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Abstract

Modern preference learning pipelines (DPO/RLHF) are explicitly
regularized toward a reference model πref . Chen et al. (NeurIPS 2024)
show that this reference conditioning makes correcting even mild rank-
ing errors difficult: for a datapoint with reference log-ratio c, DPO flips
the ranking if and only if the DPO loss falls below − log σ(βc). We
push this pointwise characterization into an economics-style popula-
tion limit that is directly actionable for 2026-era alignment governance.
We introduce a clean finite-optimization/early-stopping floor L(B) pa-
rameterized by compute budget B, and derive a closed-form upper
bound on the fraction of mis-ranked preference pairs that any fixed-
reference DPO procedure can correct before overfitting/degeneration.
The bound depends only on β, L(B), and the upper tail of the ref-
erence log-ratio distribution c. This yields a testable “alignment-cap
frontier”: when πref assigns too much likelihood to dispreferred comple-
tions (large positive c), no feasible reduction in loss at early stopping
can flip those pairs. We outline empirical validation by estimating c-
distributions and per-example losses across checkpoints, then predict-
ing realized ranking flips across models/datasets. The results provide
an interpretable diagnostic for when alignment investment must shift
from ‘more DPO’ to improving the reference, refreshing the dataset
on-policy, or redesigning objectives.
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1 Introduction

A recurring empirical pattern in modern preference learning is that we can
often improve average user-facing quality while still failing to repair the most
salient “alignment gaps”—the specific prompts where a deployed model reli-
ably chooses a completion that users (or internal raters) judge worse. Prac-
titioners experience this as a kind of brittleness: training appears to move
many logits in the right direction, yet some misbehaviors remain stubbornly
fixed, even when they are clearly labeled in the preference data. In this pa-
per we formalize one mechanism behind this phenomenon for fixed-reference
Direct Preference Optimization (DPO): correcting a mis-ranked pair can be
viewed as paying an adjustment cost that grows with how strongly the ref-
erence model prefers the wrong answer, and finite compute budgets impose
an effective floor on how much adjustment cost we can pay.

Our motivating lens is economic. When an agent is anchored to a default
behavior (here, the reference policy), moving away from that default is not
free: it requires optimization effort, and at finite horizons we should expect
“sticky” outcomes where some mistakes persist. This perspective is espe-
cially natural in RLHF-style pipelines: we begin from a pretrained model
that already encodes a large amount of capability and stylistic prior, then
we apply preference learning as a comparatively small adjustment step that
must not destroy the underlying competence. In that regime, the training
algorithm is implicitly solving a constrained problem: it must improve pref-
erence satisfaction without drifting too far, and it must do so under a limited
optimization budget. The central question is therefore not merely whether
DPO is consistent in the limit of infinite compute, but what it can reliably
change at the checkpoints we actually deploy.

Fixed-reference preference learning makes the anchoring particularly ex-
plicit. DPO, as commonly implemented, optimizes a policy relative to a
frozen reference model. The reference enters the objective through a log-
ratio term that reweights how hard it is to make the policy prefer a labeled
winner over a labeled loser. Intuitively, if the reference already prefers the
winner, DPO only needs to “nudge” the policy in the same direction; if the
reference prefers the loser, DPO must fight uphill against the reference odds.
This uphill case is exactly what we care about from an alignment stand-
point: these are datapoints where the deployed base model is biased toward
the wrong completion even though the aggregated preference label indicates
the opposite. These mis-ranked pairs are the ones that, in practice, consti-
tute the most visible safety and product risks.

The complication is that we never optimize the DPO objective to zero.
Real training uses early stopping, regularization, and finite compute; more-
over, we often select checkpoints by validation heuristics that prioritize broad
generalization rather than aggressively fitting the hardest (and often rare)
mis-ranked points. This means that, even on the training dataset, there is
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a residual per-example loss that does not go away. We model this residual
effect via a finite-optimization “loss floor” on the mis-ranked subset: af-
ter running a training-and-stopping procedure with budget B, the attained
checkpoint cannot push every mis-ranked point below some minimum achiev-
able loss level. While this floor can be motivated by optimization limits, it
also captures a practical governance reality: organizations typically have ex-
plicit caps on training time, and they adopt conservative stopping rules to
reduce overfitting, mode collapse, or capability degradation. In short, there
is an operationally meaningful sense in which “we stop before we have fixed
everything.”

Our main message is that the interaction between (i) the reference model’s
mis-ranking strength and (ii) a finite loss floor yields a sharp ceiling on
the fraction of mis-ranked points that can be corrected by fixed-reference
DPO. Concretely, the reference log-ratio for a labeled pair induces a dif-
ficulty threshold : to flip the ranking at a checkpoint, the per-point DPO
loss must be driven below a value that decreases as the reference becomes
more confident in the wrong completion. Therefore, if early stopping im-
plies a lower bound on the attainable loss on mis-ranked points, only those
mis-ranked points whose thresholds lie above that floor are even feasible to
correct. Aggregating across datapoints turns this into a population state-
ment: the corrected fraction is upper bounded by the cumulative mass of
“mild” mis-rankings, i.e. those where the reference’s bias in favor of the loser
is not too large.

This framing clarifies why alignment gaps can persist even when we have
labeled data directly addressing them. A preference dataset can contain
many mis-ranked pairs, but if a nontrivial portion of those pairs sit in the
heavy upper tail of the reference log-ratio distribution, then they are effec-
tively “locked in” by the combination of anchoring and finite optimization.
Under fixed-reference training, we should not expect these points to flip
unless we either (a) spend substantially more compute (so the loss floor de-
creases), (b) reduce the strength of the anchoring (e.g. via hyperparameters),
or (c) change the reference itself over time (e.g. iterative methods). Impor-
tantly, these options correspond to real tradeoffs faced by deployers: more
compute is costly; weaker anchoring can increase distributional shift and
degrade capabilities; and changing the reference can complicate evaluation,
reproducibility, and auditing.

Our contributions are threefold. First, we connect the pointwise difficulty
phenomenon in DPO to a simple, testable alignment-cap frontier under fi-
nite compute: a closed-form correction ceiling determined by the reference
log-ratio distribution and the optimization floor. Second, we provide com-
parative statics that match practitioner intuitions but make them precise:
increasing the DPO inverse-temperature parameter can tighten the feasibility
thresholds and thus reduce the maximum correctable mass at a fixed floor;
increasing compute can expand the feasible region by lowering the floor; and
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improving the reference model reshapes the mis-ranking tail, increasing the
achievable correction rate even at the same compute. Third, we highlight
safety and governance implications: if a training method has an intrinsic ceil-
ing on correcting the most severe mis-rankings under realistic budgets, then
evaluation protocols should explicitly measure the residual uncorrectable tail
and avoid over-interpreting aggregate win-rate gains as evidence of robust
correction on worst-case prompts.

