
improve in-distribution performance yet catastrophically fail under miscali-
bration, whereas UG-SRDP should recover a bounded-loss behavior by dis-
abling guidance when u,, is large.

(4) Real-robot “forbidden zones”: explicit safety constraints under
offline shift. We propose a real-robot evaluation where costs are physi-
cally meaningful and can be monitored, such as a planar end-effector reach-
ing /pushing task with forbidden workspace regions (e.g., near joint limits,
a fragile object, or a no-go boundary). The offline dataset D is collected
under a conservative teleoperation or impedance controller that avoids the
forbidden region. At test time, we introduce distribution shift via new tar-
get placements or obstacles that increase the likelihood of encountering the
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boundary. We define c(s,a) € [0, 1] as an indicator (or smooth function) of
forbidden-zone violation and report both return and discounted cost. The
central question is whether calibrated gating reduces violation probability
without requiring online intervention.

Ablations: calibration, gate shape, and decoder choice. To at-
tribute performance to specific components, we recommend: (i) Calibra-
tion: compare conformal 7 at various a to uncalibrated fixed thresholds
and to thresholds tuned on test performance (oracle); (ii) Gate shape: hard
gate n(s) = nollu < 7] versus soft gates n(s) = noh(u) (e.g., logistic or
piecewise linear), and optionally a monotone u — T'(u) schedule; (iii) OOD
score construction: deterministic reconstruction residual, probabilistic neg-
ative log-likelihood, and ensemble variance (holding SRDP trunk capacity
fixed). We additionally record calibration diagnostics (empirical coverage
on the held-out split) and the correlation between wy(s) and downstream
failure, as the latter mediates whether gating events occur at semantically
meaningful times.

Expected outcomes. The experimental objective is not only to improve
mean return, but to demonstrate a consistent pattern: UG-SRDP matches
ungated guided diffusion when u,, indicates in-support states, and reverts
toward mpc-like behavior (with reduced violations and reduced compute)
when encountering far-OOD states or critic miscalibration.

10 Discussion & Limitations

The central role of uncertainty gating in UG-SRDP is to prevent critic-
error amplification by ensuring that the guidance coefficient 7(s) vanishes
on states deemed far from the data support. This design is most bene-
ficial precisely in the regimes where offline RL is brittle: covariate shift,
“holes” in the dataset support, and critics that extrapolate with high er-
ror. In such regimes, turning off guidance converts a potentially unbounded
degradation (since supygs, (r) [Q"(s,a) — Q¢(s,a)| is uncontrolled) into an
additive term proportional to the gate-activation probability Pluy,(s) > 7]
along the learned policy’s occupancy. From an algorithmic standpoint, this
is not merely a safety heuristic: it is a structural restriction that enforces a
decomposition between an “improve when reliable” mode and a “revert when
uncertain” mode.

At the same time, gating can hurt performance in regimes where leaving
the behavior manifold is necessary for high return and the critic is in fact
accurate there. In such cases, a hard gate n(s) = 0 for uy(s) > 7 may
over-regularize and effectively constrain the policy toward 7wgc, producing
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avoidable suboptimality. This limitation is intrinsic: in the strict offline set-
ting, if improved behavior requires visiting states with little or no support in
D, then any guarantee must trade off improvement against unidentifiability.
The best we can hope for is to expose this trade-off explicitly through 7 (or
through a soft gate h(u)), rather than implicitly through unstable optimiza-
tion of a miscalibrated critic.

A second limitation is that the calibration guarantee for 7 is distribution-
specific. Split conformal calibration yields marginal coverage Py qp, [ty (s) <
7] > 1 — « under exchangeability with the calibration split. This ensures
that, on data drawn like the dataset, the gate does not trigger more often
than intended. However, this statement does not extend to the evaluation
distribution diesy (Which is precisely where covariate shift occurs), nor does
it provide conditional coverage (e.g., coverage conditioned on task-relevant
events). Consequently, the calibrated a should be interpreted as controlling
false-positive gating on-support, not as providing a universal bound on false
negatives (i.e., failing to gate when guidance is unsafe) under arbitrary shift.
In particular, if u,, is only weakly correlated with critic error, then conformal
calibration controls the frequency of gating but does not guarantee that
gating triggers on the “right” states.

