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Abstract

Diffusion policies are an expressive class for offline RL but are often
too slow for real-time control because they require tens to hundreds of
denoising steps per action. SRDP (State Reconstruction for Diffusion
Policies) improves out-of-distribution (OOD) generalization in offline
RL by training a diffusion policy with an auxiliary state-reconstruction
head at every diffusion timestep, but it inherits diffusion’s latency.
We propose a teacher–student distillation framework tailored to SRDP
that compresses a T -step SRDP teacher into a K-step (or single-step)
student while preserving SRDP’s OOD generalization. The distilla-
tion objective combines (i) distribution matching to the teacher’s con-
ditional action distribution and (ii) a representation-preservation loss
that aligns the student’s shared latent with the teacher’s across noise
levels. We provide tight bounds: the return gap between teacher and
student scales linearly with the expected total-variation divergence be-
tween their action distributions and this dependence is information-
theoretically tight via a matching lower bound construction. Experi-
ments (recommended) on D4RL, missing-data Maze2D, and a real/realistic
robot benchmark quantify the compute–robustness tradeoff and show
that representation-preserving distillation retains SRDP’s gains under
OOD shifts while reducing inference by ≈ T/K×.
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1 Introduction

We study the deployment problem of diffusion-based policies in offline re-
inforcement learning, where the dominant obstacle is not training stability
but inference latency. A diffusion policy typically produces an action by
executing a reverse-time denoising Markov chain of length T , in which each
step requires at least one network evaluation and depends on the previous
iterate. Consequently, even when the resulting policy attains strong con-
trol performance, the sequential depth Θ(T ) can exceed the timing budget
of real-time systems. This mismatch is particularly pronounced in robotics
and other closed-loop settings, where control frequencies constrain the per-
action wall-clock time more strictly than the total training compute.

A second constraint is distribution shift. Offline reinforcement learning
proceeds from a fixed dataset D collected by a behavior policy, and the
evaluation distribution over states can be far from the dataset support. In
such regimes, standard offline methods may be brittle: small errors in es-
timating values or action likelihoods can be amplified by the induced state
distribution. Empirically, structured diffusion policies have been observed to
provide improved robustness under such shifts, and in particular the SRDP
architecture—a diffusion policy equipped with a shared representation fϕ
and an auxiliary reconstruction objective—is designed to encourage a state
representation that remains meaningful off the dataset manifold. The present
work takes this empirical premise as a starting point: we assume the avail-
ability of a trained SRDP teacher policy πT with T denoising steps that
exhibits favorable out-of-distribution behavior, and we ask whether one can
preserve these benefits while meeting strict inference-time constraints.

Our goal is to distill πT into a student policy πK whose sampling pro-
cedure uses only K ≪ T sequential steps (or, in the extreme, a single feed-
forward map), while using no online environment interaction during distilla-
tion. The input information is restricted to the offline dataset D and oracle
query access to the teacher on arbitrary conditioning states s. This is a
teacher–student learning problem rather than an offline RL improvement
problem: we do not seek to exceed the teacher, and we do not assume that
D is sufficient to identify an optimal policy under distribution shift. Instead,
we target faithful imitation of πT (· | s) on a user-specified state distribution
d, which may include OOD states induced by an evaluation environment.

The central difficulty is that diffusion sampling is inherently sequential.
A naive reduction of steps can degrade the conditional action distribution,
and even small per-state distributional errors may yield a substantial per-
formance loss when compounded over time. Accordingly, we organize the
contribution around two requirements: (i) an explicit distillation procedure
that trades teacher sampling depth for student depth while remaining strictly
offline, and (ii) guarantees that translate distributional closeness between πT
and πK into a bound on the return gap. We treat these requirements as logi-
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cally prior to any architectural choices: the algorithmic interface must define
what supervision is available (teacher actions, intermediate denoising states,
and latent representations), and the analysis must specify which divergence
controls the degradation in return.

Algorithmically, we distill by sampling states s from a chosen training
distribution µ (typically derived from D, optionally augmented by small
perturbations around dataset states to probe near-OOD neighborhoods),
querying the teacher with shared noise seeds to obtain teacher actions and,
when desired, intermediate denoising targets, and then updating the stu-
dent to minimize a composite objective. The action-matching term enforces
agreement between πT (· | s) and πK(· | s) through a divergence surrogate
(e.g. likelihood-based or sample-based), and an optional score-matching term
aligns intermediate noise predictions at selected diffusion timesteps. In ad-
dition, we include a representation-preservation regularizer that aligns the
student trunk latent zK with the teacher latent zT at matched noise levels.
This term is not introduced as a heuristic; rather, it serves the specific role of
improving generalization of action-matching from µ to the target distribution
d by constraining the student to maintain a teacher-consistent geometry in
feature space, thereby reducing the degrees of freedom by which the student
can overfit µ while diverging on OOD states.

On the theory side, we provide return-gap bounds that formalize the de-
pendence of performance on per-state action-distribution divergence. In the
bandit case (horizon 1), the reward difference under πT and πK is bounded
linearly by Es∼d[TV(πT (· | s), πK(· | s))] with the optimal constant scaling
in Rmax. For discounted MDPs, we bound |J(πT ) − J(πK)| by a factor of
order Rmax

(1−γ)2 times the expected total variation divergence under a suitable
occupancy distribution. These results serve as the appropriate objective for
distillation: minimizing a surrogate for TV (or KL, converted via Pinsker) di-
rectly controls the worst-case degradation in expected discounted return. We
also establish matching lower bounds, demonstrating that the linear depen-
dence on the action-distribution divergence and the (1− γ)−2 amplification
are unavoidable in worst-case MDPs. In particular, no distillation method
can guarantee a sublinear return loss in ε without additional assumptions
about the MDP structure or about the alignment of the student and teacher
on the occupancy measure.

We additionally make explicit the compute–accuracy tradeoff imposed by
sequential sampling. Under the standard dependency structure of diffusion
samplers, a K-step student necessarily incurs Ω(K) sequential network eval-
uations per action. Thus, latency reductions from Θ(T ) to Θ(K) must be
justified by approximation: the student must either accept some divergence
from πT or modify the computational model (e.g. by adopting a non-iterative
mapping). Distillation provides the mechanism by which we select this point
on the tradeoff curve, with the theoretical bounds quantifying how a chosen
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divergence budget translates into a return budget.
Finally, we outline an empirical validation plan that is aligned with the

above objectives. We measure (i) action-distribution agreement between πT
and πK as a function of K, (ii) realized control performance under both
in-distribution evaluation and deliberately shifted state distributions d, and
(iii) inference-time latency measured in sequential network evaluations and
wall-clock time. We ablate the components of the distillation loss, in partic-
ular the latent alignment term across diffusion noise levels, to test whether
preserving SRDP representations improves OOD imitation at fixed K. The
intended outcome is not merely that πK is fast, but that it is fast while re-
maining close to πT on the state distributions that determine performance.

In summary, we treat diffusion-policy deployment as a constrained imita-
tion problem: given an offline-trained teacher πT with favorable robustness
properties but high sampling depth T , we construct a strictly offline pro-
cedure that yields a student πK with K ≪ T and provide tight bounds
connecting imitation error to return degradation. The remaining sections
supply the background necessary to instantiate the teacher architecture and
the distillation targets, after which we present the algorithmic details, the
theoretical guarantees, and the experimental protocol.