The rest of the paper develops this argument in a step-by-step way. In
the next section we recall the DPO objective and the distinction between on-
policy win rate and offline ranking correctness, and we summarize the key
threshold phenomenon that makes mis-ranked points qualitatively harder
than correctly-ranked points. We then formalize the finite-optimization floor
assumption and derive the population correction bound, interpret it as a fron-
tier between compute, anchoring, and correctable mis-rankings, and discuss
extensions that allow heterogeneous learnability across datapoints. Finally,
we outline an empirical protocol for checking whether observed training runs
respect the predicted ceiling—and what it would mean, from both a scientific
and a governance perspective, to observe systematic violations.

2 Background and motivation

2.1 From RLHF to fixed-reference DPO

Most deployed preference-learning stacks can be viewed as variations on a
common theme: we wish to update a pretrained language model to better
match human judgments while retaining the broad competence encoded by
pretraining. In RLHF, this is often expressed as maximizing an (implicit)
reward model subject to a Kullback–Leibler (KL) penalty to a reference pol-
icy. The KL term is not merely a technical convenience; it is the mechanism
by which organizations operationalize a safety–capability tradeoff. It dis-
courages large distributional shifts, reduces the risk of reward hacking, and
provides a knob for controlling how aggressively we overwrite the pretrained
prior.

Direct Preference Optimization (DPO) can be understood as a partic-
ularly clean instantiation of this anchored update, where the optimization
problem is written directly in terms of pairwise preferences and a fixed ref-
erence model. Concretely, DPO posits (or is equivalent to) a Bradley–Terry
style likelihood for preferences under a policy πθ, and then expresses the
learned policy as a multiplicative reweighting of the reference policy by an
exponentiated reward. In the resulting objective, the reference is frozen and
appears inside the per-example likelihood as an additive log-odds correction.
This “reference log-odds” term is what makes DPO attractive from an en-
gineering standpoint: we obtain a stable, supervised-learning-style loss, but
we retain the anchoring behavior of KL-regularized RLHF.
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The key subtlety, and the one that motivates our analysis, is that an-
choring is asymmetric across datapoints. When the reference already leans
toward the preferred completion, the update is “downhill” and the optimiza-
tion only needs to reinforce an existing preference. When the reference leans
toward the dispreferred completion, the update is “uphill”: the optimizer
must fight against the reference odds, and the amount of work required de-
pends on how strongly the reference is miscalibrated. This asymmetry is easy
to miss if we only look at average training loss curves, but it becomes cen-
tral once we care about stubborn, safety-relevant errors that persist across
fine-tuning runs.

2.2 Two notions of “improving preferences”: win rate vs.
ranking correctness

A second motivation for our setup is that “preference satisfaction” is mea-
sured in multiple, non-equivalent ways in practice. A common online or
quasi-online metric is win rate: we sample responses from the trained policy
and from a baseline (often the reference or a previous checkpoint), then ask
raters which response is better. Win rate is the metric that product teams
often care about because it captures user-visible improvements under the
policy’s own sampling distribution.

Our theoretical results, by contrast, focus on an offline notion: whether
the learned policy assigns higher conditional probability to the labeled winner
than to the labeled loser on the same prompt. We refer to this as ranking
correctness on the preference dataset. This metric is not a substitute for
win rate, but it is an important diagnostic for two reasons. First, it isolates
the specific mechanism we study: the way fixed-reference objectives encode
an odds constraint on how hard it is to reverse a mis-ranking. Second, it is
the natural quantity that connects to per-example DPO loss: on a fixed pair
(x, yw, yℓ), the model “fixes” the error precisely when it assigns at least as
much probability mass to yw as to yℓ. In other words, ranking correctness
makes explicit whether training has actually reversed the reference model’s
preference on that exact disagreement pair, rather than merely producing
alternative samples that happen to win more often.

This distinction matters operationally. A training run can increase win
rate by improving fluency, harmlessness style, or generic helpfulness while
still failing to reverse the ranking on the most egregious disagreement pairs.
From a safety perspective, these disagreement pairs are often the ones we care
about most: they are where the base model is systematically attracted to a
completion that human labelers prefer less (e.g., a subtly unsafe instruction-
following behavior, or a misleading answer that sounds confident). If our
evaluation collapses these cases into an average win rate, we risk mistaking
broad style improvements for robust correction of the problematic tail.
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2.3 Chen et al.: why mis-ranked pairs are intrinsically “hard”
under DPO

Chen et al. make the above asymmetry precise and document it empirically.
Their core observation is that, for DPO with a fixed reference, there exists
a pointwise “difficulty threshold” for flipping the ranking on any given pref-
erence pair, and this threshold depends directly on the reference model’s
relative preference for the two completions. Intuitively, the reference log-
odds act like an offset in the logistic loss: if the reference assigns higher
probability to the loser than to the winner, then the optimizer must produce
a larger change in the policy’s own log-odds before the logistic term becomes
confident in the correct direction.

At a high level, the per-pair DPO contribution takes the form of a neg-
ative log-likelihood,

− log σ
(
β
(
log πθ(y

w | x)− log πθ(y
ℓ | x) + (reference offset)

))
,

where β > 0 is the inverse-temperature hyperparameter controlling how
sharply preferences are enforced. Theorem 4.1 in Chen et al. shows that
the event “the policy ranks yw above yℓ” is equivalent to the per-example
loss being below a threshold that is a deterministic function of the reference
offset. The important qualitative property is monotonicity: as the reference
becomes more confident in the wrong completion, the threshold becomes
smaller, meaning the loss must be driven closer to zero to flip the ranking.

This immediately suggests an “alignment gap” mechanism that does not
rely on label noise or representational limits. Even if the preference dataset
is correct and internally consistent, and even if the model class is expres-
sive enough, the optimization dynamics can still fail to flip many mis-ranked
pairs because doing so requires pushing their individual losses below ex-
tremely stringent thresholds. Chen et al. report that, in realistic regimes,
the resulting ranking accuracy on the dataset can remain surprisingly low,
especially on the subset of pairs where the reference disagrees with the pref-
erence label. In our terms, the model improves broadly but leaves a residue
of uncorrected mis-rankings.

2.4 Why this becomes a compute-and-governance issue

Theorem 4.1 is a pointwise statement; on its own it does not yet say what
fraction of mis-rankings will remain in a full training run. The missing ingre-
dient is that real training is compute-limited and deliberately stopped early.
Early stopping is not merely about speed; it is often a governance and safety
control. Teams stop when validation metrics plateau, when divergence from
the reference becomes concerning, or when downstream capability regres-
sions appear. Consequently, there is an empirical sense in which training
can only push per-example losses “so far down” before we halt.
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Once we combine (i) a per-example threshold that can be arbitrarily
stringent for strongly mis-ranked pairs with (ii) a finite, operationally im-
posed limit on how low losses can go at the chosen checkpoint, we obtain a
sharp prediction: only the “mild” reference disagreements are even feasible
to correct under fixed-reference DPO at the compute budgets we actually
use. The hard tail—pairs for which the reference heavily favors the loser—
becomes effectively locked in.

This is the motivating bridge to our main result. In the next section
we formalize the preference dataset, the fixed reference offsets, and the mis-
ranked subset, and then we translate Chen et al.’s pointwise threshold into a
population-level bound: an explicit ceiling on the fraction of reference mis-
rankings that can be corrected at an early-stopped checkpoint, expressed in
terms of the reference log-odds distribution and an optimization-induced loss
floor.

