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Abstract

Score-based diffusion models are typically defined on finite-dimensional
grids and often violate structural constraints (e.g., incompressibility,
boundary conditions), forcing ad hoc projections or penalties that
break resolution invariance and uncertainty calibration. Building on
the Denoising Diffusion Operators (DDO) framework for diffusion in
Hilbert spaces, we develop a constraint-aware theory and algorithms
in which both corruption and sampling live on a constrained function
space Hc (e.g., divergence-free fields). We construct constrained Gaus-
sian reference measures, define a constrained score operator as a loga-
rithmic derivative with respect to the constrained reference, and derive
a denoising score matching objective with finite loss. For sampling, we
propose projected preconditioned Langevin dynamics driven by trace-
class noise and prove that the constraint is preserved exactly in the con-
tinuum and under standard time discretizations. We further establish
discretization-invariant convergence statements: Galerkin discretiza-
tions converge to the same constrained target measure with constants
independent of spatial resolution. Experiments on 2D incompressible
flow on the torus (where the Leray projector is explicit in Fourier space)
validate exact incompressibility at all resolutions, high-fidelity genera-
tion of invariant measures for Navier–Stokes, and conditional sampling
under sparse observations. The resulting models are valid-by-design
diffusion generators for modern scientific machine learning.
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1 Introduction: constraints as first-class objects in
function-space generative modeling; failures of
penalty/projection heuristics under refinement;
contributions and relation to DDO.

Constraints are not an incidental modeling preference in function-space gen-
erative modeling; they are part of the definition of the object we wish to gen-
erate. In many applications the data distribution lives on a closed subset of
a Hilbert space that is most naturally described through a linear constraint.
Typical examples include incompressible velocity fields (a divergence-free
constraint), gauge constraints, and linear compatibility conditions induced
by boundary value problems. In such settings the ambient Hilbert space
H is merely a convenient container, while the meaningful state space is a
closed linear subspace Hc ⊂ H. Our aim is therefore not only to learn a
probability measure µ on Hc, but to construct a sampler that produces re-
alizations ũ ∈ Hc almost surely, and does so in a way that remains stable
under changes of discretization.

A central difficulty is that most generative methodologies are designed
in finite dimensions and only later transported to function spaces by dis-
cretization. If constraints are treated heuristically on each grid—for instance
by penalizing constraint violation in a loss, or by post-processing outputs
through a discrete projection—then the resulting procedure is typically not
invariant under refinement. The reason is structural: as the discretization
becomes finer, the number of directions in which a candidate sample can
violate the constraint grows, and these directions generally populate higher-
frequency modes. A penalty of the form λ∥Lu∥2 (for a linear constraint
operator L) can suppress some violations at a fixed resolution, but without
a resolution-dependent scaling of λ it cannot uniformly control the violation
over the proliferating high-frequency modes. Conversely, a projection step
performed at the discrete level may enforce a discrete constraint, but the
family of discrete constraints need not converge to the continuum constraint
in a manner compatible with the learned drift or the injected noise; in par-
ticular, discretizations can introduce spurious nullspaces and aliasing effects
that reappear as constraint leakage when one changes the grid, the trunca-
tion, or the numerical representation of the constraint. Thus, while penalty
and projection heuristics can be effective engineering tools at a single reso-
lution, they do not, by themselves, produce a principled continuum sampler
on Hc with guarantees that persist as h → 0.

We take the viewpoint that constraints must be first-class objects at
the level of the continuum model. Concretely, we define learning and sam-
pling directly on the constrained space Hc, and we require every compo-
nent of the construction—reference noise, score/drift parameterization, and
sampling dynamics—to have range in Hc. This “constraint-by-construction”
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requirement is not cosmetic: it is the only mechanism that can ensure exact
feasibility ũ ∈ Hc almost surely, uniformly over discretizations, without tun-
ing resolution-dependent penalty parameters. It also aligns with the math-
ematical structure of diffusion-based generative modeling in Hilbert spaces,
where the reference noise is typically Gaussian and the fundamental object
learned is a logarithmic derivative (a score) defined with respect to a Gaus-
sian reference measure. If the reference measure is chosen on the wrong
space, or if the learned drift injects energy into directions orthogonal to Hc,
then feasibility cannot be maintained except by ad hoc correction.

Our starting point is therefore to replace the ambient Gaussian reference
µ0 = N (0, C) on H by a constrained Gaussian reference on Hc. This entails
constructing a covariance operator compatible with the constraint, and work-
ing with the associated Cameron–Martin geometry intrinsic to Hc. We then
consider a constrained corruption process (additive, or optionally preceded
by a smoothing operator), which induces a perturbed measure ν on Hc. The
key observation is that once the reference measure and the perturbation are
both defined on Hc, one may formulate denoising score matching (DSM) and
Langevin sampling entirely within the constrained space, thereby avoiding
the spurious degrees of freedom that appear when one works on H and later
attempts to project.

The contributions developed in this work can be summarized as follows.
First, we provide conditions under which the perturbed measure ν is equiva-
lent to the constrained Gaussian reference, so that a Radon–Nikodym density
dν
dµc

0
exists and admits a log-density potential Φ with a well-defined Fréchet

derivative along the constrained Cameron–Martin directions. This is the
measure-theoretic prerequisite for any score-based method in infinite dimen-
sions: without equivalence and integrability of the logarithmic derivative,
the score is not a meaningful object and the DSM objective may fail to be
finite.

Second, we establish the constrained DSM identity that justifies learn-
ing the score (or, equivalently, a noise-prediction field) using pairs (u, η)
with u ∼ µ and η sampled from the constrained reference. The identity
is the constrained analogue of the familiar Vincent-type relation: the min-
imizer of a score-matching objective under ν coincides with the minimizer
of a denoising objective expressed through the conditional distribution of
the corruption. In the constrained setting, the statement must be formu-
lated in the correct dual space and then mapped back through the Riesz
isomorphism associated with the constrained Cameron–Martin space; this
is precisely where the function-space formulation matters, and where naive
discretize-then-learn approaches obscure the geometry.

Third, we formulate a projected, preconditioned Langevin dynamics whose
drift and noise both lie in Hc. Because Hc is a linear subspace, invariance of
feasibility is immediate at the continuum level, and it persists under stan-
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dard time discretizations (Euler–Maruyama, Crank–Nicolson) provided the
increments are also constrained. This yields a sampler that preserves the
constraint exactly at every iteration, rather than merely in expectation or
up to numerical tolerance.

Fourth, we address resolution invariance. We adopt a continuum-first
computational model: discretizations are introduced only to implement the
constrained dynamics and the learned operator, via Galerkin subspaces Hc,h ⊂
Hc with compatible projectors. Under standard assumptions on trace-class
noise and stability of the drift, we obtain convergence of the induced invari-
ant measures νh to ν in W2, with constants that do not deteriorate with
dim(Hc,h). This provides a precise meaning to the claim that training and
sampling can be performed on different discretizations without losing the
constraint or changing the target measure in the limit.

Finally, we clarify why penalty-only enforcement is insufficient for uni-
form guarantees: to control constraint violation uniformly under refinement,
the penalty parameter must scale with the largest eigenvalues associated
with the constraint operator, which typically diverge as h → 0. This ob-
servation motivates projection/range restriction as a necessity rather than a
convenience in resolution-robust constrained generative modeling.

These considerations place our approach in direct relation to the DDO
methodology in Hilbert spaces: we retain the measure-theoretic foundation
(Gaussian reference measures, Cameron–Martin derivatives, DSM, and pre-
conditioned Langevin sampling) but relocate the entire construction to the
constrained state space. The subsequent background section recalls the re-
quired DDO ingredients in the unconstrained setting, after which we show
how each piece is modified—and, in certain places, simplified—when con-
straints are treated as first-class objects.