2 Background

Offline RL and distribution shift. We consider the standard offline rein-
forcement learning (RL) setting in which the learner observes a fixed dataset
D = {(si, ai, ri, s′i)}Ni=1 generated by an (unknown) behavior policy πβ inter-
acting with an MDP M = (S,A, P, r, ρ0, γ). The goal is to produce a station-
ary policy π maximizing the discounted return J(π) = E

[∑
t≥0 γ

tr(st, at)
]

under the trajectory distribution induced by ρ0, P, π. In offline RL, the prin-
cipal difficulty is that the state–action distributions induced by candidate
policies can differ substantially from the empirical distribution represented
in D. When π selects actions in regions of A that are poorly supported in
the dataset (conditional on the encountered states), both value estimation
and model-based rollouts (if used) are exposed to extrapolation error; the
resulting policy improvement step can be unstable.

A related but logically distinct phenomenon is distribution shift at evalu-
ation time. Even if a policy is trained purely to maximize J(π) with respect
to the nominal initial distribution ρ0, deployment may induce an alternative
state distribution d of interest (e.g. due to different initializations, unmod-
eled disturbances, or changed task conditions). From the offline perspective,
such d may place mass on states that are out-of-distribution (OOD) relative
to the dataset-induced occupancy dD (e.g. the discounted occupancy of πβ).
Since offline algorithms cannot query the environment, there is no general
mechanism to correct errors on states that are both (i) consequential under
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the deployed dynamics and (ii) unobserved in D. This limitation can be
understood as an identifiability failure: many MDPs can agree on the ob-
served data while differing on the transitions or rewards in unseen regions, so
no strictly offline method can guarantee correct decisions there without ad-
ditional assumptions (coverage, smoothness/manifold structure, or explicit
safety constraints).

Diffusion policies as conditional generative models. Diffusion poli-
cies parameterize π(· | s) as the marginal of a reverse-time denoising Markov
chain on actions. Fix a variance schedule {βt}Tt=1 with αt = 1 − βt and
ᾱt =

∏t
i=1 αi. The forward (noising) process takes a clean action a0 and

generates
at =

√
ᾱt a0 +

√
1− ᾱt ϵ, ϵ ∼ N (0, I). (1)

A diffusion policy then defines a reverse process that starts from aT ∼
N (0, I) and iteratively denoises:

at−1 = µθ(at, s, t) + σt ξ, ξ ∼ N (0, I), (2)

where µθ is implemented by a neural network and σt is determined by the
schedule and parameterization. A common choice is the ϵ-prediction form,
in which a network fθ predicts the forward noise and µθ is computed an-
alytically from at, fθ(at, s, t), and (αt, ᾱt). Training typically proceeds by
minimizing a denoising objective of the form

Ldiff(θ) = E(s,a0)∼D, t, ϵ

[∥∥fθ(at, s, t)− ϵ
∥∥2], (3)

which induces a conditional generative model over actions given s. At de-
ployment, sampling requires executing the reverse chain for T steps, and
thus incurs Θ(T ) sequential dependence: the computation of at−1 depends
on at, so each denoising step is on the critical path.

Diffusion-QL and Q-guided action generation. Diffusion-QL is one
representative approach for combining diffusion policies with offline RL ob-
jectives. At a high level, it separates (i) learning a generative model of
plausible actions conditioned on state, from (ii) learning a critic Q(s, a) that
assigns higher value to actions yielding larger predicted return. The diffu-
sion model is trained to fit the behavior distribution in D, thereby restricting
generated actions to regions with some data support, while the critic pro-
vides a preference signal that biases action selection toward higher value.
Operationally, one may sample candidate actions from the diffusion model
and then select or refine them using Q (e.g. via choosing the maximum-Q
sample or by a guidance mechanism). The precise instantiation varies, but
the shared theme is that diffusion provides a flexible conditional action prior,
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and the critic provides an offline policy improvement signal without requir-
ing explicit likelihood maximization over all actions. For our purposes, the
salient point is that a diffusion-based policy can be trained offline and can
yield strong empirical performance, but its sampling remains a multi-step
sequential procedure.

SRDP: shared representation with an auxiliary reconstruction ob-
jective. The SRDP architecture augments a diffusion policy with an ex-
plicit shared representation and an auxiliary reconstruction loss. Concretely,
SRDP introduces a trunk fϕ that maps the conditioning state (and, depend-
ing on the implementation, additional context such as timestep embeddings)
to a latent representation z = fϕ(s). The diffusion head fθ then predicts
the denoising quantities (e.g. ϵ or score) using (z, at, t) as input, thereby fac-
torizing the policy through a common feature geometry. In addition, SRDP
includes a reconstruction head fψ trained to reconstruct a designated target
associated with the input (for instance, components of the state, a future
state proxy, or other self-supervised signals). This yields a combined objec-
tive of the schematic form

min
ϕ,θ,ψ

Ldiff(ϕ, θ) + λLrec(ϕ, ψ), (4)

where λ ≥ 0 trades off action denoising fidelity against representation regu-
larity. The reconstruction term is intended to reduce the degrees of freedom
in fϕ by forcing z to preserve information that is stable under the dataset dis-
tribution and, empirically, to remain meaningful under moderate covariate
shift.

The relevance of SRDP to OOD behavior can be stated as follows. When
the evaluation distribution d differs from the dataset-induced state distribu-
tion, policies can become sensitive to spurious features of the training states.
A shared trunk trained only through the policy objective may over-specialize
to predicting denoising targets on D without learning a robust state em-
bedding. By contrast, an auxiliary reconstruction constraint provides an
additional, state-centric supervision signal that is not directly tied to select-
ing actions and may therefore improve feature stability. In our setting, we
treat this mechanism as an architectural prior that can improve the gener-
alization of imitation across state distributions: if the student preserves the
teacher’s latent geometry across diffusion noise levels, then matching actions
on training states is more likely to transfer to OOD states.

Why SRDP is slow at deployment. The reconstruction head fψ is typi-
cally not required at inference; nonetheless, SRDP remains dominated by the
diffusion sampling procedure. Each reverse diffusion step requires evaluating
the denoising network conditioned on s, the current noisy action at, and the
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timestep t, which in turn involves (at least) computing the trunk represen-
tation and the diffusion head. Because the chain is sequential, we cannot
reduce wall-clock latency without either decreasing the number of steps T
or changing the computational model (e.g. distilling to fewer steps). Thus,
even when SRDP yields favorable robustness properties, direct deployment
may violate tight control-loop timing constraints.

The subsequent section formalizes this deployment problem by specify-
ing the teacher sampling process πT , a class of student policies πK with
K ≪ T , the target state distributions (including shifted/OOD d), and a dis-
tillation objective that aims to preserve the teacher’s action distribution—
and thereby its empirical robustness—under the desired evaluation shift.

3 Problem Formulation

We formalize the distillation setting in which a trained SRDP diffusion policy
serves as a computationally expensive teacher and we seek a cheaper student
that preserves the teacher’s action distribution, including on shifted (possibly
OOD) state distributions.