3 Setup and notation: aggregated preferences, ref-
erence log-odds, and the flip condition

We work in the standard offline preference-learning regime: a fixed, aggre-
gated dataset of pairwise comparisons, a fixed reference model that supplies
the anchoring distribution, and a trainable policy that is updated by mini-
mizing a supervised loss. The goal of this section is to make explicit the ob-
ject that, in our view, governs most of the “hard cases” under fixed-reference
DPO: the distribution of reference log-odds on the subset of pairs where the
reference disagrees with the majority label.

Aggregated preference data. Let

D = {(xi, ywi , yℓi )}ni=1

denote an aggregated preference dataset. Here xi is the prompt (or con-
versational context) and (ywi , y

ℓ
i ) is an ordered pair of completions, where

ywi is the winner and yℓi is the loser under the dataset’s aggregation rule
(e.g., majority vote over raters, possibly after rater-quality weighting). We
treat this ordering as fixed: whatever uncertainty or heterogeneity exists at
the individual-rater level has already been compressed into the determinis-
tic label “yw is preferred to yℓ.” This is the regime in which DPO is most
commonly deployed: the training loop does not revisit the underlying pref-
erence elicitation, and the optimization problem is defined entirely by the
aggregated pairs.

We write πref(· | x) for the reference policy and πθ(· | x) for the trainable
policy. Both are conditional language models over completions given context
x. Throughout, we fix an inverse-temperature hyperparameter β > 0, which
controls how sharply the loss penalizes disagreements with the preference
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labels (equivalently, how strongly preference odds are enforced relative to
the anchoring effect of the reference).

Reference log-ratio as a per-example “headwind.” For each data-
point i, define the reference log-ratio

ci ≡ log
πref(y

ℓ
i | xi)

πref(y
w
i | xi)

= log πref(y
ℓ
i | xi)− log πref(y

w
i | xi).

This scalar is an easily-computable summary of how the fixed reference views
the labeled pair. It has a direct operational interpretation. If ci < 0, the
reference already assigns higher probability to the dataset winner ywi than to
the loser yℓi ; preference training is (locally) “with the grain” of the reference.
If ci > 0, the reference prefers the loser; preference training must overcome
a headwind whose magnitude is exactly ci in log-odds units. In practice,
this headwind aggregates multiple sources of difficulty: the reference may be
systematically miscalibrated on certain topics; the pair may be stylistically
atypical relative to pretraining; or the loser may exploit a strong prior (e.g.,
confident tone) that the reference overweights.

Because our interest is not just in whether such points exist but in how
many exist at each difficulty level, we will repeatedly consider the empirical
distribution of {ci}, and especially the distribution conditional on ci > 0.
This emphasis is deliberate: the tail of large positive ci corresponds to pairs
where the reference is confidently wrong, and these are precisely the pairs
that tend to be most stubborn under anchored objectives.

The mis-ranked subset. Define the set of reference-mis-ranked data-
points

M ≡ {i ∈ {1, . . . , n} : ci > 0}.

On M, the preference label and the reference ranking disagree: πref(y
ℓ
i |

xi) > πref(y
w
i | xi) even though the aggregated human judgment says ywi ≻

yℓi . While many training curves and ablations report aggregate statistics over
all of D, our results will be “conditioned” onM, because this is where DPO
must reverse a preference rather than merely amplify one. When |M| is non-
negligible, the behavior on this subset is often what determines whether pref-
erence training corrects systematic failure modes or merely polishes already-
good behavior.

We will write FM for the cumulative distribution function (CDF) of c
restricted to M. In finite samples, the natural estimator is the empirical
CDF

F̂M(t) =
1

|M|
∑
i∈M

1[ci ≤ t],
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and in large-sample discussions we treat FM(t) ≈ P[c ≤ t | c > 0]. Intu-
itively, FM answers: among the reference disagreements, what fraction are
“mild” (small c) versus “severe” (large c)?

Per-example DPO loss. For each datapoint i, define the DPO per-
example loss

Li(θ) ≡ − log σ

(
β

(
log

πθ(y
w
i | xi)

πθ(y
ℓ
i | xi)

+ ci

))
,

where σ(z) = 1
1+e−z is the sigmoid function. It is helpful to separate the

θ-dependent term from the fixed offset. Let

∆i(θ) ≡ log
πθ(y

w
i | xi)

πθ(y
ℓ
i | xi)

.

Then Li(θ) = − log σ(β(∆i(θ) + ci)). The role of the reference is entirely
captured by the additive constant ci. In particular, for fixed ci, the loss is
a strictly decreasing function of ∆i(θ): increasing the policy’s log-odds in
favor of the winner monotonically decreases the loss. However, the baseline
difficulty differs sharply across i because the point ∆i(θ) = 0 (where the
policy is indifferent between ywi and yℓi ) corresponds to different loss values
depending on ci.

The empirical DPO objective is typically the average loss L̂DPO(θ;β) =
1
n

∑n
i=1 Li(θ) (possibly with additional regularization), but our subsequent

arguments do not require committing to a particular optimizer, schedule,
or batching strategy; we only use the fact that DPO training attempts to
reduce these per-example losses subject to the practical constraints of finite
compute and early stopping.

Ranking correctness and the flip threshold. The offline notion of
“fixing” a reference mis-ranking is that the trained policy assigns at least as
much probability to the labeled winner as to the labeled loser. Formally,
define the ranking correctness indicator

Ri(θ) ≡ 1
[
πθ(y

w
i | xi) ≥ πθ(y

ℓ
i | xi)

]
= 1[∆i(θ) ≥ 0].

Chen et al. (Theorem 4.1) show that this event is equivalent to a simple
per-example loss threshold. To see the mechanism, evaluate the loss at the
knife-edge ∆i(θ) = 0:

τi ≡ − log σ(βci).

Because Li(θ) is strictly decreasing in ∆i(θ), we have the equivalence

Ri(θ) = 1 ⇐⇒ ∆i(θ) ≥ 0 ⇐⇒ Li(θ) ≤ τi.
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Thus each pair comes with a deterministic “flip threshold” τi, and the thresh-
old is itself a monotone function of the reference headwind ci. In particular,
onM where ci > 0, we have σ(βci) >

1
2 and hence τi ∈ (0, log 2). Moreover,

as ci increases, τi = − log σ(βci) decreases toward 0. The more confidently
the reference prefers the loser, the closer to zero the per-example loss must
be pushed before the policy even becomes indifferent between the two com-
pletions, let alone decisively prefers the winner.

This is the key link we will exploit: the distribution of ci onM induces a
corresponding distribution of thresholds τi, and any practical constraint on
how far optimization can reduce per-example losses immediately becomes a
constraint on how many of these thresholds can be satisfied. The next section
formalizes this constraint via an early-stopping (or finite-optimization) loss
floor and uses it to convert the pointwise threshold into a population-level
ceiling on the fraction of mis-rankings that can be corrected.