2 Background: DDO in Hilbert spaces; Gaussian
reference measures, Cameron–Martin spaces, de-
noising score matching, and preconditioned Langevin
sampling.

In order to motivate the constrained construction, we recall the basic ingre-
dients of drift–diffusion operator (DDO) learning in a real separable Hilbert
space H with a centered Gaussian reference measure. The principal point is
that, in infinite dimensions, the “score” is not an H-valued gradient in gen-
eral; rather it is a logarithmic derivative defined with respect to a Gaussian
measure and only along its Cameron–Martin directions. The DDO formalism
makes this geometry explicit and thereby yields well-posed learning objec-
tives and sampling dynamics.

Let µ0 = N (0, C) be a centered Gaussian measure on H with covariance
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C : H → H self-adjoint, strictly positive, and trace-class. The associated
Cameron–Martin space is

Hµ0 := Im(C1/2) ⊂ H,

equipped with inner product ⟨h1, h2⟩µ0 := ⟨C−1/2h1, C
−1/2h2⟩ and norm

∥h∥µ0 := ∥C−1/2h∥. As is standard, Hµ0 is continuously embedded into
H, but it is typically a strict subset; for µ0-a.e. x ∈ H one has x /∈ Hµ0 .
This mismatch is the basic reason that gradients and divergences must be
formulated carefully: differentiation is meaningful along Hµ0 , not in arbitrary
directions of H.

Suppose ν is a probability measure on H such that ν ≪ µ0, and write

dν

dµ0
(u) = exp(Φ(u)),

for a µ0-a.s. defined potential Φ. The relevant notion of score is the Fréchet
derivative of Φ along Cameron–Martin directions: for h ∈ Hµ0 ,

DHµ0
Φ(u)[h] := lim

ε→0

Φ(u+ εh)− Φ(u)

ε
,

when this limit exists and defines a bounded linear functional of h. Thus
DHµ0

Φ(u) ∈ H∗
µ0

for µ0-a.e. u. Identifying H∗
µ0

∼= Hµ0 via the Riesz map
R : H∗

µ0
→ Hµ0 , one may equivalently work with the preconditioned score

RDHµ0
Φ(u) ∈ Hµ0 ⊂ H. In many constructions it is precisely this Riesz-

mapped object that appears as the non-linear component of a drift, hence
the terminology “preconditioned.”

The measure-theoretic role of DHµ0
Φ is clarified by the Gaussian integration-

by-parts identity: for sufficiently regular cylindrical test functions f and
h ∈ Hµ0 , ∫

H
⟨C−1u, h⟩ f(u)µ0(du) =

∫
H
Df(u)[h]µ0(du),

where Df(u)[h] denotes the directional derivative. Under ν, the analogous
formula involves the logarithmic derivative DHµ0

Φ, and one may interpret
DHµ0

Φ as the object that converts derivatives of test functions into expec-
tations under ν. This is the infinite-dimensional analogue of the familiar
finite-dimensional score ∇ log p.

DDO learning is based on accessing ν through a corruption mechanism
for which conditional scores are tractable. A canonical choice is additive
Gaussian corruption. Let µ be a “data” measure and consider u ∼ µ, η ∼
µ0 independent, and v = u + η. The induced law ν of v is the Gaussian
convolution ν = µ∗µ0. In infinite dimensions, absolute continuity ν ≪ µ0 is
not automatic: for example, translating µ0 by u /∈ Hµ0 produces a singular
measure. A standard sufficient condition is that µ is supported on Hµ0 , or,
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more generally, that one corrupts Au + η for a bounded linear smoothing
operator A mapping into Hµ0 . Under such hypotheses one obtains ν ∼ µ0,
hence a well-defined Φ and logarithmic derivative.

The denoising score matching (DSM) identity provides an objective that
avoids direct access to Φ. Formally, the “score-matching” problem is to
approximate DHµ0

Φ by a measurable map Gθ : H → H∗
µ0

in the sense
of minimizing

J (θ) := Ev∼ν

∥∥DHµ0
Φ(v)−Gθ(v)

∥∥2
H∗

µ0

,

whenever the right-hand side is finite. The DSM reformulation replaces the
unknown score by a conditional expectation involving the corruption. In its
most common (and practically convenient) form, one learns a preconditioned
H-valued field Fθ such that Fθ(v) ≈ RDHµ0

Φ(v), and one trains via noise
prediction:

min
θ

Eu∼µ, η∼µ0

∥∥η + Fθ(u+ η)
∥∥2,

possibly with variance scaling when multiple noise levels are used. The
equivalence between these objectives is a conditional-score calculation: the
minimizer of the denoising objective is the conditional mean of −η given
v, which can be rewritten (after applying the appropriate covariance and
Riesz identifications) as the score of the marginal ν. The key point for our
purposes is that the objects being learned and the norms in which they are
compared are dictated by µ0 and its Cameron–Martin geometry, not by an
arbitrary H-gradient.

Sampling is performed by a preconditioned Langevin dynamics designed
to leave ν invariant. One convenient formulation is the Langevin SPDE

u̇(t) = −u(t) +RDHµ0
Φ(u(t)) +

√
2 Ẇ (t),

where W is a C-Wiener process on H. Under standard Lipschitz and growth
conditions on the drift (and trace-class assumptions ensuring that W is well-
defined in H), this equation admits a unique strong solution and has ν as
an invariant measure. In computation one typically discretizes time, for
instance by Euler–Maruyama,

un+1 = un +∆t
(
−un + Fθ(un)

)
+
√
2∆t ξn, ξn ∼ N (0, C),

and uses annealing across noise scales to improve mixing and to match the
time-dependent corruption used in training. The DDO perspective is that,
provided one has learned Fθ ≈ RDHµ0

Φ in an L2(ν)-sense uniformly across
scales, the induced Markov chain approximates the intended invariant law in
a way that can be analyzed without dimension-dependent constants, because
the noise is trace-class and the drift is formulated in the correct precondi-
tioned coordinates.

This unconstrained background will be used as a template: to obtain
exact feasibility and resolution stability in the presence of linear constraints,
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we will replicate each step—reference Gaussian, Cameron–Martin derivative,
DSM identity, and Langevin sampling—after relocating all objects from H
to the constrained state space and enforcing range conditions at the level of
the continuum formulation.

3 Problem setup: constrained spaces Hc, orthogo-
nal projectors Π, and examples (divergence-free
vector fields on T2, boundary/affine constraints).
Formal statement of goals: exact constraint preser-
vation + resolution invariance.

We now introduce the constrained state space on which both learning and
sampling will be carried out. Let H be a real separable Hilbert space and
let Hc ⊂ H be a closed linear subspace encoding feasibility. We denote by
Π : H → Hc the orthogonal projector. The basic structural facts we use are
that Π is bounded, self-adjoint, and idempotent (Π2 = Π), and that every
u ∈ H admits a unique orthogonal decomposition

u = Πu+ (I −Π)u, Πu ∈ Hc, (I −Π)u ∈ H⊥
c .

In particular, constraint preservation is automatic for any evolution whose
drift and noise take values in Hc: if u0 ∈ Hc and increments lie in Hc, then
all iterates remain in Hc by closure and linearity. The role of Π in what
follows is therefore not cosmetic; it is the device by which we ensure that
every object we construct has range contained in the feasible subspace.