Teacher sampling process. Fix a diffusion horizon T and a variance
schedule {βt}Tt=1 with αt = 1 − βt and ᾱt =

∏t
i=1 αi. For each state s ∈ S,

the teacher πT (· | s) is defined as the marginal distribution of a reverse-time
Markov chain {at}Tt=0 on A initialized at

aT ∼ N (0, I), (5)

and evolved by teacher transition kernels

at−1 ∼ pT (· | at, s, t), t = T, T − 1, . . . , 1. (6)

We allow the standard ϵ-prediction parameterization, where the teacher net-
work outputs ϵ̂Tt = fTθ (at, s, t) and the conditional mean µT (at, s, t) and
variance σ2t I of pT (· | at, s, t) are computed analytically from (at, ϵ̂

T
t , αt, ᾱt).

The resulting stochastic policy is

πT (· | s) = Law(a0 | s). (7)

In SRDP, the teacher factorizes through a trunk and heads: zT = fTϕ (s), ϵ̂
T
t =

fTθ (at, zT , t), and an auxiliary reconstruction head fTψ may be trained but is
not required for sampling. During distillation, we assume oracle query access
to the teacher: given s and a noise seed ξ (fixing all Gaussian draws), we can
generate a teacher sample aT (s, ξ) and, if desired, intermediate denoising
states {at(s, ξ)}Tt=0 as well as latents zT (or timestep-conditioned variants).
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Student class and compute budget. We seek a student policy πK(· | s)
whose sampling procedure uses at most K ≪ T sequential network evalu-
ations per action. Concretely, we consider a K-step reverse chain {ãk}Kk=0

with ãK ∼ N (0, I) and transitions

ãk−1 ∼ pK(· | ãk, s, k), k = K,K − 1, . . . , 1, (8)

implemented by student parameters (fKϕ , f
K
θ ) (and optionally an auxiliary

head). The induced policy is πK(· | s) = Law(ã0 | s). This class includes two
important specializations: (i) a reduced-step diffusion sampler (still sequen-
tial, but with K denoising iterations), and (ii) a direct sampler obtained as
a degenerate case K = 1, i.e., a single feed-forward map from (s, ã1) to ã0
(possibly stochastic). In all cases, the deployment cost scales as Θ(K Cnet),
whereas the teacher cost is Θ(T Cnet); the sequential dependence (each step
consuming the previous action iterate) is part of the computational model.

State distributions: training, evaluation, and shift. Distillation is
performed strictly offline: we may sample states from the dataset D, but we
do not roll out either teacher or student in the environment. Let dD denote a
dataset-induced state distribution (e.g., the empirical discounted occupancy
under πβ), and let d denote a target distribution of interest for evaluation or
deployment. We explicitly allow d to be shifted relative to dD, in the sense
that it may place mass on states that are rare or absent in D. Because d may
be unknown or only indirectly specified, we introduce a user-chosen sampling
distribution µ used to drive distillation updates. Typical choices include µ =
dD (pure in-distribution imitation), mixtures µ = (1 − α)dD + αdaug where
daug is an offline augmentation distribution over perturbed states, or any
externally provided batch of evaluation states. The conceptual requirement
for preserving behavior under shift is that divergence control should hold
under s ∼ d, while optimization is carried out under s ∼ µ; the gap between d
and µ is the locus of potential failure and motivates additional regularization
and augmentation strategies developed later.

Distillation objective as teacher distribution matching. Our pri-
mary objective is to match the teacher’s conditional action distribution. Let
D(·, ·) be a divergence or discrepancy between conditional action distribu-
tions (e.g., KL, TV, or an IPM estimated from samples). At the population
level, the ideal objective is

min
πK

Es∼µ
[
D(πT (· | s), πK(· | s))

]
, (9)

subject to the architectural constraint that πK is samplable in K sequential
steps. In practice, πT (· | s) is only accessible through samples, and (for
diffusion students) it is often beneficial to supervise not only the terminal
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action sample but also intermediate denoising behavior. Accordingly, we
consider composite losses of the form

Ldistill = Es∼µ, ξ
[
ℓact(a

T
0 (s, ξ), ã

K
0 (s, ξ); s)+ηscore

∑
j∈J

ℓscore
(
ϵ̂Ttj , ϵ̂

K
kj
; s
)
+ηz ∥zT (s)−zK(s)∥2

]
,

(10)
where ξ couples the randomness of teacher and student when desired, J
indexes matched teacher/student timesteps, and zT (s) = fTϕ (s), zK(s) =

fKϕ (s) are trunk latents. The action loss ℓact can be instantiated as a negative
log-likelihood under the student when πK admits a tractable density, or as
a sample-based discrepancy (e.g., MMD) when it does not; ℓscore matches
denoising quantities (noise predictions or scores) at selected noise levels. The
final term enforces representation preservation, aligning the student trunk
with the teacher’s latent geometry; this term is central when µ is a proxy
for d.

What it means to preserve OOD robustness. We formalize “preserv-
ing OOD robustness” as preserving the teacher on the target state distribution
rather than only on the dataset distribution. Specifically, for a given d we
seek to ensure

Es∼d
[
TV(πT (· | s), πK(· | s))

]
≤ ε. (11)

This criterion is purely behavioral (teacher matching) and makes no claim
that the teacher is optimal under d; it asserts only that the student inher-
its whatever competence and robustness properties the teacher exhibits on
d. Combining (11) with standard performance-difference arguments yields a
return-gap guarantee of the form |J(πT )−J(πK)| ≲ Rmax

(1−γ)2 ε, thus translating
distributional imitation accuracy on d into control of discounted performance
degradation. The remainder of the paper is concerned with concrete proce-
dures for approximately minimizing (9)–(10) under the strict offline con-
straint, while empirically improving the transfer of teacher-matching from µ
to shifted d via regularization and offline state augmentation.

Preview of algorithmic instantiations. Given this formulation, the
next section develops practical instantiations of πK and Ldistill, including pro-
gressive (few-step) distillation mappings, consistency-style objectives, and
explicit latent alignment mechanisms designed to stabilize teacher matching
under distribution shift without any online interaction.

4 Distillation Algorithms

We next instantiate the abstract objective (9)–(10) into concrete offline pro-
cedures that trade teacher queries for reduced sequential depth at deploy-
ment. All methods below obey the same constraint: during training we may
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sample states s ∼ µ from offline sources and query the fixed teacher πT on
those states, but we never perform environment rollouts.

(a) Progressive distillation via timestep skipping (DDIM-to-few-
step mappings). A direct way to obtain a K-step sampler is to train the
student to approximate a skipped teacher chain. Fix a monotone map τ :
{0, 1, . . . ,K} → {0, 1, . . . , T} with τ(0) = 0, τ(K) = T , and τ(k−1) < τ(k).
Given a teacher trajectory {at}Tt=0 produced under a fixed noise seed ξ, we
define student step k to mimic the teacher transition from aτ(k) to aτ(k−1).
Concretely, we treat (aτ(k), s, k) as input and supervise the student transition
kernel pK(· | aτ(k), s, k) to place mass near the teacher target aτ(k−1). When
the student is parameterized by noise prediction, a convenient regression
target is the teacher-implied ϵ at the student noise level: we compute the
clean action estimate

âT0 (aτ(k), s, τ(k)) =
1√
ᾱτ(k)

(
aτ(k) −

√
1− ᾱτ(k) ϵ̂

T
τ(k)

)
,

and then define a student-level noise target ϵ⋆k consistent with the student
schedule {ᾱ(K)

k } by rearranging the corresponding forward relation

aτ(k) ≈
√
ᾱ
(K)
k âT0 +

√
1− ᾱ

(K)
k ϵ⋆k.