A finite-optimization viewpoint. In deployments, we rarely run pref-
erence optimization to full convergence on the offline dataset. Compute is
bounded (by wall-clock, tokens, or optimizer steps), and we typically impose
an explicit stopping rule to manage overfitting, distribution shift, or unac-
ceptable divergence from the reference. This motivates treating the training
loop not as an unconstrained minimization of the empirical DPO objective,
but as a budgeted procedure: given a compute budget B, an algorithm pro-
duces a checkpoint θB that is merely reachable under that budget.

Formally, we let A(B) denote a training-and-stopping procedure (opti-
mizer, schedule, batching, and stopping rule) that returns a checkpoint θB.
One can think of A(B) as inducing a (possibly random) path {θt}t≤T (B)

with T (B) the maximum number of updates permitted by budget, and then
selecting a stopping time tB ≤ T (B) (e.g., the first time validation loss stops
improving, or the iterate with minimum held-out loss). The key modeling
move is to summarize all these operational details by a single scalar that
captures what finite optimization can (and cannot) accomplish on the hard
subsetM.

Early stopping as a per-example loss constraint. The flip condition
from the previous section is pointwise: for each i ∈M, correcting the refer-
ence mis-ranking requires driving Li(θ) below its threshold τi = − log σ(βci).
The obstacle is that, under finite compute and practical stopping rules, per-
example losses do not decrease arbitrarily. In particular, the mis-ranked
examplesM often exhibit slow improvement because they require the model
to undo a strong prior inherited from πref (large positive ci), and because
gradients from different examples interfere in shared parameters.

We encode this operational limitation via a loss floor onM. We assume
there exists a (typically decreasing) function L(B) ≥ 0 such that the selected
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checkpoint θB = A(B) satisfies

∀i ∈M : Li(θB) ≥ L(B).

Intuitively, L(B) is the smallest per-example DPO loss level that finite train-
ing reliably reaches on the mis-ranked points before the stopping rule halts
optimization. This is a deliberately coarse abstraction: it forgets which ex-
amples are hardest, and it ignores heterogeneity in optimization dynamics.
Its role is to give us a tractable, pessimistic handle on what early stopping
implies for the feasibility of flipping many mis-rankings.

It is important to stress what this floor is (and is not). It is not a
statement that the average loss cannot be reduced further, nor that some
examples cannot be fit. Rather, it is a statement that under the deployed
training-and-stopping procedure, there remains a nontrivial subset of mis-
ranked examples whose losses are not pushed below a certain level, and we
summarize that phenomenon by a single bound applied uniformly on M.
When the uniformity is too strong, one can relax it (e.g., to quantile floors);
we return to this in our empirical discussion.

Why should a floor exist? From a mechanistic perspective, several dis-
tinct constraints can generate an effective L(B) even when the model class is
expressive. First, optimization time: if we stop after T gradient steps, there
is a hard limit on the maximum change in log-odds ∆i(θ) achievable for
the slowest-moving datapoints, especially under small learning rates or con-
servative schedules. Second, implicit or explicit regularization: many DPO
implementations include KL penalties, weight decay, reference-mix baselines,
or other stabilizers that prevent large departures from πref ; these stabilizers
are often tuned precisely to avoid catastrophic degradation, but they also
constrain the attainable per-example loss on examples with large headwinds
ci. Third, gradient conflict and shared capacity : the parameters that would
reduce Li for a particular mis-ranked pair may simultaneously increase losses
elsewhere, so a global optimizer that reduces the average loss may leave some
individual losses relatively high at the selected checkpoint. Finally, stopping
rules are welfare-driven, not feasibility-driven: practitioners stop when gen-
eralization, safety metrics, or divergence constraints look acceptable. That
stopping time need not coincide with the time at which hard mis-ranked
examples cross their flip thresholds.

For our purposes, the detailed cause is less important than the observable
fact: in many runs, the left tail of {Li(θB) : i ∈ M} does not approach 0,
and the worst-case (or near-worst-case) losses on M remain bounded away
from 0 at early stopping.

Interpreting L(B) as a compute–capability frontier. We view L(B)
as a reduced-form description of a compute–capability tradeoff on the mis-
ranked subset. As B increases (more steps, larger batches, more tokens,
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longer schedules), L(B) should weakly decrease, reflecting improved opti-
mization. However, in realistic regimes it may exhibit diminishing returns:
after a point, additional compute primarily reduces already-small losses or
improves easy examples, while the hardest examples onM remain stuck due
to regularization or representation limits. This is exactly the regime where
a tail-based impossibility statement becomes informative: the problem is
not that we cannot fit anything, but that we cannot fit the high-headwind
tail without paying additional costs (compute, divergence, or degradation
elsewhere).

Estimating the floor from training traces. The floor can be treated
either as a theoretical constraint (for a worst-case guarantee) or as an em-
pirically estimable quantity (for falsifiable prediction). Empirically, we can
log per-example losses during training and compute Li(θB) for each i ∈ M
at the selected checkpoint. A conservative estimator that literally satisfies
the uniform constraint is

L̂min(B) ≡ min
i∈M

Li(θB),

since by construction Li(θB) ≥ L̂min(B) for all i ∈M. In practice, however,
the minimum can be unstable (sensitive to outliers, label noise, and lucky
easy examples withinM). A more robust operational choice is to use a small
lower quantile,

L̂q(B) ≡ Quantileq
(
{Li(θB) : i ∈M}

)
,

and interpret the resulting statements as holding for a 1 − q fraction of M
(or as an approximate floor when the distribution has a sharp lower edge).
Either way, the estimation procedure is straightforward: compute M from
πref , record Li(θB) (or mint≤tB Li(θt) if one wants a best-so-far notion), and
summarize the lower envelope across mis-ranked points. Repeating across
random seeds provides an uncertainty band for L(B), which is useful when
we later compare predicted ceilings to observed flip rates.

This finite-optimization model is intentionally minimalist: it compresses
the training loop into A(B) and a single floor L(B). The benefit is that,
when combined with the flip threshold τi, it yields a sharp population-level
limit on how much fixed-reference DPO can correct among the reference’s
mis-rankings.

Main population bound: a sharp ceiling from pointwise feasibility.
We can now combine the pointwise flip condition with the finite-optimization
floor to obtain a population-level limit on how many reference mis-rankings
fixed-reference DPO can correct at early stopping. The argument is inten-
tionally simple: each mis-ranked datapoint i ∈ M comes with a required
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per-example loss level τi = − log σ(βci) that must be met in order to flip
the ranking, while the training-and-stopping procedure enforces (in our pes-
simistic abstraction) a common lower bound L(B) on what losses are actually
reached onM. When the required level τi is below the attainable floor L(B),
that datapoint is infeasible to correct under the given budget and stopping
rule.

Formally, fix any i ∈M. By the flip threshold characterization (Chen et
al., Thm. 4.1; restated in Proposition 1), ranking correctness on i is equiva-
lent to the inequality

Ri(θB) = 1 ⇐⇒ Li(θB) ≤ τi ≡ − log σ(βci).