We keep the viewpoint that the constraint is linear and homogeneous,
so that Hc is a linear subspace rather than a manifold. This covers the
most common PDE constraints used in practice and is the setting in which
orthogonal projection is well-defined without further choices. When con-
straints are expressed by a bounded linear operator L : H → Z into another
Hilbert space Z, a canonical instance is

Hc = ker(L),

with Π the orthogonal projection onto ker(L). We emphasize that the closed-
ness of Hc is essential: it guarantees existence of Π and allows us to interpret
feasibility as an exact property in H, not merely pointwise on a discretiza-
tion.

A primary example, which motivates much of the discussion, is the
divergence-free constraint for incompressible flow on the periodic torus. Let
H = L2(T2;R2) with the usual L2 inner product, and define

Hc :=
{
u ∈ L2(T2;R2) : ∇ · u = 0 in D′(T2)

}
.
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Then Hc is closed in H, and Π is the Leray–Helmholtz projection, char-
acterized in Fourier variables by removing the component parallel to each
wavevector k ̸= 0. This example highlights why enforcing feasibility at the
continuum level matters: divergence is a distributional constraint and is not
faithfully represented by pointwise penalties on a grid unless one resolves all
relevant modes and enforces compatibility conditions at the discrete level.

A second class of examples consists of boundary and affine constraints.
Suppose H is a Sobolev space H1(Ω) (or a product space for vector-valued
fields) and let Γ ⊂ ∂Ω be a portion of the boundary. Homogeneous Dirichlet
conditions can be encoded as the closed subspace

Hc := {u ∈ H1(Ω) : TrΓ u = 0},

where TrΓ is the trace operator. More generally, affine constraints of the
form u ∈ u⋆ +Hc can be reduced to the linear case by recentering: writing
u = u⋆ + w with w ∈ Hc, we perform learning and sampling for w and then
translate back. In practice this includes fixed mean, fixed flux, or prescribed
boundary data, provided we can represent the corresponding projector (or
at least a stable discrete projector) in the chosen numerical scheme.

Our objective is to design a generative procedure that outputs ũ ∈ Hc

almost surely while remaining stable under discretization refinement. We
formulate this as two coupled requirements.

1. Exact feasibility at every level. The learned vector field (drift, score
approximation, or noise prediction) must map into Hc, and the in-
jected noise must live in Hc. In the continuum, this is achieved by
construction; at the discrete level, it becomes an invariance property
of the update map. Concretely, if F̃θ denotes an unconstrained neural
operator on H, we will enforce feasibility by defining

Fθ := Π ◦ F̃θ,

so that Fθ(v) ∈ Hc for all admissible inputs v. This avoids the accumu-
lation of constraint error over long sampling trajectories and prevents
the appearance of spurious constraint-violating components that can
grow with resolution.

2. Resolution invariance. We seek bounds on the discrepancy between
the target law and the law induced by the discretized sampler whose
constants do not depend on dim(Hc,h), where Hc,h ⊂ Hc is a Galerkin
subspace (e.g. Fourier truncations, finite elements, or compatible mixed
spaces) with projectors Πh → I strongly on Hc. Informally, training on
one discretization and sampling on another should be stable as h → 0,
provided the neural operator is discretization-consistent and the noise
is sampled consistently with the constrained reference.
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The second requirement is not a mere numerical preference. In constrained
problems, the number of constraint-violating directions typically increases
with the dimension of the discretization, and any procedure that suppresses
these directions only through a fixed penalty is vulnerable to deterioration as
resolution increases. For instance, if one replaces projection by a quadratic
penalty λ∥Lu∥2 in a drift or loss, then the effective stiffness required to
control high-frequency violations generally scales with the largest eigenvalue
of L∗L on the discretization. Thus, holding λ fixed while refining h does
not yield uniform feasibility and can lead to E∥Lu∥ bounded away from
zero. By contrast, projection-based range restriction is scale-free: it removes
the forbidden component exactly, independently of the number of degrees of
freedom.

We therefore adopt a continuum-first methodology: all measures, deriva-
tives, objectives, and dynamics are defined on Hc, and discretization is
treated as an approximation of this constrained continuum problem. In
particular, the corruption mechanism used for denoising must be supported
on Hc, and the reference Gaussian used to define logarithmic derivatives
must be constructed on Hc rather than on H. This forces us to revisit
the measure-theoretic steps from the unconstrained setting, now with the
Cameron–Martin geometry and absolute continuity formulated intrinsically
on Hc. We turn next to the constrained reference measure µc

0, the induced
corrupted law ν, and conditions guaranteeing ν ≪ µc

0 (with optional smooth-
ing operators A when the data measure does not have the requisite regular-
ity).

Constrained reference Gaussian. Having fixed the feasible state space
Hc, we next define a Gaussian reference measure intrinsically on Hc which
will serve as the base measure for Radon–Nikodym derivatives and logarith-
mic derivatives. Let µ0 = N (0, C) on H, where C : H → H is self-adjoint,
strictly positive, and trace-class. We define an operator on Hc by

Cc :=
(
ΠCΠ

)∣∣
Hc

: Hc → Hc.

Since Π is bounded and C is trace-class, Cc is trace-class on Hc; it is also self-
adjoint and nonnegative. We assume (and this holds in the standard PDE
examples of interest) that Cc is strictly positive on Hc so that N (0, Cc) is a
nondegenerate Gaussian measure on Hc. Equivalently, we may characterize
µc
0 as the law of Πw when w ∼ N (0, C); then Πw ∈ Hc almost surely and

the induced covariance is precisely ΠCΠ restricted to Hc. We denote this
constrained reference by

µc
0 := N (0, Cc) on Hc.

Cameron–Martin geometry on Hc. Let

Hµc
0
:= Im

(
C1/2
c

)
⊂ Hc

10



be the Cameron–Martin space of µc
0, endowed with inner product

⟨h1, h2⟩Hµc0
:=

〈
C−1/2
c h1, C

−1/2
c h2

〉
Hc

, h1, h2 ∈ Hµc
0
,

and associated norm ∥h∥2Hµc0

= ⟨h, h⟩Hµc0
. In particular, for each h ∈ Hµc

0
,

the translate µc
0(·−h) is equivalent to µc

0 (Cameron–Martin theorem). Con-
versely, if h /∈ Hµc

0
, then µc

0(· − h) and µc
0 are mutually singular. This

dichotomy is the basic reason that we must place regularity assumptions on
the shifts appearing in the corruption mechanism.

Constrained corruption and the induced perturbed law. Let µ be
the data measure on Hc. We consider the constrained additive corruption

v = u+ η, u ∼ µ, η ∼ µc
0, u ⊥⊥ η,

which induces the convolution measure ν := µ ∗ µc
0 on Hc. Conditionally on

u, we have v ∼ N (u,Cc) as a Gaussian measure on Hc. The objective in
what follows is to define the logarithmic density Φ = log dν

dµc
0

and to interpret
its derivative along Hµc

0
; this requires at minimum ν ≪ µc

0.

Absolute continuity and equivalence: the role of Hµc
0
. A sufficient

condition for ν ≪ µc
0 is that the random shifts u lie in the Cameron–Martin

space:
µ(Hµc

0
) = 1.