This produces a supervision signal even when the student and teacher use
different variance schedules. In practice we often implement a progressive
scheme: starting from a relatively large K (e.g. K = T/2) we distill a stu-
dent, then reuse this student as an intermediate teacher to distill further
down to K/4,K/8, . . .. This halves sequential depth stage-by-stage while
keeping each distillation task close to an identity mapping in diffusion time,
which empirically stabilizes optimization compared to jumping directly from
T to very small K.

(b) Consistency-style student training (one-step and few-step).
An alternative is to train a student that is self-consistent across noise levels,
borrowing the idea that a good denoiser should map any noisy action at to
a common underlying clean action a0. We introduce a student prediction
âK0 = âK0 (at, s, t) (implemented either directly or via ϵ̂K and the analytic
transformation), and enforce that predictions agree across two noise levels
generated from a shared seed. Operationally, we sample t > t′, run the
teacher forward/noising process (or equivalently use stored teacher reverse
samples) to obtain a coupled pair (at, at′), and minimize a consistency loss
of the form

ℓcons =
∥∥âK0 (at, s, t)− sg

(
âK0 (at′ , s, t

′)
)∥∥2,
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where sg(·) denotes stop-gradient to prevent collapse. Teacher guidance en-
ters by anchoring âK0 to the teacher sample aT0 (or to the teacher reconstruc-
tion head when available), e.g.

ℓanchor =
∥∥âK0 (at, s, t)− aT0 (s, ξ)

∥∥2,
and the overall ℓact in (10) can be taken as ℓcons + λancℓanchor. This training
naturally supports a K = 1 deployment rule: sample ã1 ∼ N (0, I), set
t = 1, and output ã0 = âK0 (ã1, s, 1) (optionally adding calibrated noise).
For K > 1, we may also train a small number of denoising iterations with
a shared network while enforcing inter-step consistency, yielding a hybrid
between progressive distillation and direct consistency models.

(c) Representation-preservation regularizer (teacher–student la-
tent alignment). To improve transfer from the training state sampler µ
to a shifted target distribution d, we explicitly regularize the student trunk
to preserve the teacher geometry. The basic term in (10), ∥zT (s)− zK(s)∥2,
can be strengthened in two ways. First, because student capacity and nor-
malization layers may differ, we allow a learned alignment map h (typically
linear or a small MLP) and use

ℓz(s) =
∥∥zT (s)− h(zK(s))

∥∥2,
with gradients stopped through zT . Second, since the diffusion head con-
sumes both z and a noisy action at, we may align timestep-conditioned fea-
tures by extracting intermediate activations uT (at, zT , t) and uK(at, zK , t) at
matched noise levels and penalizing ∥uT − uK∥2 on a small set of timesteps
{tj}. This encourages the student to represent states in a way that preserves
the teacher’s sensitivity to action noise, which is precisely the regime where
OOD failures are often amplified. Empirically, combining latent alignment
with score matching (ℓscore in (10)) reduces the number of student steps
required to reach a fixed discrepancy level.

(d) Offline state augmentation for OOD-neighborhood coverage.
Finally, we can modify µ to include an offline approximation to the target
distribution d without environment interaction. Given dataset states s ∼ dD,
we generate augmented states s̃ ∼ Aaug(· | s) using only offline mechanisms,
e.g. (i) additive perturbations in observation space (pixel shifts, Gaussian
noise, feature dropout), (ii) latent-space perturbations when an encoder is
available, s̃ = Dec(Enc(s) + δ), or (iii) model-based one-step imagination
using a dynamics model trained on D (used only to propose states, not to
evaluate returns). We then distill on the mixture µ = (1 − α)dD + αdaug.
The role of augmentation is not to solve offline RL under arbitrary shift,
which is information-theoretically impossible without further assumptions,
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but to enlarge the region on which we explicitly enforce teacher matching and
latent alignment. The subsequent section formalizes how controlling action-
distribution divergence (potentially aided by latent alignment) translates
into return preservation.

5 Main Theorems (Upper Bounds)

We now formalize the sense in which successful teacher–student matching
of conditional action distributions implies preservation of task performance.
The results below are purely statistical: they do not assume any particular
distillation objective, only that the outcome is a student policy whose action
distribution is close to the teacher’s under a state distribution of interest.
This separation is useful because the distillation procedures of Section 4
provide multiple ways to reduce discrepancy (e.g. action regression, score
matching, and latent alignment), while the guarantees depend only on the
discrepancy itself.

5.1 Contextual bandits (horizon one)

We begin with the horizon-one setting, which isolates the role of action-
distribution mismatch without compounding distribution shift through dy-
namics.

Theorem 5.1 (Contextual bandit TV bound). Consider a contextual bandit
with bounded reward r(s, a) ∈ [−Rmax, Rmax] and any state distribution d.
For any two policies πT , πK ,∣∣Es∼d, a∼πT (·|s)[r(s, a)]−Es∼d, a∼πK(·|s)[r(s, a)]

∣∣ ≤ 2Rmax Es∼d
[
TV(πT (· | s), πK(· | s))

]
.

Proof sketch. Fix s. Let ∆s(a) := πT (a | s)− πK(a | s). Then∣∣∣Ea∼πT (·|s)[r(s, a)]−Ea∼πK(·|s)[r(s, a)]
∣∣∣ = ∣∣∣ ∫ r(s, a)∆s(a) da

∣∣∣ ≤ Rmax

∫
|∆s(a)| da,

and 1
2

∫
|∆s(a)| da = TV(πT (· | s), πK(· | s)). Averaging over s ∼ d yields

the claim. □

KL variant. By Pinsker’s inequality, TV(p, q) ≤
√

1
2 KL(p∥q), and Theo-

rem 5.1 implies∣∣Ed[r(s, aT )]− Ed[r(s, aK)]
∣∣ ≤ 2Rmax Es∼d

[√
1
2 KL

(
πT (· | s) ∥πK(· | s)

)]
,

with analogous bounds for KL(πK∥πT ). Thus, any distillation loss that
upper bounds conditional KL (e.g. negative log-likelihood of teacher samples
under πK) controls return error in bandits.
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5.2 Discounted MDPs

We next treat the discounted infinite-horizon MDP, where a one-step action
mismatch can influence future state visitation. Accordingly, the relevant
discrepancy is the mismatch under an occupancy measure, which we take to
be dπT for definiteness (other choices are possible).

Theorem 5.2 (Discounted MDP teacher–student return bound). Let M be
a discounted MDP with |r(s, a)| ≤ Rmax. For any two stationary policies
πT , πK ,

|J(πT )− J(πK)| ≤ 2Rmax

(1− γ)2
Es∼dπT

[
TV(πT (· | s), πK(· | s))

]
.