Under our finite-optimization assumption, Li(θB) ≥ L(B) for all i ∈ M.
Therefore,

Ri(θB) = 1 =⇒ L(B) ≤ τi.

This is the key implication: a corrected mis-ranking must lie in the subset
of M whose thresholds are at least as large as the floor. Because τ(c) =
− log σ(βc) = log(1 + e−βc) is strictly decreasing in c for c > 0, we can
invert the inequality L(B) ≤ τ(ci) into an equivalent cutoff on the reference
log-ratio ci. Define c∗(B, β) as the unique value satisfying

− log σ(βc∗(B, β)) = L(B),

or equivalently

c∗(B, β) =
1

β
logit(e−L(B)) = − 1

β
log

(
eL(B) − 1

)
.

Then for any i ∈M,

Ri(θB) = 1 =⇒ ci ≤ c∗(B, β).

Summing this implication overM yields the correction bound

Corr(B, β) =
1

|M|
∑
i∈M

Ri(θB) ≤
1

|M|
|{i ∈M : ci ≤ c∗(B, β)}| .

In large samples, the right-hand side converges to FM(c∗(B, β)), the CDF of
c restricted to the mis-ranked set. This gives the stated population ceiling:

Corr(B, β) ≤ FM
(
c∗(B, β)

)
.

Uncorrectable tail mass as the operative obstruction. A useful way
to read the bound is to emphasize what it says about the upper tail of
reference disagreement on the mis-ranked set. Rewriting,

Corr(B, β) ≤ 1− P[c > c∗(B, β) | c > 0] .
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Thus, even if optimization were otherwise perfect, the fraction of mis-ranked
points with c above the critical threshold forms an “uncorrectable tail mass”
under fixed-reference, early-stopped DPO. These are precisely the datapoints
on which the reference assigns exponentially larger odds to the dataset
loser yℓ than to the dataset winner yw. For such points, the flip thresh-
old τ(c) = log(1 + e−βc) is extremely small; indeed, for large βc we have
τ(c) ≈ e−βc. If early stopping (or regularization) prevents per-example
losses from being driven below L(B), then any point requiring τ(c) < L(B)
is blocked regardless of what happens on easier datapoints.

This “tail mass” view also clarifies why the bound is not merely a pes-
simistic artifact of worst-case analysis. The obstruction is structural: under
a fixed reference, the DPO loss couples progress on a datapoint to the ref-
erence log-odds headwind ci. When ci is large and positive, the algorithm
must create a sufficiently strong countervailing log-odds shift to overcome the
reference preference; doing so requires pushing Li into a regime that may be
inaccessible under the stopping rule. In that sense, the bound formalizes a
concrete failure mode: DPO may fit the easy part ofM (small c) while leav-
ing a stubborn subset of high-c mis-rankings unflipped, even though those
mis-rankings are precisely where the reference is most wrong relative to the
aggregated labels.

Comparative statics: how β and reference quality move the ceiling.
The threshold c∗(B, β) makes the dependence on β especially transparent.
Holding L(B) fixed, c∗(B, β) scales as 1/β, so increasing β reduces the set
of mis-ranked points that are even eligible to be corrected:

β ↑ =⇒ c∗(B, β) ↓ =⇒ FM(c∗) ↓ .

Operationally, higher β makes DPO behave more like a hard classification
of pairwise preferences, which tightens the required per-example loss τi on
mis-ranked points. Conversely, smaller β relaxes these per-point feasibility
constraints, enlarging the feasible region of c values, although at the cost
of changing other aspects of training dynamics (including stability and the
effective strength of the preference signal).

Reference quality enters only through the conditional distribution of c
on M. If the reference is “mildly wrong” on its mis-rankings, then M may
have most of its mass at small positive c, implying a thin tail and a relatively
large feasible correction fraction for any given c∗. If, instead, the reference is
confidently wrong on a nontrivial subset—a heavy right tail of c onM—then
the ceiling can be small even when the overall fraction of mis-rankings |M|/n
is itself small. This is a particularly important safety implication: aggregate
win-rate improvements can coexist with a persistent set of high-confidence
reference errors that the offline procedure systematically fails to repair under
practical stopping rules.
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Finally, note what the bound does not claim. It is not a guarantee that
all datapoints with ci ≤ c∗ will be corrected, since optimization can fail for
many reasons (gradient interference, limited capacity, or simply insufficient
signal). Rather, it identifies a necessary condition for correction under our
floor abstraction, and thereby provides an upper envelope: fixed-reference
DPO cannot correct more than the mass of mis-ranked points whose reference
headwinds are below the critical threshold implied by (B, β) and the induced
loss floor. In the next section we discuss how this picture changes once we
relax the uniform-floor abstraction and allow heterogeneous learnability or
alternative constraints.

4 Extensions (optional but clean)

The preceding ceiling relied on a deliberately blunt abstraction: a uniform
loss floor over the mis-ranked set, which is a convenient way to model early
stopping and finite compute but is not the only operational constraint one
might justify from training traces. In this section we sketch three clean exten-
sions that (i) relax uniformity into heterogeneous per-example learnability,
(ii) replace pointwise floors with distributional or average-type constraints,
and (iii) interpolate the role of the reference term via simple variants that
practitioners sometimes implement implicitly.

(i) Heterogeneous learnability as compute allocation; when closed
forms fail. A more deployment-faithful view is that different mis-ranked
points require different amounts of optimization “effort” before they reach
their flip threshold. One stylized way to express this is to endow each i ∈M
with a decreasing effort–loss curve, e.g.

Li(ei) = L0
i exp(−aiei), ei ≥ 0,

where L0
i is an initial loss level and ai is a learnability parameter (capturing

gradient signal-to-noise, representation fit, and interference). The pointwise
flip condition translates into a minimum effort requirement:

Ri = 1 ⇐⇒ Li(ei) ≤ τi ⇐⇒ ei ≥ e∗i ≡
1

ai
log

L0
i

τi
,

with the convention that e∗i = ∞ if L0
i ≤ τi fails to hold in the modeled

regime or if τi is below a numerical/regularization floor. If we impose a
budget constraint

∑
i∈M ei ≤ B, then maximizing the number of corrected

mis-rankings becomes

max
ei≥0

∑
i∈M

1[ei ≥ e∗i ] s.t.
∑
i∈M

ei ≤ B,
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which is precisely a 0–1 knapsack problem with item “costs” e∗i and unit
values. This reframes the obstruction: even if we discard a uniform floor,
the τi induced by large ci still create items with large cost, but now feasibility
depends jointly on ci and (L0

i , ai).
Closed forms exist only in special cases. If ai ≡ a and L0

i ≡ L0 are
constant across i ∈M, then e∗i is monotone in τi, hence monotone in ci, and
the optimal policy is to sort by increasing e∗i (equivalently, increasing ci) and
take the largest prefix that fits in budget:

k∗(B) = max
{
k :

k∑
j=1

e∗(j) ≤ B
}
, Corr(B, β) =

k∗(B)

|M|
.