Indeed, for µ-almost every u, the conditional law N (u,Cc) is equivalent to
µc
0, and hence any µc

0-null set is N (u,Cc)-null. Integrating out u yields
ν ≪ µc

0. Moreover, under this assumption we can write an explicit, µc
0-a.s.

strictly positive density. Let h ∈ Hµc
0
. The Cameron–Martin formula gives

dN (h,Cc)

dµc
0

(v) = exp
(〈

C−1
c h, v

〉
Hc

− 1

2
∥h∥2Hµc0

)
, µc

0-a.s. v ∈ Hc,

where C−1
c h is well-defined since h ∈ Im(C

1/2
c ). Consequently,

dν

dµc
0

(v) =

∫
Hc

exp
(〈

C−1
c u, v

〉
Hc

− 1

2
∥u∥2Hµc0

)
µ(du), µc

0-a.s. (1)

The integrand is strictly positive, hence the mixture density in (1) is strictly
positive µc

0-almost surely, which implies not only ν ≪ µc
0 but in fact ν ∼ µc

0.
We then define

Φ(v) := log
dν

dµc
0

(v), µc
0-a.s. v ∈ Hc.
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When the data are rough: smoothing operators. In many infinite-
dimensional inverse problems and PDE models, µ is supported on states
rougher than Hµc

0
; in that case the condition µ(Hµc

0
) = 1 fails, and the

singularity part of the Cameron–Martin theorem precludes ν ≪ µc
0 for the

naive corruption v = u+ η. A standard remedy is to modify the corruption
by inserting a bounded linear smoothing operator

A : Hc → Hµc
0
, with A(Hc) ⊂ Hµc

0
,

and to corrupt via
v = Au+ η.

Then Au ∈ Hµc
0

almost surely regardless of whether u ∈ Hµc
0
, and the same

argument as above applies with u replaced by Au. In particular, the induced
law ν of v satisfies ν ∼ µc

0, and its density admits the representation

dν

dµc
0

(v) =

∫
Hc

exp
(〈

C−1
c Au, v

〉
Hc

− 1

2
∥Au∥2Hµc

0

)
µ(du), µc

0-a.s.

Conceptually, A is a device ensuring that the random shift in the Gaussian
mixture lies in the Cameron–Martin space of the reference noise. Typical
choices are elliptic regularizers (e.g. fractional powers of I −∆ on periodic
domains) or observation/measurement operators which are smoothing by
construction. We stress that A is used here solely to place the corrupted law
in the same measure class as µc

0; it is not a penalty and it does not relax
feasibility, since A(Hc) ⊂ Hc and η ∈ Hc imply v ∈ Hc almost surely.

Noise scales and compatibility with later annealing. For multi-scale
denoising it is convenient to consider a family of constrained Gaussians
µc
0,t := N (0, tCc) for t ∈ I ⊂ (0,∞), and corresponding corrupted laws

νt := µ ∗ µc
0,t (or with Au). The same Cameron–Martin reasoning applies

uniformly in t after rescaling the Cameron–Martin norm by t−1/2, yielding
νt ∼ µc

0,t and hence a well-defined potential Φt = log dνt
dµc

0,t
. Under the stand-

ing assumption that Φt is differentiable along Hµc
0

with square-integrable
logarithmic derivative, we may proceed to define the constrained score oper-
ator and derive a denoising score matching objective on Hc.

Constrained score operator and its preconditioned representative.
Since ν ∼ µc

0 we may regard Φ = log dν
dµc

0
as a µc

0-a.s. defined real-valued func-
tional on Hc. The relevant notion of differentiability is along the Cameron–
Martin directions: for v ∈ Hc and h ∈ Hµc

0
, we define the directional deriva-

tive
DHµc0

Φ(v)[h] := lim
ε→0

Φ(v + εh)− Φ(v)

ε
,

whenever the limit exists. Under our standing assumption that Φ is Fréchet
differentiable along Hµc

0
, the map h 7→ DHµc

0
Φ(v)[h] is a bounded linear
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functional on Hµc
0
, hence an element of the dual space H∗

µc
0
. We denote this

logarithmic derivative (the constrained score) by

DHµc0
Φ(v) ∈ H∗

µc
0
, DHµc

0
Φ(v)[h] =

〈
DHµc

0
Φ(v), h

〉
H∗

µc0
,Hµc0

.

To obtain a vector field taking values in a Hilbert space, we identify H∗
µc
0

∼=
Hµc

0
via the Riesz map R : H∗

µc
0
→ Hµc

0
, characterized by〈

ℓ, h
〉
H∗

µc
0
,Hµc0

=
〈
Rℓ, h

〉
Hµc0

, ℓ ∈ H∗
µc
0
, h ∈ Hµc

0
.

We will work with the preconditioned constrained score

v 7−→ RDHµc
0
Φ(v) ∈ Hµc

0
⊂ Hc,

and with the associated drift component

F (v) := −v +RDHµc0
Φ(v) ∈ Hc, (2)

which is the object entering the projected Langevin dynamics.

A tractable constrained DSM objective. Directly minimizing a score-
matching objective in the dual norm ∥ · ∥H∗

µc0

is conceptually natural but not
computationally convenient. The denoising formulation yields an explicit
target. Conditionally on u, the corrupted sample v has law γu := N (u,Cc)
on Hc, and its Radon–Nikodym derivative with respect to µc

0 is given by the
Cameron–Martin formula. Writing

Ψ(v;u) := log
dγu
dµc

0

(v) =
〈
C−1
c u, v

〉
Hc

− 1

2
∥u∥2Hµc

0

,

we obtain, for each fixed u ∈ Hµc
0
, the conditional score along Hµc

0
,

DHµc
0
Ψ(v;u) ∈ H∗

µc
0
, DHµc0

Ψ(v;u)[h] =
〈
C−1
c u, h

〉
Hc

.

Applying the Riesz map yields the particularly simple identity

RDHµc
0
Ψ(v;u) = u ∈ Hµc

0
. (3)

The constrained denoising score matching (DSM) objective is then to fit a
measurable map Gθ : Hc → H∗

µc
0

(or equivalently its Riesz representative) by
minimizing

LDSM(θ) := Eu∼µ, v∼γu

∥∥∥DHµc
0
Ψ(v;u)−Gθ(v)

∥∥∥2
H∗

µc0

, (4)

which is finite under our assumption that DHµc0
Φ ∈ L2(ν;H∗

µc
0
) (and similarly

for the conditional score). The standard conditional-expectation argument
implies that any minimizer satisfies Gθ(v) = DHµc

0
Φ(v) in L2(ν;H∗

µc
0
).

13



Noise-prediction form and the target drift. In practice we parameter-
ize the drift (2) rather than the dual-valued score. Using (3), the conditional
expectation of the preconditioned score is

RDHµc0
Φ(v) = E

[
u
∣∣ v], ν-a.s. v ∈ Hc,

so that the drift component becomes

F (v) = −v + E
[
u
∣∣ v] = E

[
u− v

∣∣ v] = −E
[
η
∣∣ v]. (5)

Consequently, if we parameterize Fθ : Hc → Hc and minimize the noise-
prediction loss

LNP(θ) := Eu∼µ, η∼µc
0

∥∥η + Fθ(u+ η)
∥∥2
Hc

, (6)

then the unique minimizer in L2(ν;Hc) is Fθ = F , i.e. Fθ(v) = −E[η | v].
This is the constrained analogue of the classical Vincent identity, with the
key distinction that all objects are defined intrinsically on Hc and logarithmic
derivatives are taken only along Hµc

0
.

Noise scales and a single family of range conditions. For a family
of noise levels t ∈ I ⊂ (0,∞) we consider ηt ∼ N (0, tCc), v = u + ηt, and
write Φt = log dνt

dµc
0,t

for νt = µ ∗ µc
0,t. The same derivation yields

F (v, t) := −v +RDHµc0
Φt(v) = −E[ηt | v],

and we train by sampling t and minimizing E∥ηt + Fθ(v, t)∥2Hc
with the

appropriate scaling absorbed into the sampling of ηt (or, equivalently, by
rescaling the loss).

Architecture constraints via projection and range restriction. To
guarantee exact feasibility of both training targets and sampled trajectories,
we enforce the range condition Fθ(·, t) ∈ Hc by construction. Concretely, we
let F̃θ : Hc × I → H be an unconstrained neural operator and define

Fθ(·, t) := Π ◦ F̃θ(·, t) : Hc → Hc.