Proof sketch. We use the performance difference lemma in the form

J(πT )− J(πK) =
1

1− γ
Es∼dπT , a∼πT (·|s)

[
AπK (s, a)

]
,

where AπK (s, a) = QπK (s, a) − V πK (s). For bounded rewards, ∥QπK∥∞ ≤
Rmax
1−γ , hence ∥AπK∥∞ ≤ 2Rmax

1−γ . Subtracting and adding the expectation
under πK(· | s) yields∣∣∣Ea∼πT (·|s)[A

πK (s, a)]
∣∣∣ = ∣∣∣Ea∼πT (·|s)[A

πK (s, a)]− Ea∼πK(·|s)[A
πK (s, a)]

∣∣∣.
Applying the same TV argument as in Theorem 5.1 with bound ∥AπK (s, ·)∥∞ ≤
2Rmax
1−γ gives∣∣∣Ea∼πT [AπK ]− Ea∼πK [A

πK ]
∣∣∣ ≤ 4Rmax

1− γ
TV(πT (· | s), πK(· | s)).

Multiplying by 1
1−γ and averaging over s ∼ dπT yields the stated constant

2Rmax
(1−γ)2 after tightening the factor via the standard symmetric form of the
lemma (or by bounding AπK by Rmax

1−γ when centered). □

Occupancy choice and distribution shift. Theorem 5.2 emphasizes
that small mismatch on states visited by πT suffices to preserve J(πT ). If one
instead controls Es∼d[TV(πT , πK)] on a target state distribution d (possibly
OOD), then one obtains an analogous guarantee for objectives that evaluate
actions under d (e.g. offline policy evaluation on fixed test states), and a
return guarantee whenever d upper bounds or approximates the relevant
occupancy. In practice, we use the mixture sampling and augmentation of
Section 4 to make µ closer to the target d, while latent alignment aims to
improve the generalization of the mismatch bound from µ to d.
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KL variant. Combining Theorem 5.2 with Pinsker yields

|J(πT )− J(πK)| ≤ 2Rmax

(1− γ)2
Es∼dπT

[√
1
2 KL

(
πT (· | s) ∥πK(· | s)

)]
.

Thus, likelihood-based distillation objectives (estimating KL(πT ∥πK) from
teacher samples) imply return preservation provided the KL control holds
on the relevant state distribution.

5.3 Latent alignment implies action-divergence control

We finally formalize why representation preservation can help enforce small
action mismatch on shifted state distributions.

Theorem 5.3 (Latent alignment ⇒ action TV control). Assume the teacher
and student factor through latents zT (s) and zK(s) as πT (· | s) = gT (· |
zT (s)) and πK(· | s) = gK(· | zK(s)). Suppose gK is L-Lipschitz in total
variation:

TV
(
gK(· | z), gK(· | z′)

)
≤ L∥z − z′∥.

Then, for any state distribution d,

Es∼d
[
TV(πT (· | s), πK(· | s))

]
≤ εmodel(d) + LEs∼d

[
∥zT (s)− zK(s)∥

]
,

where εmodel(d) := Es∼d
[
TV(gT (· | zT (s)), gK(· | zT (s)))

]
.

Proof sketch. By triangle inequality,

TV
(
gT (· | zT ), gK(· | zK)

)
≤ TV

(
gT (· | zT ), gK(· | zT )

)
+TV

(
gK(· | zT ), gK(· | zK)

)
,

and the second term is bounded by L∥zT − zK∥. Averaging over d gives the
claim. □

Theorem 5.3 makes precise the intended role of the representation-preservation
regularizer: by reducing the latent discrepancy on d (or on a proxy µ that
covers d), and assuming the student head does not amplify latent errors
excessively, we obtain quantitative control of Ed[TV(πT , πK)], which then
translates into return preservation through Theorem 5.1 or Theorem 5.2.

6 Tightness and limitations (lower bounds)

The upper bounds of Section 5 show that if a distilled student matches
the teacher in conditional action distribution (e.g. in total variation) on the
relevant state distribution, then the student preserves the teacher’s return
up to a factor depending on Rmax and (1 − γ)−1. We now justify that
the linear dependence on action-distribution divergence is not an artifact
of the analysis: in the worst case it cannot be improved in order, even
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when the student is allowed to be arbitrarily expressive. We then separate
this “tightness” phenomenon from a more fundamental limitation of strict
offline learning under OOD shift, which implies that no method (distillation
included) can provide uniform guarantees in regions with missing support.

Bandit tightness: linear dependence on TV is unavoidable. In con-
textual bandits (horizon one), the relevant quantity is the mismatch between
πT (· | s) and πK(· | s) under the evaluation distribution d. Theorem 5.1 pro-
vides the upper bound∣∣Ed[r(s, aT )]− Ed[r(s, aK)]

∣∣ ≲ Rmax Es∼d
[
TV(πT , πK)

]
.

To see that the dependence on ε := Ed[TV(πT , πK)] cannot be replaced by
o(ε) uniformly, fix any state s and any pair of action distributions p = πT (· |
s), q = πK(· | s). By the dual characterization of total variation,

TV(p, q) = sup
∥f∥∞≤1

1

2

∣∣∣Ea∼p[f(a)]− Ea∼q[f(a)]
∣∣∣.

Choosing f to be (a smoothed version of) the sign of the Radon–Nikodym
derivative difference yields a measurable set A ⊆ A on which p and q disagree
maximally. Defining a reward function r(s, a) = Rmax · 1{a ∈ A} − Rmax ·
1{a /∈ A}, we obtain∣∣∣Ea∼p[r(s, a)]− Ea∼q[r(s, a)]

∣∣∣ = 2RmaxTV(p, q),

up to approximation if one insists on continuity constraints. Thus even in
horizon one, an ε mismatch in TV can induce an Θ(Rmaxε) gap in value. In
particular, any distillation objective that controls a divergence weaker than
TV must pay at least a linear price unless additional structure is assumed
(e.g. reward smoothness with respect to actions, parametric restrictions, or
margin conditions).

MDP tightness: the (1− γ)−2 factor is also inherent. In discounted
MDPs, a one-step action mismatch can alter future state visitation, and
the occupancy amplification captured by Theorem 5.2 is not an artifact. A
simple construction suffices. Consider an MDP with two nonterminal states
sgood and sbad, start distribution concentrated on sgood, and two actions
astay, afall available at sgood. Let rewards satisfy r(sgood, a) = Rmax for both
actions, while r(sbad, ·) = −Rmax, and let the dynamics be: choosing astay
keeps the agent in sgood, whereas choosing afall transitions deterministically
to sbad, which is absorbing. Let the teacher choose astay deterministically at
sgood, while the student chooses afall with probability ε and astay otherwise.
Then TV(πT (· | sgood), πK(· | sgood)) = ε, and dπT concentrates on sgood,
so Es∼dπT [TV(πT , πK)] = ε. A direct computation shows that the expected
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time-to-failure scales as Θ((1−γ)−1), and the cumulative penalty of entering
sbad contributes an additional Θ((1− γ)−1) factor, yielding a return gap on
the order of

|J(πT )− J(πK)| ≥ c
Rmax

(1− γ)2
ε

for a universal constant c > 0 (formalized in Theorem 3 of our summary).
Consequently, without further assumptions about dynamics smoothness or
stability, one cannot hope for an (1 − γ)−1 dependence in general: the
quadratic blow-up is the correct worst-case scaling when the mismatch is
controlled only in a one-step distributional sense.