Outside this homogeneous setting, closed forms generally fail because knap-
sack is NP-hard in the worst case. This is not merely a mathematical nui-
sance: it suggests that in realistic training, which points get “fixed” first can
depend sensitively on optimization dynamics and representation geometry,
not just on the reference log-ratio headwind ci. From a safety perspective,
this creates an additional failure mode beyond the fixed-reference ceiling:
even among feasible-to-flip points (moderate ci), SGD may implicitly allo-
cate effort toward examples with large ai (easy gradients), leaving behind a
residue of hard-but-important mis-rankings that require targeted interven-
tions (curricula, reweighting, or data acquisition).

(ii) Bounds under average-loss or moment constraints (Markov/Cantelli
style). The pointwise floor ∀i ∈M : Li(θB) ≥ L(B) is a strong pessimistic
assumption. A weaker (and often more empirically defensible) constraint is
distributional: we may only be willing to assert that the average loss over
M at early stopping satisfies

LM(θB) ≡
1

|M|
∑
i∈M

Li(θB) ≥ Lavg(B).

By itself, this does not control the corrected fraction: in principle, one could
have almost all points below their thresholds while a few points carry arbi-
trarily large loss, keeping the average high. Consequently, any meaningful
ceiling from an average constraint requires an additional boundedness or
concentration assumption on {Li(θB)}i∈M.

One clean route (aligned with how many DPO implementations oper-
ate) is to assume losses are effectively clipped or otherwise bounded on the
training trace, say 0 ≤ Li(θB) ≤ Lmax for i ∈ M. Then we can apply a
Markov-type argument to the nonnegative variable Xi ≡ Lmax − Li(θB).
Since E[X] ≤ Lmax − Lavg(B), Markov yields, for any t < Lmax,

P
[
Li(θB) ≤ t | i ∈M

]
= P

[
Xi ≥ Lmax − t | i ∈M

]
≤

Lmax − Lavg(B)

Lmax − t
.
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To translate this into a correction ceiling, we upper bound the event {Ri(θB) =
1} by {Li(θB) ≤ τ(ci)} and average over the conditional law of c onM:

Corr(B, β) = E
[
1[R = 1] | c > 0

]
≤ E

[
1[L ≤ τ(c)] | c > 0

]
≤ E

[
min

{
1,

Lmax − Lavg(B)

Lmax − τ(c)

} ∣∣∣∣ c > 0

]
.

Unlike the sharp cutoff obtained under a pointwise floor, this produces a
“soft” ceiling that depends on the whole distribution of τ(c) and on the
boundedness proxy Lmax. If one can estimate not just the mean but also vari-
ance of losses onM, one can swap Markov for one-sided Chebyshev/Cantelli
inequalities to obtain tighter ceilings; the main conceptual point is that mo-
ment information about the loss distribution can substitute for a uniform
floor, but some form of tail control is necessary.

(iii) Variants: γ-scaled reference terms and related knobs. Practi-
tioners sometimes temper the influence of the reference model, either explic-
itly (e.g., scaling reference logits) or implicitly (e.g., via length normalization,
truncation, or mixture references). A minimal abstraction is to introduce a
scalar γ ≥ 0 multiplying the reference log-ratio term, yielding a modified
per-point loss

L
(γ)
i (θ) = − log σ

(
β

(
log

πθ(y
w
i | xi)

πθ(y
ℓ
i | xi)

+ γci

))
.

In this variant, the flip threshold becomes τ (γ)i = − log σ(βγci). Holding the
same early-stopping floor abstraction, the critical threshold rescales as

c∗,(γ)(B, β) =
1

βγ
logit(e−L(B)),

so decreasing γ (weakening the reference headwind) expands the feasible
set of c values and can strictly increase the attainable correction ceiling.
The governance-relevant tradeoff is that γ < 1 also weakens anchoring to
πref , plausibly increasing divergence and capability shift, and may amplify
exploitation of label noise. Thus γ functions as a policy knob: it buys
correction headroom by partially relaxing the very constraint that makes
fixed-reference DPO stable and predictable.

These extensions give us a menu of testable refinements: we can ask
whether observed flip patterns are better explained by a sharp c-cutoff (uni-
form floor), by heterogeneous costs e∗i (knapsack-like behavior), or by soft
ceilings derived from bounded average losses. This sets up the empirical
validation plan that follows.

(iv) Empirical validation plan: estimating c, Li, flips, and testing
the ceiling. The theory above is only as useful as our ability to opera-
tionalize its objects from standard training artifacts (log-probabilities, per-
example losses, and checkpoints). Our empirical goal is therefore narrowly
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scoped: given a fixed preference dataset D, a fixed reference πref , and a fam-
ily of DPO runs indexed by (β,B) and random seed, we test whether the
observed correction rate onM is upper-bounded (up to estimation error) by
the predicted ceiling F̂M(ĉ∗) implied by the early-stopping loss floor. When
the bound appears loose, we treat this as informative about slack in the floor
assumption; when the bound is violated, we treat it as evidence of a modeling
mismatch (e.g., an effectively changing reference, an implementation detail
that alters ci, or a flip definition not aligned with Chen et al.’s threshold).

Step 1: compute reference log-ratios and the mis-ranked set. For each
datapoint i, we compute

ci ≡ log πref(y
ℓ
i | xi)− log πref(y

w
i | xi),

using teacher-forced log-likelihoods under the same tokenizer and truncation
policy used for DPO. We then defineM = {i : ci > 0}. Two practical details
matter. First, sequence-length differences can induce systematic shifts in
log π(· | x); accordingly, we pre-register two variants: the sequence-sum log-
probability above, and a length-normalized alternative cleni ≡ 1

|yℓi |
log πref(y

ℓ
i |

xi)− 1
|ywi | log πref(y

w
i | xi). Second, truncation can flip the sign of ci for long

completions; we therefore report the fraction of pairs whose sign changes
under plausible truncation windows and treat high sensitivity as an exclu-
sion/stratification criterion (since it confounds what it means to be “mis-
ranked by the reference”).

Step 2: record per-example DPO losses along the training trace. For
each run and each saved checkpoint θt (including the selected early-stopped
checkpoint θB), we compute the per-example DPO loss

Li(θt) = − log σ

(
β

(
log

πθt(y
w
i | xi)

πθt(y
ℓ
i | xi)

+ ci

))
,

either exactly (offline evaluation over D) or approximately (via cached for-
ward passes if training logs already store the needed log-probabilities). We
focus attention on the restriction {Li(θB) : i ∈M}, since the ceiling is con-
trolled by what happens on mis-ranked points. In addition to raw values, we
log summary statistics stratified by ci quantiles, because a core mechanistic
claim is that large positive ci induces very small flip thresholds τi, hence
should correlate with persistently large losses under early stopping.

Step 3: define and measure “flip” events in a numerically stable way. The
ranking-correctness event is

Ri(θB) = 1
[
πθB (y

w
i | xi) ≥ πθB (y

ℓ
i | xi)

]
= 1

[
log

πθB (y
w
i | xi)

πθB (y
ℓ
i | xi)

≥ 0

]
.