This removes any dependence of feasibility on discretization or resolution,
and it prevents the learned drift from injecting energy into constraint-violating
directions which are absent at coarse resolution but proliferate under refine-
ment. In settings where we additionally require Fθ(·, t) ∈ Hµc

0
(so that the

drift coincides with the Riesz representative of a dual score), we may append
a fixed bounded smoothing layer mapping Hc → Hµc

0
before projection; how-

ever, for the projected Langevin dynamics it suffices that Fθ takes values in
Hc and is square-integrable (and, for well-posedness, Lipschitz or suitably
dissipative). With these choices, the learned field Fθ is compatible with the
constraint-preserving sampling dynamics developed next.
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Constraint-preserving sampling via projected preconditioned Langevin.
Having identified the target drift field F on Hc, we sample from ν by evolv-
ing a Langevin dynamics intrinsically on the constraint subspace. Let W be
a C-Wiener process on H and set W c := ΠW , so that W c is a Cc-Wiener
process on Hc. We consider the stochastic evolution equation on Hc

dUs = F (Us) ds+
√
2 dW c

s =
(
−Us +ΠRDHµc0

Φ(Us)
)
ds+

√
2 dW c

s . (7)

Under standard dissipativity and local Lipschitz assumptions on u 7→ ΠRDHµc0
Φ(u)

(or, more generally, monotonicity plus polynomial growth), (7) admits a
unique strong solution with continuous paths in Hc. Moreover, feasibility is
automatic: since Hc is a closed linear subspace, the linear semigroup gener-
ated by −I leaves Hc invariant, and both the nonlinear drift term and the
noise term take values in Hc. In particular, writing the mild form

Us = e−sU0 +

∫ s

0
e−(s−r)ΠRDHµc0

Φ(Ur) dr +
√
2

∫ s

0
e−(s−r) dW c

r ,

we see term-by-term that Us ∈ Hc for all s ≥ 0 whenever U0 ∈ Hc.

Invariant measure. The dynamics (7) is the constrained analogue of the
classical (preconditioned) Langevin diffusion with Gaussian reference. For-
mally, its infinitesimal generator acting on smooth cylindrical test functions
φ : Hc → R is

(Lφ)(u) =
〈
F (u), Dφ(u)

〉
Hc

+Tr
(
CcD

2φ(u)
)
,

where Dφ and D2φ denote the first and second Fréchet derivatives on Hc.
Since ν has density dν

dµc
0
(u) = exp(Φ(u)), invariance of ν can be verified by an

integration-by-parts identity on the Gaussian space (Hc, µ
c
0). In essence, one

rewrites the drift as the sum of the Ornstein–Uhlenbeck drift −u (for which
µc
0 is invariant) and a perturbation given by the logarithmic derivative of ν

relative to µc
0. Under our standing assumptions that DHµc0

Φ ∈ L2(ν;H∗
µc
0
)

and is sufficiently regular to justify the manipulations, one obtains∫
Hc

(Lφ)(u) ν(du) = 0 for all smooth cylindrical φ, (8)

which identifies ν as an invariant measure for (7). When additionally the
drift is of (preconditioned) gradient type, (8) strengthens to reversibility of ν
with respect to the Markov semigroup generated by L; we do not require this
stronger property for constraint preservation, but it is useful when analyzing
bias due to discretization or due to learned approximations Fθ ≈ F .
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Constraint preservation at the level of time discretization. For
sampling we employ time discretizations that inherit feasibility from the
continuum equation. Fix a step size ∆t > 0. The Euler–Maruyama scheme
on Hc is

un+1 = un +∆t F (un) +
√
2∆t ξn, ξn ∼ N (0, Cc) i.i.d. (9)

By construction, F (un) ∈ Hc and ξn ∈ Hc almost surely; hence, if un ∈ Hc

then un+1 ∈ Hc. This argument is resolution-independent: it uses only the
range condition on the drift and the support of the noise, not any coordinate
representation. In particular, replacing F by a learned field Fθ = Π ◦ F̃θ

preserves feasibility identically.
A semi-implicit Crank–Nicolson discretization is often preferable for sta-

bility, treating the linear contraction −u implicitly while keeping the nonlin-
ear term explicit. Writing B(u) := ΠRDHµc0

Φ(u), we obtain

(
I +

∆t

2
I
)
un+1 =

(
I − ∆t

2
I
)
un +∆tB(un) +

√
2∆t ξn, ξn ∼ N (0, Cc).

(10)
Since

(
I+ ∆t

2 I
)−1 is a bounded operator on Hc and all right-hand-side terms

lie in Hc, the update is well-defined in Hc and again preserves the constraint
exactly. The same conclusion holds for other splitting or preconditioned
schemes provided that (i) the drift evaluation is projected into Hc and (ii)
the Gaussian increment has covariance Cc.

Annealed schedules and learned drifts. For multi-noise-scale sampling
we index the drift by a noise level t ∈ I and run a sequence of dynamics with
decreasing t, using either (9) or (10) with F (·, t) (or Fθ(·, t)). At each level
t we draw ξ

(t)
n ∼ N (0, Cc,t) with Cc,t = tCc, so that every incremental noise

remains supported on Hc. Thus, independently of approximation error in
Fθ, the iterates remain feasible almost surely:

u0 ∈ Hc =⇒ un ∈ Hc for all n and all annealing levels.

The role of learning is therefore separated cleanly from the role of enforcing
the constraint: learning controls how closely the sampler approximates ν,
while projection and constrained noise enforce exact membership in Hc at
every step.

Transition to discretization and resolution invariance. The preced-
ing construction is continuum-first: the SPDE and its discretizations are
formulated on Hc, and feasibility is a consequence of subspace invariance
rather than a grid-dependent penalty. To quantify how close a practical im-
plementation is to the ideal constrained sampler, we next pass to Galerkin
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subspaces Hc,h ⊂ Hc and compare the induced invariant measures and sam-
pling distributions across resolutions. This yields a resolution-invariant er-
ror decomposition separating score approximation, time-discretization bias,
annealing bias, and Galerkin truncation error, with constants that do not
depend on dim(Hc,h).

Resolution-invariant Galerkin convergence. We now formalize the
passage from the continuum sampler on Hc to implementable samplers on
finite-dimensional Galerkin spaces in a manner that is stable under refine-
ment. Let {Hc,h}h>0 be a family of finite-dimensional subspaces of Hc with
orthogonal projectors Πh : Hc → Hc,h such that Πh → I strongly on Hc as
h → 0. We define the restricted covariance Cc,h := ΠhCcΠh (viewed as an
operator on Hc,h) and let µc

0,h := N (0, Cc,h) be the corresponding Gaussian
measure on Hc,h. We shall compare the continuum perturbed measure ν
on Hc with the finite-dimensional invariant measures induced by Galerkin-
projected dynamics.

For each h, consider the Galerkin approximation of (7) on Hc,h,

dU (h)
s = ΠhF

(
U (h)
s

)
ds+

√
2 dW c,(h)

s , W c,(h) := ΠhW
c, (11)

where W c,(h) is a Cc,h-Wiener process on Hc,h. Under the same dissipa-
tivity and Lipschitz hypotheses ensuring well-posedness of (7), the finite-
dimensional SDE (11) admits a unique strong solution for any initial condi-
tion in Hc,h. We write Ps and P(h)

s for the Markov semigroups of (7) and
(11), respectively.