Relatedly, our choice of u,, as a reconstruction-based score is only a proxy
for the relevant quantity: the critic’s out-of-support error. Reconstruction
residuals can be low in states that are visually or geometrically familiar yet
semantically dangerous, and can be high for benign nuisance shifts (lighting,
textures, camera intrinsics) that do not meaningfully change the dynam-
ics or rewards. In such settings, gating can be either overly conservative
(unnecessary reversion to mpc) or insufficiently protective (failure to detect
critic unreliability). Probabilistic decoders and ensembles partially address
this by capturing epistemic uncertainty, but they do not resolve the fun-
damental mismatch between “state likelihood” and “value uncertainty.” An
important direction is to couple the gate to quantities more directly linked
to value estimation error, for example disagreement across critic ensembles,
Bellman residual-based scores, or hybrid scores that combine reconstruction
uncertainty with critic uncertainty in a calibrated manner.

Partial observability exacerbates these issues. In many practical do-
mains (notably vision-based control), the learner observes o; rather than
the Markov state s;, and the diffusion policy is conditioned on an encoder
representation. Then both Q4 and u,, are functions of observations (or latent
features), and reconstruction may be ill-posed: many distinct latent states
can produce similar observations, and conversely small observation shifts can
correspond to large changes in the underlying state. Under such aliasing, a
gate calibrated on observation-level reconstruction error may provide weak
protection against entering latent regions where the critic extrapolates. Ad-
dressing this likely requires temporal information (trajectory-level diffusion
or recurrent encoders), state-estimation modules, or gate definitions that
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operate on belief states rather than instantaneous observations. From the
theory side, one would need to replace the MDP assumptions with POMDP-
appropriate notions of occupancy and support, and to state explicitly what
is being calibrated (coverage in observation space versus coverage in latent
belief space).

It is also useful to situate UG-SRDP relative to pessimism and conser-
vative offline RL. Conservative methods such as CQL or lower-confidence-
bound style critics seek to make (), pessimistic on OOD actions, thereby
discouraging the policy from exploiting extrapolation. Our gating mecha-
nism is complementary: it controls whether the policy is allowed to follow
critic gradients at all in a given state, rather than modifying the critic glob-
ally. In particular, even a pessimistic critic can be wrong far OOD, and a
diffusion policy that follows its gradients may still be destabilized; conversely,
gating can be combined with conservative critic training to reduce both the
magnitude of extrapolation error and the sensitivity of the policy to whatever
error remains. Conceptually, UG-SRDP can be viewed as implementing a
state-dependent interpolation between improvement (guided diffusion) and
stability (imitation), whereas pessimism modifies the improvement signal
itself.

Finally, the approach inherits the limitations of the fallback policy: when
the dataset is low-quality or highly suboptimal, reverting to mgc may be safe
yet ineffective. Moreover, in tasks where safety requires actions outside the
behavior support (e.g., evasive maneuvers not present in D), gating cannot
synthesize such competence without additional structure. Thus, UG-SRDP
should be understood as a method for graceful degradation under support
mismatch, not as a mechanism that removes the need for coverage assump-
tions. We view the main open problems as (i) calibration under explicit co-
variate shift (beyond i.i.d. conformal guarantees), (ii) principled gate scores
tied to value uncertainty rather than reconstruction alone, and (iii) exten-
sions to vision and trajectory-level diffusion where both support and safety
are intrinsically temporal.

11 Conclusion

We introduced UG-SRDP, an uncertainty-gated variant of critic-guided dif-
fusion policies for strict offline reinforcement learning. The method is mo-
tivated by a simple structural observation: when a learned critic is used
as a guidance signal in a generative policy update, extrapolation error in
regions of state space with little or no dataset support can be amplified
by the policy optimization itself. UG-SRDP intervenes precisely at this
amplification pathway by making the guidance coefficient state-dependent,
n(s) = n(uy(s)), where uy is an OOD score derived from an SRDP re-
construction head and 7(-) is monotone non-increasing with a hard cutoff

25



n(s) = 0 when wuy(s) > 7. This produces an explicit separation between
(i) a guided improvement regime in which we allow the policy to exploit the
critic, and (ii) an imitation fallback regime in which we revert to a behavior-
regularized sampler (e.g. pure diffusion behavior cloning).

Our theoretical contribution is to make this decomposition quantitative
in both bandit and discounted MDP settings. In the contextual bandit case,
we bound test-time suboptimality by a sum of two interpretable terms: a
critic-error term scaled by the maximum guidance strength on in-support
states, and an additive term proportional to the probability mass of far-OOD
contexts under the test distribution. Concretely, the gate replaces an other-
wise uncontrolled dependence on supygs, () Sup, |@*(s,a) — Qy(s, a)| with a
bounded loss term of order Ry,ax poop. In the discounted MDP case, we ex-
tend the argument via an occupancy decomposition: we express performance
differences as expectations over dr, and isolate the contribution of OOD
encounters as an additive penalty of size at most 2?3‘;" Psdry, g [Up(s) = 7],
while the on-support guidance term scales as € Esvq, . [1(s)] up to an ex-
plicit factor depending on v and the stability /Lipschitz parameters of the
diffusion update. These statements formalize the intuition that gating does
not eliminate the inherent difficulty of support mismatch, but converts po-
tentially unbounded degradation into a controlled trade-off between (a) the
frequency with which the learned policy visits OOD regions and (b) the ex-
tent to which we rely on a possibly imperfect critic within the calibrated
in-support set.