In finite precision, near-ties are common; we therefore report both (a) the in-
clusive definition above and (b) a margin-based definition R

(ε)
i = 1[log

πθB
(ywi |xi)

πθB
(yℓi |xi)

≥
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ε] for a small ε > 0. We also report a tie-aware score that assigns 1/2 when
the log-odds magnitude is below a tolerance band. These variants are not
cosmetic: if most “flips” occur at vanishing margins, then the governance-
relevant conclusion is weaker (the model may be indifferent rather than re-
liably aligned), and the ceiling should be interpreted in terms of margins
rather than strict orderings.

Step 4: estimate the early-stopping loss floor and plug in the predicted
ceiling. Because L(B) is an abstraction, we treat it as an estimand from
training traces rather than a known constant. Our default estimator is a
robust lower-quantile of losses onM,

L̂(B) ≡ Quantileq ({Li(θB) : i ∈M}) ,

with q ∈ {0.01, 0.05, 0.10} as a sensitivity parameter. This intentionally
avoids using mini Li(θB), which is brittle to outliers and logging noise, and
it corresponds to interpreting the “floor” as what early stopping prevents
most mis-ranked points from undercutting. We then compute

ĉ∗(B, β) =
1

β
logit

(
e−L̂(B)

)
, Ĉorrmax(B, β) = F̂M(ĉ∗(B, β)) ,

where F̂M is the empirical CDF of {ci : i ∈M}. We report bootstrap confi-
dence intervals that jointly resample datapoints (to reflect F̂M uncertainty)
and seeds (to reflect optimization variability). The predicted Ĉorrmax is then
compared to the observed Ĉorr(B, β) = 1

|M|
∑

i∈MRi(θB).
Step 5: test the “upper-envelope” prediction across datasets, β, and bud-

gets. We run a grid over β and compute budgets B (or, operationally, over
early-stopping checkpoints selected by a fixed rule). For each setting, we
plot Ĉorr(B, β) against Ĉorrmax(B, β) and test whether Ĉorr concentrates
below the 45◦ line. The cross-dataset prediction is that datasets with heavier
upper tails of c onM (i.e., more severe reference mis-rankings) exhibit lower
attainable correction at comparable (β,B), even when average win-rate im-
provements look similar. Mechanistically, we also expect a sharp transition
in flip incidence around ĉ∗: plotting the empirical flip rate as a function of
c (e.g., in bins) should reveal a decline consistent with the monotonicity of
τ(c).

Robustness and falsification checks. We pre-register several checks de-
signed to separate genuine violations from definitional artifacts:

1. Length normalization and truncation: repeat the full pipeline
with cleni and with multiple truncation windows; report how F̂M and
ĉ∗ shift.

2. Alternative flip definitions: replace Ri with a probabilistic proxy,
e.g., 1[σ(log πθB

(ywi |xi)

πθB
(yℓi |xi)

) ≥ 1/2] (equivalent) versus a higher threshold
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p ≥ 0.6 (margin-sensitive); test whether the ceiling becomes tighter for
larger margins, as the threshold picture would suggest.

3. Ties and label ambiguity: isolate datapoints with small rater mar-
gins (if available) or near-equal reference probabilities |ci| ≈ 0; these
are precisely where majority labels and model likelihoods are least sta-
ble, so they can dominate apparent “violations”.

4. Implementation drift from a fixed reference: verify that training
truly uses πref as specified (no moving-average reference, no implicit
mixture, no logit scaling). If a γ-like effect is present, recompute c∗,(γ)

and re-evaluate.

Interpreting outcomes is straightforward: persistent slack suggests our floor
estimate is conservative or that optimization allocates effort heterogeneously;
systematic violations, especially concentrated at large c, point toward an ef-
fectively changing reference or a mismatch between the theoretical loss and
the implemented objective. Either way, the validation pipeline turns an oth-
erwise qualitative claim (“DPO rarely flips mis-rankings”) into a quantitative,
dataset-conditioned diagnostic that practitioners can run before attributing
failures to “insufficient training.”

8. Implications for 2026 alignment governance: when “more prefer-
ence tuning” is futile, and what to do instead. A practical governance
question in 2026 is no longer whether preference tuning can improve a model
in aggregate, but whether additional rounds of DPO on a fixed dataset and
fixed reference can be expected to correct the specific mis-rankings that mat-
ter for safety and policy compliance. The bound above gives us a concrete
answer in terms that are auditable from standard artifacts: if the mis-ranked
setM has substantial mass at large positive reference log-ratio c, then there
exists an uncorrectable tail {i ∈ M : ci > c∗(B, β)} that cannot be flipped
by any early-stopped solution whose per-point losses remain above L(B). In
that regime, “more preference tuning” (in the sense of rerunning the same
protocol with slightly more steps, or sweeping seeds) predictably produces
diminishing returns: it may improve easy or moderate points, but it does
not buy back the hard tail where the reference is confidently wrong.

Futility as a measurable stopping condition (and why it matters
for oversight). Operationally, futility is not a philosophical claim; it is a
thresholded diagnostic. Given a planned run (B, β), practitioners can pre-
compute {ci : i ∈ M}, estimate a plausible loss floor L(B) from prior runs,
and thereby obtain a predicted ceiling FM(c∗(B, β)). If that ceiling is, say,
20% while a safety case demands correcting 60% of reference mis-rankings
in a policy-critical slice (e.g., high-severity refusals), then the correct gover-
nance conclusion is that the current training protocol is structurally incapable
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of meeting the target. This is exactly the kind of determination that inter-
nal safety reviews and external auditors should prefer over informal claims
like “we trained longer” or “we tried more seeds”: the ceiling translates those
claims into an empirically testable prediction about what improvement is
even feasible without changing the reference, the data, or the algorithm.

Interpreting β as inertia (or an adjustment cost) rather than a
mere hyperparameter. In DPO, β scales the preference odds, but in
the presence of a fixed reference it also governs how hard it is to over-
ride the reference on mis-ranked points. For i ∈ M, the flip threshold is
τi = − log σ(βci), which shrinks as β increases (holding ci > 0 fixed). Thus
larger β implements a form of inertia: it makes corrections feasible only
when the optimizer can drive the loss extremely low, which early stopping
and finite compute often prevent. From a governance perspective, β is there-
fore interpretable as an adjustment cost or “status quo bias” against changing
the reference model’s ordering in precisely those cases where the reference
disagrees with the aggregated labels. This makes explicit a tradeoff that is
otherwise implicit in deployment decisions: choosing a large β can protect
against uncontrolled drift away from πref , but it also locks in some portion
of the reference’s failures; choosing a smaller β relaxes that lock-in, but
typically increases variance and the risk of capability degradation or unin-
tended generalization. Treating β as a governance knob suggests it should
be set with a documented rationale tied to (i) the tail behavior of c on M,
and (ii) the organization’s tolerance for divergence from πref in exchange for
correcting known mis-rankings.