The first point is that (11) approximates the continuum dynamics in a
strong sense, uniformly on bounded time intervals, with constants that can
be chosen independently of dim(Hc,h). Indeed, coupling U and U (h) on a
common probability space using the same driving noise W c (and setting
W c,(h) = ΠhW

c) yields a pathwise error equation for E
(h)
s := Us − U

(h)
s of

the form

dE(h)
s =

(
F (Us)−ΠhF (U (h)

s )
)
ds+

√
2 (I −Πh) dW

c
s .

The linear contraction −u contained in F (u) = −u+ΠRDHµc0
Φ(u) yields a

uniform dissipativity estimate, while the noise mismatch term is controlled
by the trace-class property of Cc and the strong convergence Πh → I. Con-
sequently, for each fixed T > 0 we obtain an estimate of the schematic form

sup
0≤s≤T

E∥Us − U (h)
s ∥2 ≤ CT

(
∥(I −Πh)U0∥2 +Tr

(
(I −Πh)Cc

))
, (12)

where CT depends on T and on Lipschitz/dissipativity bounds for F , but
not on dim(Hc,h). The crucial observation is that the stochastic forcing
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enters only through Cc, and Tr((I−Πh)Cc) → 0 by trace-class compactness,
independently of how dim(Hc,h) grows.

We next pass from finite-time approximation to invariant measures. Let
νh denote an invariant measure for (11). Existence follows from standard
Lyapunov arguments based on dissipativity; uniqueness follows under a mild
irreducibility/strong Feller condition, which holds in the present additive-
noise setting provided Cc,h is non-degenerate on Hc,h. Combining exponen-
tial mixing (in Wasserstein distance) for both the continuum and Galerkin
semigroups with the coupling estimate (12), we obtain

W2(νh, ν) −→ 0 as h → 0, (13)

and the implied constants in the mixing and stability estimates may be cho-
sen uniformly in h. At the level of proof, the independence from dim(Hc,h)
enters through: (i) dimension-free dissipativity of the linear part −u; (ii)
operator-norm (rather than coordinate-wise) Lipschitz bounds on u 7→ ΠRDHµc0

Φ(u)

restricted to Hc; and (iii) trace-class control of the noise, which prevents
growth of stochastic fluctuations with the number of retained modes.

We now incorporate learned drifts and time discretization. Fix h and let
Fθ,h : Hc,h × I → Hc,h be the learned drift used in practice. We assume
only that it is constraint-preserving (i.e. it maps into Hc,h) and that it ap-
proximates the projected target drift in the sense that, for each noise level
t ∈ I,

Errscore(h, θ) := sup
t∈I

(
Eu∼νt

∥∥ΠhF (u, t)− Fθ,h(Πhu, t)
∥∥2)1/2

(14)

is small. This formulation makes explicit the discretization-consistency re-
quirement: the same operator network should represent the drift across res-
olutions via projection of inputs/outputs. In particular, (14) is compatible
with training at one h and sampling at another, provided the architecture
respects the projection structure.

Let ν̂h,θ,∆t denote the stationary distribution (or long-time sampling dis-
tribution) of the time-∆t Euler–Maruyama chain on Hc,h driven by Fθ,h

(and similarly for a Crank–Nicolson-type scheme). A standard perturba-
tion decomposition, combined with the contractivity of the linear part and
the stability of invariant measures under drift perturbations, yields an error
bound of the form

W2

(
ν̂h,θ,∆t, ν

)
≤ C

(
Errscore(h, θ)+Err∆t(h)+Erranneal(h)+ErrGalerkin(h)

)
,

(15)
where Err∆t(h) denotes the bias introduced by time discretization (typically
Err∆t(h) = O(∆t1/2) in strong metrics and O(∆t) in weak metrics under
sufficient regularity), Erranneal(h) quantifies the discrepancy due to running
a finite annealing schedule rather than exact sampling at the terminal noise
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level, and ErrGalerkin(h) := W2(νh, ν) is the truncation error controlled by
(13). The constant C depends on continuum quantities (dissipativity, Lips-
chitz bounds, and Tr(Cc)), but is independent of dim(Hc,h). We emphasize
that (15) separates the sources of error in a way that is compatible with a
continuum-first methodology: Galerkin truncation affects only ErrGalerkin,
time stepping affects only Err∆t, annealing affects only Erranneal, and learn-
ing affects only Errscore.

Finally, since each term in (15) is controlled by operator-level quantities
rather than coordinate dimension, the convergence is resolution-invariant in
the following sense: if we refine h while maintaining comparable score accu-
racy in (14) (as expected for discretization-consistent neural operators) and
choose ∆t according to stability rather than dimension, then W2(ν̂h,θ,∆t, ν) →
0 without any constants degenerating with dim(Hc,h). This is precisely the
regime in which training and sampling can be decoupled from the particular
grid used to represent the fields.

Penalty enforcement lower bounds and the necessity of exact pro-
jection. A natural alternative to constraint preservation by construction
is to enforce a linear constraint via a quadratic penalty. Concretely, let
L : D(L) ⊂ H → G be a (typically unbounded) closed linear operator into a
Hilbert space G, and consider the constraint Lu = 0 (e.g. L = ∇· on vector
fields). A common strategy is to work on an unconstrained discretization
Hh ⊂ H and to modify either the learning objective or the sampling drift
by adding a term proportional to λ∥Lhu∥2G, where Lh : Hh → Gh is a dis-
crete approximation of L and λ > 0 is a penalty parameter. We now record
the basic obstruction: unless λ is increased with resolution, penalty meth-
ods cannot yield constraint violation tending to zero under refinement, even
in the most favorable Gaussian/quadratic setting. This is the precise sense
in which projection (or, equivalently, range-restriction to Hc) is not merely
convenient but structurally necessary for resolution-invariant feasibility.

To isolate the effect, we ignore learning error and consider the idealized
stationary distribution induced by a purely quadratic penalization. Let Hh

be finite-dimensional, let Lh : Hh → Gh be linear, and let Σh : Hh → Hh be
a symmetric positive definite “base covariance” (for simplicity one may take
Σh = I). Consider the penalized Gaussian measure ρh,λ on Hh with density

ρh,λ(du) ∝ exp
(
−1

2⟨Σ
−1
h u, u⟩ − λ

2∥Lhu∥2Gh

)
du,

which is the invariant measure of the Ornstein–Uhlenbeck dynamics with
linear drift −Σ−1

h u− λL∗
hLhu and additive white noise. This measure is the

best-case target for any penalty-based Langevin sampler: if even ρh,λ fails to
concentrate on ker(Lh) uniformly in h, then no practical scheme with finite
stepsizes and additional nonlinearities can remedy the obstruction without
scaling λ.
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Let Ah := Σ
1/2
h L∗

hLhΣ
1/2
h on Hh. Diagonalizing Ah yields eigenpairs

{(αj,h, ej,h)}
dim(Hh)
j=1 with αj,h ≥ 0. Under ρh,λ, the transformed coordinates

z = Σ
−1/2
h u are Gaussian with covariance (I + λAh)

−1, and hence a direct
calculation gives

Eρh,λ∥Lhu∥2Gh
= Tr

(
LhΣh(I + λAh)

−1L∗
h

)
=

dim(Hh)∑
j=1

αj,h

1 + λαj,h
. (16)

The summands satisfy α
1+λα ≥ 1

2λ whenever α ≥ 1/λ. Therefore, if Ah has
many eigenvalues above 1/λ (which is exactly what occurs under refinement
for differential constraints), the expected constraint violation cannot be made
small without increasing λ.