A second theoretical contribution is the use of split conformal calibra-
tion to select the gating threshold 7 with a finite-sample guarantee under
the dataset state distribution. Given a calibration split of size m, we choose
T as an appropriate order statistic of {uy/(s;)}"; and obtain marginal cov-
erage Pyoqp[uy(s) < 7] > 1 — a without parametric assumptions on the
score distribution. While this does not control coverage under arbitrary
evaluation shift, it provides a principled mechanism to tune conservatism in
deployment while certifying that the gate does not spuriously over-trigger
on in-distribution states beyond the user-chosen miscoverage level «.

We also clarify the limits of what strict offline learning can guarantee in
the presence of far-OOD test mass. By an unidentifiability construction, one
can exhibit pairs of environments that agree on the support of the offline
data distribution yet disagree on rewards (or optimal actions) in unobserved
regions. Any offline algorithm must then incur an additive loss proportional
to the probability of encountering those regions. This lower bound matches
the qualitative form of the poop (or occupancy-level) term in our gated
bounds and supports the interpretation of UG-SRDP as graceful degradation:
when the test distribution forces the policy into unobserved regimes, the best
achievable guarantee necessarily pays an additive price that depends on how
often this occurs.

On the practical side, UG-SRDP is a minimal modification of existing
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SRDP /Diffusion-QL style pipelines: we retain diffusion-based action gener-
ation, double-critic learning, and behavior cloning objectives, and add (i)
a reconstruction head used only to compute wuy(s) and (ii) a deployment-
time rule mapping uy(s) to guidance and (optionally) to a sampler switch
or reduced denoising budget. This yields a favorable compute-robustness
trade-off: the expected inference cost becomes E[T'(s)] = TyuideaPlty <
7| + TecPluy > 7], which can be substantially smaller than always running
a fully guided sampler, while simultaneously reducing the risk of catastrophic
critic-driven errors in OOD states.

Several directions appear technically natural and practically important.
First, vision-based control requires that both the critic and the gate operate
on representations induced by high-dimensional observations; here we expect
that reconstruction-based scores should be augmented with representation
uncertainty and temporal consistency, potentially via sequence models or
latent-state estimators. Second, trajectory-level diffusion policies offer a di-
rect way to incorporate temporal constraints (including safety constraints)
into the generative process; extending uncertainty gating to operate on tra-
jectory prefixes or belief states may better align the gate with the onset of
compounding error. Third, calibration beyond the i.i.d. split conformal set-
ting remains open: we would like guarantees that remain meaningful under
explicit covariate shift, for example by using weighted conformal schemes,
conditional calibration on task-relevant strata, or hybrid gates that incorpo-
rate critic disagreement/Bellman residuals. Finally, the iterative denoising
cost of diffusion remains a barrier in real-time control; integrating UG-SRDP
with accelerated samplers, and in particular with consistency distillation to
obtain few-step or one-step policies while preserving the gated guidance se-
mantics, is an immediate avenue for making the method more deployable.

In summary, UG-SRDP provides a principled mechanism for controlling
critic reliance in offline diffusion policies via a calibrated, state-dependent
gate. The resulting theory makes explicit the unavoidable role of OOD oc-
cupancy and the bounded nature of any strict offline improvement guarantee,
while the algorithm offers a practical path toward robust deployment under
distribution shift with predictable failure modes and tunable conservatism.

27



	Introduction
	Preliminaries
	Problem Formulation: OOD-safe Offline Control
	UG-SRDP Algorithm: Uncertainty-Gated SRDP for Offline Control
	Theory I (Upper Bounds): Gated Performance Decomposition
	Theory II (Lower Bounds / Impossibility): Unidentifiability of Far-OOD Values
	Calibration Guarantees: Split Conformal Thresholds for Reconstruction-Based OOD Scores
	Complexity & Systems Considerations: Compute–Safety Trade-offs Under Gated Sampling
	Experimental Plan: Stress-Testing UG-SRDP Under Support Mismatch and Critic Failure Modes
	Discussion & Limitations
	Conclusion