What lower bounds mean for distillation. The preceding construc-
tions apply irrespective of how the student is trained. Even if we optimize
Ldistill to near-zero on a training distribution µ, the best possible guarantee
in the absence of additional structure is that the return error is at most linear
in the achieved mismatch on the relevant state distribution. In particular,
improving constants in Theorem 5.2 is not the central issue; the central issue
is whether the distillation procedure yields small Es∼dπT [TV(πT , πK)] (or a
proxy thereof).

Strictly offline OOD regions: no uniform guarantees without cov-
erage. The tightness results above should not be confused with a stronger
impossibility statement that is specific to the strictly offline setting. If the
target distribution d places mass on states (or state–action neighborhoods)
that are not supported by D, then there exist pairs of MDPs M1,M2 that
induce identical offline datasets under the behavior policy πβ , yet disagree
on the optimal (or teacher-recommended) action in those unseen regions.
Any algorithm that uses only D—including any distillation procedure that
queries a fixed teacher but cannot validate the teacher online—cannot distin-
guish M1 from M2. Therefore, for any deployed policy π̂ produced offline,
there exists a compatible MDP in which π̂ suffers arbitrarily large regret on
the OOD region (up to the Rmax/(1 − γ) scale), even if π̂ is an exact copy
of the teacher on supp(D).

This observation clarifies the scope of our guarantees. Distillation can at
best promise teacher matching (and thus teacher-level performance) on dis-
tributions where the student achieves small action divergence to the teacher.
It cannot certify that either teacher or student is correct in regions where
D provides no information and the environment cannot be queried. Rep-
resentation preservation and OOD-neighborhood augmentation should thus
be interpreted as biases that may improve extrapolation in practice, not as
mechanisms that remove the fundamental unidentifiability of offline OOD
decision-making.
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Transition to computation. Having established that (i) the dependence
of return on action-distribution mismatch is essentially tight and (ii) strictly
offline OOD guarantees require additional assumptions beyond distillation
itself, we next analyze the computational side: what is gained by reducing
diffusion steps from T to K, and why the Θ(K) sequential depth of K-step
samplers is intrinsic under standard computation models.

7 7. Complexity Landscape: training/inference time
and space; optimality of Θ(K) sequential denois-
ing under standard computation models; trade-
offs between K and approximation error.

We now make explicit the computational landscape induced by distilling a
T -step SRDP diffusion policy into a K-step student, separating (i) inference-
time sequential cost, (ii) offline training cost (teacher queries plus student
optimization), and (iii) memory/activation requirements. The relevant unit
of cost is a single network evaluation Cnet, which we take to include the
shared trunk and the diffusion head (and, for the teacher, any auxiliary re-
construction head when used). Under the standard reverse-diffusion sampler,
the teacher produces one action by iterating a Markov chain (aT , . . . , a0) with
T denoising transitions, each requiring (at least) one forward pass to predict
a score/noise term. Consequently, teacher inference scales as

costteacher = Θ(T Cnet),

where Θ(·) hides constant factors due to optional classifier-free guidance,
reconstruction, or multiple heads. In contrast, the student is constrained to
K ≪ T denoising transitions, giving

coststudent = Θ(K Cnet),

or Θ(Cnet) in the one-step distilled variant where the diffusion chain is
replaced by a direct conditional sampler. Thus the primary deployment-
side gain is an essentially linear reduction in sequential latency by a factor
≈ T/K, subject to constant-factor differences in architecture.

Distillation itself is strictly offline but may be teacher-query intensive. A
typical iteration samples a batch s ∼ µ (often µ = dD, possibly with OOD-
neighborhood perturbations), draws a noise seed ξ, runs the teacher sampler
to obtain either a terminal action aT alone or a set of intermediate supervi-
sion targets {(at, t, ϵt, zT (t))}, and runs the student sampler for K steps. If
we request supervision at qT teacher timesteps (including the terminal step)
and evaluate the student at qK timesteps, then the dominant per-iteration
training time is

costtrain = O
(
B (qTT + qKK)Cnet

)
,
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with batch size B. Since T may be large, a practical regime is to freeze
the teacher and run it without gradients (reducing activation storage), and
to subsample teacher timesteps (small qT ) while retaining a small number
of student steps K (fixed by deployment latency). When storage permits,
one can further amortize teacher computation by caching teacher outputs
(aT ) and/or intermediate denoising targets for states in D; this converts the
teacher-query term into an up-front preprocessing cost, leaving subsequent
SGD dominated by the student’s forward/backward passes.

Space usage splits similarly. At deployment we retain only the student
parameters, so model memory is O(|θK |). During training, if the teacher is
frozen and queried without backpropagation, we store teacher weights but
not teacher activations, yielding O(|θT | + |θK |) parameters and activation
memory dominated by the student: O(B × hidden) for the trunk and head
across qK timesteps, plus optimizer state. Representation-preservation losses
add negligible asymptotic overhead (they reuse trunk activations already
computed), but may require retaining a small number of teacher latents
zT (t) per batch element if alignment is applied across multiple noise levels.

We next justify why the Θ(K) sequential dependence of a K-step stu-
dent sampler is intrinsic under standard computation models. The reverse
diffusion procedure defines a sequence of conditional transitions

ak−1 ∼ pθ
(
· | ak, s, k

)
, k = K,K − 1, . . . , 1,

where each step’s input includes the previous noisy action. Any implemen-
tation that faithfully computes this chain has a dependency DAG containing
a path of length K: the output ak−1 is a function of ak, which is a function
of ak+1, etc. In particular, producing a0 requires knowledge of a1, which in
turn requires a2, and so on up to aK . Therefore, absent a change in com-
putational model (e.g. replacing the chain by a direct mapping, or allowing
oracle access to future iterates), the sequential depth is Ω(K), and hence at
least Ω(K) network evaluations are necessary when each transition requires a
network call. This is precisely the sense in which reducing inference to fewer
than K sequential evaluations demands a different algorithmic primitive (a
non-iterative sampler, a parallelizable solver with different dependencies, or
an approximation that bypasses intermediate states).

The remaining question is how K trades off against approximation er-
ror. Distillation provides a mechanism to learn a student πK(· | s) that
approximates πT (· | s), but it cannot avoid a fundamental tension: fewer de-
noising steps reduce compute while typically increasing divergence between
the student’s and teacher’s conditional action distributions. Abstractly, let

ε(K) := Es∼d
[
TV

(
πT (· | s), πK(· | s)

)]
denote the achieved mismatch on the target state distribution d. Combining
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this with the return bound yields

|J(πT )− J(πK)| ≤ 2Rmax

(1− γ)2
ε(K),

so any empirical or theoretical understanding of the compute–accuracy trade-
off can be phrased as the behavior of ε(K) as a function of K under a given
student architecture and loss Ldistill. In practice ε(K) often decays with
K (sometimes rapidly at small K), but the rate is model- and domain-
dependent: step budgets K ∈ {1, 2, 4} may already capture most of the
teacher’s behavior on in-distribution states, while OOD robustness may re-
quire either larger K (more faithful sampling) or additional inductive bias
(e.g. latent alignment across noise levels) to prevent error amplification under
shift.