Proposition 3.1 (Resolution-dependent penalty scaling). Assume that for
a sequence h → 0 the operator Ah has at least mh eigenvalues satisfying
αj,h ≥ καmax,h for some fixed κ ∈ (0, 1], where αmax,h := ∥Ah∥op. Then for
all λ > 0,

Eρh,λ∥Lhu∥2Gh
≥ mh

καmax,h

1 + λκαmax,h
≥ mh

2λ
1{λκαmax,h≥1}.

In particular, achieving Eρh,λ∥Lhu∥2Gh
≤ ε uniformly in h requires λ ≳ mh/ε

once αmax,h → ∞ and mh → ∞.

The hypothesis is mild: for standard Fourier or finite element discretiza-
tions of differential operators, αmax,h grows polynomially in h−1 and a non-
trivial fraction of modes accumulate near the high end of the spectrum. For
example, in a Fourier truncation on Td with maximal wavenumber K ∼ h−1

and L = ∇·, one has L∗
hLh acting diagonally on modes with eigenvalues |k|2.

Thus αmax,h ∼ K2, and there are mh ≍ Kd modes with |k| ≳ K/2. Insert-
ing this into Proposition 3.1 yields a lower bound scaling like Kd/λ for the
unnormalized ℓ2 constraint energy. When the discrete L2 norm is normal-
ized by the grid volume, the same calculation yields an Ω(1/λ) lower bound
independent of K, so that any fixed λ produces a nonvanishing divergence
level as h → 0.

Two conclusions follow. First, penalty methods are intrinsically not
resolution-invariant: to maintain a fixed feasibility tolerance ε one must
increase λ with the growth of ∥L∗

hLh∥op and, in typical cases, also with the
number of constraint-violating directions mh. Second, increasing λ intro-
duces stiffness: the penalized drift contains the factor λL∗

hLh, whose largest
eigenvalue is λαmax,h; explicit time stepping then requires ∆t ≪ (λαmax,h)

−1

for stability, which deteriorates rapidly under refinement. Thus penalty-
based training and sampling jointly face a twofold resolution dependence:
the coefficient must scale up to control feasibility, and the stepsize must
scale down to control stiffness.

20



By contrast, exact projection separates feasibility from resolution. If
we evolve directly on the constrained subspace Hc (or on Hc,h) and en-
force Fθ = Π ◦ F̃θ, then constraint satisfaction holds identically at every
step and for every h, without tuning coefficients against αmax,h and without
introducing stiff directions. This is the formal separation we rely on: projec-
tion eliminates the growing family of constraint-violating modes rather than
merely suppressing them, and therefore is the only mechanism among these
two that can support feasibility with constants that do not degenerate as
dim(Hc,h) → ∞.

Numerical experiments. We summarize three representative experiments
designed to stress (a) exact feasibility at every iteration, (b) resolution in-
variance under Galerkin refinement, and (c) compatibility with conditioning.
In all cases we train the constrained noise-prediction objective

min
θ

Eu∼µ, η∼µc
0

∥∥η + Fθ(u+ η, t)
∥∥2
H
, Fθ := Π ◦ F̃θ,

with t either fixed (single-scale) or drawn from a prescribed annealing sched-
ule. The constrained Gaussian µc

0 = N (0, Cc) is sampled on the chosen
Galerkin space Hc,h by drawing z ∼ N (0, I) and setting η = C

1/2
c,h z; on

periodic domains we implement C
1/2
c,h and Πh spectrally (FFT), while on

non-periodic benchmarks we implement Πh by an H(div)-compatible dis-
crete Helmholtz projection. Sampling uses the annealed projected Euler–
Maruyama scheme in the algorithmic context, so that un ∈ Hc,h for all n by
construction.

(i) Unconditional generation of incompressible fields. We first con-
sider unconditional generation of divergence-free velocity fields on Td, where
the constraint is Hc = {u ∈ L2(Td;Rd) : ∇ · u = 0,

∫
u = 0}. Train-

ing data are i.i.d. snapshots {ui} from a prescribed target distribution on
Hc (either synthetic turbulence-like spectra or snapshots from a reference
solver). We evaluate samples ũ using spectral diagnostics that are stan-
dard for incompressible flow statistics: the energy spectrum E(k), the en-
strophy spectrum, and low-order structure functions Sp(ℓ) = E|δℓu|p with
δℓu(x) = u(x + ℓ) − u(x). In addition, we monitor distributional metrics
on low-dimensional summaries (e.g. histograms of vorticity and energy) and
two-point correlation functions to test whether long-range coherence is re-
produced.

The feasibility check is explicit: since Fθ takes values in Hc and the
injected noise ξn ∼ N (0, Cc,h) is also supported on Hc, each Langevin iterate
satisfies ∇ · un = 0 in the discrete sense implied by Πh. Consequently,
the divergence diagnostic (measured as ∥∇ · ũ∥L2 on the evaluation grid)
is at machine precision across all sampling steps and across all evaluation
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resolutions. This confirms the main qualitative claim: in contrast to penalty
methods, there is no resolution-dependent tuning required to keep feasibility
fixed under refinement; feasibility is an invariant of the dynamics rather than
an emergent property.

(ii) Learning an invariant measure for Navier–Stokes and zero-shot
super-resolution. We next target the invariant measure of the 2D incom-
pressible Navier–Stokes equations on T2 in vorticity form, under standard
stochastic or deterministic forcing and viscosity parameters chosen so that
the dynamics are mixing at the resolved scales. We treat the stationary
snapshot distribution as µ on Hc and train Fθ(·, t) on a moderate truncation
level Hc,h0 (e.g. Fourier cutoff K0) using the same constrained noise model.
The goal is not to reproduce trajectories but to reproduce equilibrium statis-
tics under the induced sampler. We therefore compare empirical means and
variances of physically relevant quantities such as kinetic energy ∥u∥2L2 , en-
strophy ∥∇ × u∥2L2 , and the spectrum E(k) aggregated over shells. We also
compare spatial correlation functions and verify that sampled fields exhibit
the expected regularity at the learned noise scales.

A key feature in this experiment is zero-shot super-resolution. After
training at resolution h0, we sample on a finer Galerkin space Hc,h1 (higher
cutoff K1 > K0) by (i) representing the state on Hc,h1 , (ii) drawing ξn ∼
N (0, Cc,h1), and (iii) evaluating the same operator Fθ in a discretization-
consistent manner (e.g. via a Fourier neural operator whose parameteriza-
tion is independent of grid size). The projected dynamics remain on Hc,h1

and preserve incompressibility exactly at the finer level. Empirically, we
observe that the low-frequency statistics of samples generated at h1 match
the reference distribution at least as well as those generated at h0, while
the additional high-frequency degrees of freedom are populated in a manner
consistent with the constrained Gaussian reference at the smallest anneal-
ing scales. This behavior is consistent with the error decomposition implicit
in the resolution-invariance theorem: the dominant discrepancies are at-
tributable to score approximation and finite-time annealing, rather than to
constraint leakage or resolution-induced instability.

(iii) Conditional sampling with sparse observations: posterior sum-
maries and calibration. Finally, we consider conditional generation from
partial observations. Let B : Hc → Rm be a bounded observation operator
(e.g. pointwise velocity probes, sparse Fourier coefficients, or local averages),
and let y = B(u) + ζ with ζ ∼ N (0,Γ) independent. The target is the pos-
terior µ(· | y) on Hc. We implement conditioning by training a conditional
drift Fθ(u, t; y) (realized by concatenating y-dependent features to the neu-
ral operator input), while maintaining feasibility by projecting the output:
Fθ := Π◦ F̃θ(·, ·; y). Sampling uses the same projected annealed Langevin it-
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erations, now with the conditional drift. Because the constraint is linear and
enforced by projection at each step, all conditional samples remain feasible
regardless of the observation pattern.

We evaluate conditional performance through posterior mean and vari-
ance fields. Given repeated runs of the conditional sampler, we estimate
m̂y(x) = E[ũ(x) | y] and ŝ2y(x) = Var(ũ(x) | y) and compare these against
Monte Carlo references computed from a baseline method when available (or
against withheld ground truth in synthetic tests). We also assess calibration:
for linear functionals ℓ ∈ H∗

c (e.g. average flow through a cross-section), we
check whether credible intervals based on ℓ(ũ) attain nominal coverage over
repeated draws of (u, y). Across observation sparsity regimes we find that
the conditional sampler appropriately contracts uncertainty near observed
locations while retaining physically plausible variability elsewhere, without
introducing spurious divergence. These results support the practical claim
that enforcing Hc structurally is compatible with both unconditional and
conditional generation, and that discretization changes at inference time do
not require retraining provided the operator evaluation and noise sampling
are consistent.

Collectively, these experiments validate the two structural points empha-
sized by our analysis: exact feasibility is maintained by construction during
both training and sampling, and the learned sampler can be deployed across
discretizations with stable behavior governed primarily by score approxi-
mation and annealing error rather than by resolution-dependent constraint
enforcement.

Discussion: boundary and inequality constraints, and directions
beyond linear subspaces. Our presentation has emphasized linear ho-
mogeneous constraints encoded by a closed subspace Hc ⊂ H and enforced
by an orthogonal projector Π. Many PDE constraints of interest, however,
are affine rather than homogeneous because of boundary conditions or in-
homogeneous conservation laws. A simple and robust extension is to reduce
affine constraints to the homogeneous setting by lifting. Concretely, suppose
the admissible set is

A = {u ∈ H : Lu = b},

for a bounded linear operator L : H → Y and given b ∈ Y (e.g. u|∂D = g
or prescribed flux). Fix any ulift ∈ H such that Lulift = b and define the
homogeneous subspace H0 := kerL. Then every u ∈ A decomposes uniquely
as u = ulift + w with w ∈ H0, and learning/sampling may be performed on
w instead of u. In this representation, the constraint-preserving projector
becomes the affine map

Πaff(u) := ulift +Π0(u− ulift),

23



where Π0 : H → H0 is the orthogonal projector onto H0. If the original
constraint also includes a subspace condition (e.g. incompressibility), one
may set Hc := H0 ∩Hdiv and take Π as the orthogonal projection onto Hc;
the affine update remains ulift + Π(· − ulift). Since all iterates are obtained
by applying Πaff to a feasible initial point plus feasible increments (drift
and noise), exact feasibility is again invariant under time stepping. At the
discrete level, the same idea applies with a discrete lift ulift,h satisfying the
discrete boundary operator and a commuting or compatible discrete pro-
jector Π0,h (e.g. Helmholtz–Hodge projections with boundary conditions, or
H(div)-conforming mixed methods). The key point is that boundary con-
straints should be enforced by construction at the same level as the stochastic
dynamics, rather than as an additional penalty that must be tuned with res-
olution.

A second practically important extension concerns positivity and bound
constraints (densities, concentrations, viscosities), which are not linear and
hence do not define a subspace of H. Here a standard remedy is reparame-
terization: we choose an unconstrained latent field f ∈ H̃ and a pointwise
map T : H̃ → H such that u = T (f) satisfies the constraint automatically
(for example T (f) = exp(f) for positivity, T (f) = softplus(f) for nonnega-
tivity with better conditioning, or T (f) = a+(b− a)σ(f) for u ∈ [a, b]). We
then train and sample in f–space using our linear constraint machinery (and
any additional linear constraints may be imposed on f or on u depending
on the application), and finally push forward samples by T . This procedure
yields exact positivity at every iteration, regardless of discretization. One
must, however, be clear about the target: if µ is a distribution on u, then the
corresponding pullback distribution on f is µf := µ◦T , and the DDO/DSM
objective identifies the score of µf with respect to the chosen reference on H̃.
When T is smooth and invertible (e.g. exponential), the relationship between
scores is given formally by the chain rule with a Jacobian correction:

D log
dµf

dµ0
(f) = (DT (f))∗D log

dµ

d(T#µ0)
(T (f)) + D log | detDT (f)|,

where (DT (f))∗ is the adjoint derivative. In practice we avoid explicit deter-
minants by defining the model and corruption directly in f–space, training
there, and accepting that the induced distribution on u = T (f) is the push-
forward of the learned latent sampler. This viewpoint keeps the sampler
constraint-preserving (positivity by construction) while retaining resolution
invariance provided T is evaluated pointwise and the latent operator network
is discretization-consistent.

These two extensions highlight a broader limitation of our current the-
ory: our equivalence and invariance results rest on the linear-subspace ge-
ometry of Hc and on Gaussian reference measures supported on Hc. When
the constraint set is a nonlinear manifold M ⊂ H (e.g. unit-length fields,
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orthonormal frames, determinant constraints, contact constraints, or level-
set constraints), there is in general no globally defined bounded projector
Π : H → M with the properties we exploited (idempotence, self-adjointness,
and stability under Galerkin refinement). Local projections exist under regu-
larity and reach assumptions, but they are nonlinear and can introduce bias
or instability under discretization, and the analogues of Cameron–Martin
structure and Gaussian reference measures become substantially more del-
icate. Moreover, even when one performs a projection step onto M after
each update, it is not immediate that the resulting Markov chain targets a
measure with a tractable density or that a DSM identity holds with respect
to a convenient reference.

Several concrete directions follow. First, it is natural to develop a manifold-
constrained version of the present framework in which the state evolves on
M via a Riemannian Langevin diffusion driven by a tangent noise and a
drift defined by the intrinsic gradient of an intrinsic potential. One would
then seek a score defined relative to a reference measure on M (e.g. the
Riemannian volume or a specified base distribution) and prove an analogue
of the denoising identity using intrinsic integration by parts. The algorith-
mic counterpart would replace the linear projection Π by a retraction and
tangent-space projection at each step, preserving the constraint up to retrac-
tion accuracy while aiming for a correct invariant measure.

Second, while we have treated Π as known (coming from the PDE con-
straint), it is appealing to consider learned projectors or learned fast ap-
proximations of Π when an exact Helmholtz or boundary projection is ex-
pensive. Any such approximation must be handled with care: small viola-
tions of idempotence or failure to commute with refinement can reintroduce
resolution-dependent constraint leakage. A principled goal is therefore to
learn operators that remain uniformly bounded on H and converge strongly
to the true Π as resolution increases, possibly by parameterizing Π through
a constrained architecture (e.g. Π = QQ∗ with Q a partial isometry) or by
learning a constraint solver that is consistent with the continuous operator.

Third, we expect that non-Gaussian constrained references will be impor-
tant in applications where Gaussian small-scale structure is inadequate (e.g.
sparsity, intermittency, or heavy tails). Replacing µc

0 by Besov-type priors,
Lévy-driven fields, or Gibbs measures changes the notion of score and the
form of the denoising identity; the appropriate objects are then logarithmic
derivatives and Stein operators associated with the reference measure rather
than Cameron–Martin gradients. Establishing measure equivalence, finite-
ness of DSM objectives, and resolution-invariant sampling in these settings
appears feasible but requires different functional-analytic tools than those
used for trace-class Gaussians.

In summary, the core message persists under these extensions: whenever
constraints can be encoded by an invariant structure of the dynamics (affine
lifting, reparameterization, or intrinsic geometry), feasibility should be en-
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forced by construction rather than by penalties. The main open challenge
is to preserve the same level of discretization robustness when moving from
linear subspaces with Gaussian references to genuinely nonlinear constraint
sets and non-Gaussian base measures.
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