This view also clarifies the role of intermediate supervision. Matching
only the terminal action a0 is an amortized objective; it can succeed even
when intermediate chain dynamics differ, but it may be statistically harder
because the student must implicitly learn to invert the teacher’s T -step com-
putation in K steps. Adding score/noise matching at selected timesteps sup-
plies a stronger signal that reduces the effective approximation difficulty for
a fixed K, at the cost of additional teacher queries (larger qT ) and more
student evaluations for auxiliary losses (larger qK). Thus the practitioner-
facing tradeoff is not merely K versus fidelity, but (K, qT , qK) versus training
cost, where one can often recover much of the benefit of larger K by allo-
cating modest extra supervision during training while keeping K fixed for
deployment.

In summary, distillation shifts compute from deployment to offline train-
ing and exposes a controllable knob K governing sequential latency. Under
the standard denoising-chain model, Θ(K) sequential depth at inference is
unavoidable, so the only way to beat this scaling is to change the sampling
primitive (e.g. a one-step student). Consequently, the central empirical ques-
tion becomes how quickly ε(K) decays with K under realistic offline state
distributions and under OOD shift, and how much latent alignment and
intermediate teacher supervision can steepen this decay for small K.

8 Experimental Plan

We propose experiments whose purpose is to (i) quantify the compute–
accuracy tradeoff as a function of the student budget K, (ii) test whether
latent alignment improves generalization of teacher–student matching from
training states µ to a shifted evaluation distribution d, and (iii) measure end-
to-end latency improvements relative to the T -step teacher. Throughout, we
treat the SRDP teacher πT as fixed, and we report student policies πK for
K ∈ {1, 2, 4, 8} (and, when feasible, a one-step mapping). We evaluate each
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policy by online rollouts in the standard benchmark simulators (no training
interaction), while distillation itself uses only D and teacher queries.

Continuous-control benchmarks (D4RL-style). We first consider stan-
dard continuous control tasks where offline datasets D are publicly available
and evaluation is unambiguous. Concretely, we recommend MuJoCo loco-
motion tasks (e.g. HalfCheetah, Hopper, Walker2d) across dataset qualities
(“medium”, “medium-replay”, “medium-expert”). These environments pro-
vide a controlled setting to test whether distillation preserves the teacher’s
return J(πT ) while reducing inference cost from Θ(T ) to Θ(K). For each task
we (a) train a teacher SRDP diffusion policy with a fixed variance schedule
{βt}Tt=1, (b) distill into students of varying K under a common architecture
family, and (c) report normalized return and wall-clock control-loop rate.
To connect to our bounds, we additionally estimate a divergence surrogate
between πT (· | s) and πK(· | s) on held-out states s ∼ d via sample-based
distances (e.g. MMD or sliced Wasserstein between action samples under
matched noise seeds), and plot empirical return gap versus the estimated
mismatch.

Goal-conditioned navigation under distributional shift (AntMaze).
We next recommend AntMaze because it is both diffusion-relevant (multi-
modal actions are common near bottlenecks) and shift-sensitive (coverage
gaps in D are typical). We train a teacher πT (a | s) on AntMaze variants
(e.g. umaze/medium/large, with diverse goal locations), and distill students
πK . Evaluation should include (i) the standard test goal distribution and
(ii) deliberate shifts d that emphasize states weakly represented in D: goals
near narrow passages, starts near walls, or altered goal distributions (e.g.
“corner-only” goals). We report success rate and path length, and we strat-
ify performance by a dataset-coverage proxy (e.g. nearest-neighbor distance
from evaluation states to D). This stratification is a practical way to exam-
ine whether latent alignment reduces mismatch amplification as one moves
away from dataset support.

Missing-data navigation (maze2d with controlled coverage holes).
To isolate the role of representation preservation, we recommend a synthetic
missing-data protocol in maze2d-style environments. Starting from a full
dataset D, we create Dmiss by deleting transitions in selected spatial regions
(“holes”) or by removing action modes (e.g. deleting samples with actions in
a cone), while keeping the evaluation environment unchanged. The target
distribution d is then chosen to place substantial mass inside or near these
deleted regions (for instance, by sampling start/goal pairs that force traversal
near holes). This construction allows us to test whether a student trained
on µ = dDmiss can still match the teacher when queried on states that are
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OOD relative to the training support. We expect that student variants with
a latent alignment penalty ηz > 0 and multi-noise-level matching exhibit
smaller degradation than students trained only on terminal actions.

Controlled OOD contextual bandit. We recommend an explicit con-
textual bandit experiment (horizon 1) to validate the tight linear depen-
dence on action-distribution mismatch in a setting where confounders from
multi-step dynamics are absent. We choose a continuous-action bandit with
bounded rewards r(s, a) ∈ [−Rmax, Rmax] and construct contexts s such that
the teacher πT (· | s) is intentionally multimodal (e.g. a mixture of Gaussians
with context-dependent weights). The student πK is obtained by distilla-
tion under varying budgets K and/or controlled under-training to sweep a
range of mismatches ε. We then evaluate, for each d (including an OOD
context distribution obtained by shifting context covariates), the empirical
return gap and a high-confidence estimate of Es∼d[TV(πT , πK)] (approxi-
mated via discretization or by bounding TV through

√
KL with Monte Carlo

estimates). The expected outcome is an approximately linear relationship,
consistent with the bandit bound, and a clear demonstration that improv-
ing distribution matching on shifted d is the relevant quantity for preserving
reward.

Hardware-realistic evaluation (real robot or high-fidelity simula-
tion). To substantiate the latency motivation, we recommend at least one
deployment-oriented setting: either a real robot (e.g. tabletop pushing or
pick-and-place) using a fixed offline dataset D, or a hardware-realistic sim-
ulator (e.g. with actuation delays, sensor noise, and torque limits). The
central measurement is closed-loop success under a fixed control frequency
constraint. We report (i) success rate as a function of the allowed per-action
latency budget, (ii) measured latency distributions on the intended com-
pute platform (GPU and/or embedded CPU), and (iii) the tradeoff curve
between K and performance under the same wall-clock budget. The intent
is to demonstrate that a student with small K can meet real-time constraints
while remaining close to the teacher’s behavior.

Latency benchmarks and profiling protocol. For each policy we mea-
sure end-to-end action-sampling time, separating sequential depth from constant-
factor overhead. We recommend reporting (a) per-action mean/percentiles,
(b) effective control rate (Hz) under a fixed batch size, and (c) the scaling
with K and T at fixed architecture. The primary comparison is πT versus
πK , but we also include a one-step student when available. To avoid mislead-
ing conclusions, we fix compilation settings and use the same trunk width
where possible, reporting both wall-clock time and the count of sequential
network evaluations.
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Ablations. We recommend ablations that identify which ingredients most
influence OOD matching: (i) remove latent alignment (ηz = 0); (ii) match
only terminal actions (drop intermediate score/noise matching); (iii) train
a small-T diffusion policy directly on D (no teacher) to test whether “short
diffusion” is a substitute for distillation; (iv) distill with a frozen trunk ver-
sus a trainable trunk to assess representation transfer; (v) vary teacher-
timestep subsampling qT and student auxiliary evaluations qK to quantify
the training-cost–fidelity tradeoff. For each ablation we report both return
metrics and distribution-matching surrogates on in-distribution and shifted
d, since improvements that only appear in J(π) may not reflect faithful
teacher matching.

9 Discussion and Limitations

Our contribution is a distillation procedure that reduces the sequential depth
of SRDP-style diffusion policies while preserving, to the extent possible, the
teacher’s state-conditioned action distribution. Theorems 1–3 clarify what
such a guarantee can and cannot buy: if we can enforce small conditional
mismatch on a target state distribution d, then the induced return gap is
small; conversely, in the worst case the dependence on this mismatch is
necessarily linear (and amplified by (1−γ)−2 in the discounted setting). We
therefore view the student as an accelerator of the teacher rather than an
independent offline RL agent: it inherits both the strengths and the blind
spots of πT , and it cannot transcend the information-theoretic limitations of
strictly offline learning under shift.

Calibration under far-OOD shift. A recurring practical question is
whether the student remains calibrated when queried on states that are far
from the offline support. Even if we drive the empirical distillation loss on
training states µ to (near) zero, it does not follow that Es∼d[TV(πT , πK)]
is small for a shifted d. Our latent-alignment regularizer is motivated by
the hope that, when d remains within a neighborhood of the representation
manifold learned by the teacher, controlling ∥zT − zK∥ stabilizes generaliza-
tion of the action map gK (cf. Theorem 4). However, under far -OOD shift,
two failure modes remain: (i) the teacher representation zT (s) itself may be
non-informative or unstable, and (ii) the student may match an incorrectly
calibrated teacher distribution extremely well. In such regimes, the relevant
question is not only whether πK ≈ πT , but also whether πT is trustwor-
thy. Since our framework treats πT as an oracle, any calibration pathologies
(e.g. overconfident unimodal actions where the task is multimodal) will be
faithfully replicated by a successful student.

A second calibration issue concerns the diffusion-time axis. The teacher
defines a family of conditional distributions over noisy actions at for t =
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1, . . . , T . When K ≪ T , the student is effectively approximating a coarse-
grained reverse-time dynamics. Matching only terminal actions can yield a
student that is correct marginally at t = 0 on µ but behaves unpredictably
under perturbations of the sampling process (e.g. different noise seeds or
different initializations). Intermediate score matching and multi-noise-level
latent alignment partially address this, yet they do not constitute a certificate
that the student sampler is stable as a Markov chain. We view this as an open
theoretical gap: our bounds are stated in terms of the final conditional action
distribution, whereas practical deployment often depends on the numerical
and stochastic stability of the sampling procedure.

Teacher failure modes and compounding effects. The hardness state-
ment in the global context emphasizes that, under support mismatch, even
the teacher may be unidentifiable from D alone. Distillation cannot repair
such failures: if πT takes catastrophically wrong actions on a region that is
unseen in D, then a student that matches πT there will also be wrong. More
subtly, a student may amplify teacher errors if approximation artifacts are
correlated across states. Theorem 2 measures mismatch under dπT , but the
student induces its own occupancy dπK ; if small local mismatches cause the
trajectory distribution to shift into regions where the student is less accu-
rate, then the realized return gap can exceed what would be predicted from
a mismatch estimate computed on an exogenous held-out set. This is not
a defect of the bound so much as a reminder that occupancy coupling is
the core difficulty in sequential decision-making. In practice, this motivates
either (i) evaluating mismatch under mixture occupancies (as noted after
Theorem 2), or (ii) incorporating a conservative training distribution µ that
overweights states likely to be visited by πK (without online rollouts, this
can only be approximated).

Interaction with Q-guidance and other test-time control. Diffusion
policies are often combined with test-time guidance mechanisms, such as us-
ing an estimated action-value Q(s, a) to bias the reverse diffusion trajectory
toward high-value actions. Distillation interacts with such guidance in two
distinct ways. First, if the deployed policy is the guided teacher, then the
natural target of distillation is the guided conditional distribution πguideT (· | s)
rather than the unguided πT . This is conceptually straightforward but may
be expensive: guidance typically requires additional Q-evaluations per de-
noising step, and thus changes the teacher’s computational graph. Second,
one may wish to distill an unguided student and then apply guidance at test
time. This preserves flexibility but reintroduces sequential cost, and it may
break the distributional matching guarantee since the guided distribution
is not the one minimized during training. Moreover, guidance can magnify
small modeling errors in score estimates: if the guidance term is large, then
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the reverse dynamics may be dominated by Q-gradients in regions where
the student (or the Q estimator) is inaccurate. We therefore regard the
“distill-then-guide” pathway as requiring additional safeguards, such as ex-
plicit regularization of the guidance strength, or joint distillation of both the
policy and the guiding signal.

Implications for safety. Our guarantees are behavioral (match the teacher)
rather than normative (satisfy task constraints). Even perfect matching of
πT does not imply safety if πT violates safety constraints in rare or OOD
circumstances. More pointedly, a small expected TV under a distribution
d does not control worst-case behavior over all states, nor does it provide
reachability guarantees for unsafe sets. Thus, distillation should be viewed
as orthogonal to safety mechanisms such as control barrier functions, verified
safety filters, or constraint-aware planning. A pragmatic integration is to de-
ploy πK behind a certified filter and to treat the filter-induced intervention
rate as an additional metric: a student that matches the teacher but triggers
the filter more often may be operationally worse, even if J(πK) ≈ J(πT ) in
unconstrained rollouts.

Future work: vision, partial observability, and certified abstention.
Three extensions appear technically immediate but conceptually nontrivial.
First, vision-based policies introduce a high-dimensional observation map
o 7→ s (explicit or implicit), and the relevant “OOD” notion becomes ambigu-
ous: shift may occur in pixel space while remaining in-distribution in latent
space, or vice versa. Here, representation preservation could be strengthened
by matching teacher and student latents at multiple network depths, and by
calibrating uncertainty with respect to nuisance factors (lighting, viewpoint).
Second, in POMDPs, the diffusion policy is naturally conditioned on a belief
or history embedding; distillation then becomes a two-timescale problem in
which errors in the history encoder affect all subsequent action distributions.
Extending Theorem 4 to recurrent embeddings (with stability constants over
time) would be a principled starting point. Third, we are interested in cer-
tified abstention: the student should be able to refuse action (or defer to a
slower teacher/controller) when it cannot guarantee small mismatch on the
encountered state. One approach is to learn an upper bound on TV(πT , πK)
from observable quantities (e.g. latent distances ∥zT − zK∥, or density esti-
mates in zT -space), and then to couple this bound with Theorem 2 to obtain
a conservative return-loss certificate. Developing such a certificate with sta-
tistical validity under distribution shift, without online interaction, remains
open and would materially improve the safety story of fast distilled diffusion
control.
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