When to invest in better references versus more compute. The
bound clarifies when the marginal dollar should go to compute versus ref-
erence improvement. If L(B) is already low (training is effective on easy
points) but FM(c∗(B, β)) remains small because c∗(B, β) sits far left of the
c-distribution’s upper tail, then more compute buys little: the bottleneck is
that the reference assigns overwhelming odds against the majority-preferred
completion on a subset ofM. In that case, the most cost-effective interven-
tion is to shift the c-distribution left by improving πref : stronger pretraining,
better instruction tuning, domain-specific calibration, or simply a reference
trained on a broader preference dataset. In contrast, if the c-tail is mild
but the estimated L(B) is high (training under the current budget fails to
push losses down even on moderate points), then additional budget or better
optimization (batching, curriculum, per-example weighting, more stable im-
plementations) is likely to increase c∗(B, β) and therefore raise the attainable
correction mass.
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On-policy refresh and iterative protocols: how they evade the
fixed-reference ceiling (and what can go wrong). A central impli-
cation for training protocol design is that the ceiling is a fixed-reference
phenomenon. If we refresh the reference over iterations (iterative DPO, on-
policy RLHF variants, or periodically re-baselining πref ← πθ), then difficult
points may become feasible because their effective c shrinks as the reference
moves. This is a legitimate way to escape the uncorrectable tail, and it
explains why practitioners sometimes observe improvements that a single-
shot fixed-reference analysis would deem impossible. However, from a safety
standpoint, this maneuver changes the object being governed: the “refer-
ence” ceases to be a stable anchor, and the organization must monitor for
feedback-loop failures (reward hacking, over-optimization of rater quirks, or
distributional drift in refusal behavior). Governance here should treat iter-
ative refresh not as “more of the same tuning” but as a protocol change re-
quiring additional safeguards: hold-out evaluations, adversarial red-teaming,
and explicit constraints on divergence or on policy-critical behaviors.

Concrete diagnostics we recommend practitioners pre-register. To
make these implications usable, we can standardize a small set of diagnostics
that translate the theory into actionable go/no-go decisions:

1. Tail mass report: for each dataset slice of interest (especially safety-
critical prompts), report P̂[c > t | c > 0] for a grid of t, not just the
mean of c. The feasibility bottleneck is tail-driven.

2. Ceiling card per run: for each (B, β), report L̂(B), ĉ∗(B, β), and
F̂M(ĉ∗) alongside the observed Ĉorr(B, β). This makes “we trained
longer” falsifiable.

3. Flip-by-c curve: bin M by c and plot empirical flip rates. A sharp
drop around ĉ∗ supports the mechanism; a flat curve suggests either
measurement error or a non-DPO effect.

4. Uncorrectable set inspection: sample datapoints with ci ≫ ĉ∗ and
review them qualitatively. If they correspond to policy-critical failures,
governance should mandate reference improvement or protocol change
rather than incremental tuning.

5. β-sweep as an “inertia test”: run a small sweep over β at fixed
budget to empirically map the correction–divergence tradeoff; require
that chosen β sits on an explicit frontier rather than being inherited
from default recipes.

Protocol-level recommendations for governance decisions. Putting
these pieces together, we can articulate a simple decision rule: if the predicted
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ceiling is low due to heavy c-tails, invest in (i) a better reference, (ii) data that
directly targets the hard tail (more informative comparisons, adjudication,
or task decomposition), or (iii) iterative/on-policy refresh with strengthened
monitoring. If the ceiling is low due to a high estimated L(B), invest in
optimization and compute. Crucially, these choices correspond to different
risk postures: improving πref tends to preserve anchoring while reducing mis-
rank severity; iterative refresh can correct more but increases the need for
governance around drift. This framing sets up the next section: our bound is
informative precisely because it is limited, and we should be explicit about
what it does not capture when translating it into claims about win rates,
welfare, and deployment safety.

9. Discussion and limitations: from a correction ceiling to wel-
fare claims. The object our analysis bounds is Corr(B, β), a ranking-
correctness statistic on the mis-ranked setM induced by the fixed reference
πref . This is a natural proxy when the deployment goal is “make the model
agree with aggregated preferences on the particular pairs where the refer-
ence was wrong.” But it is not, by itself, a guarantee about on-policy win
rate or downstream welfare. In particular, an increase in (on-policy) win
rate can occur without correcting many elements of M if training mostly
improves already-correct comparisons (e.g., by sharpening margins where
ci < 0 and the reference already agrees with the majority). Conversely, one
can correct a sizeable fraction ofM and still see little win-rate improvement
if the corrected pairs are rare under the deployment distribution X , or if
the evaluation distribution differs from the curated preference dataset D. In
our principal objective Uprincipal(β,B), Corr(B, β) is therefore best viewed
as a verifiable component of welfare—an intermediate quantity that can be
audited from training artifacts—rather than the full welfare signal.

Correction is not divergence, and divergence is not safety. A second
limitation is conceptual: our ceiling is compatible with two different failure
modes that are often conflated in practice. First, one may fail to correctM
because the loss cannot be pushed below the required thresholds τi at finite
compute (our mechanism). Second, one may be able to correct more of M
by choosing smaller β or training longer, but doing so may incur unaccept-
able divergence from πref and therefore degrade capabilities or violate other
constraints. The bound speaks to the first phenomenon, while the principal’s
regularization term Deg(πθB , πref) speaks to the second. Neither alone de-
termines safety. In deployment, what typically matters is a risk-weighted ob-
jective: a small uncorrectable tail can still be unacceptable if it concentrates
high-severity failures. A straightforward extension is to replace Corr(B, β)
with a weighted correction rate Corrw(B, β) =

∑
i∈MwiRi(θB)/

∑
i∈Mwi,

in which case the same logic yields an upper bound in terms of the weighted
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CDF of c over M. The governance implication is that tail mass should be
reported not only in aggregate, but also within slices defined by severity,
policy category, or misuse potential.

What the ceiling does not capture mechanistically. The ceiling is
deliberately narrow: it isolates a fixed-reference DPO phenomenon under an
early-stopping floor. It does not capture (i) improvements that come from
changing the data distribution (e.g., collecting comparisons that make the
hard tail easier), (ii) improvements that come from changing the reference
(iterative baselining), or (iii) improvements that come from changing the
objective (e.g., adding explicit constraints or auxiliary losses). It also does
not model generalization, either beneficial or harmful: in practice, a DPO
update that fails to flip a particular pair (xi, y

w
i , y

ℓ
i ) may still generalize

and reduce analogous mis-rankings elsewhere, and conversely may overfit to
spurious artifacts that inflate Corr(B, β) on D while worsening behavior off-
distribution. Finally, we have treated the aggregated label ywi ≻ yℓi as ground
truth. When rater disagreement is substantial, the relevant target may be
probabilistic, and the most appropriate metric may be expected regret under
a rater model rather than a deterministic correction indicator.

On the floor assumption: when it is reasonable, and how to relax
it. The finite-optimization floor ∀i ∈M : Li(θB) ≥ L(B) is a stylized way
to encode the observation that early-stopped solutions do not drive every
per-example loss arbitrarily low. It is most plausible when (a) we stop based
on a global criterion (validation loss, wall-clock, or stability), (b) gradients
are noisy and optimization is approximate, and (c)M contains hard outliers
whose gradients are either rare or conflict with more common points. That
said, a uniform deterministic floor is stronger than needed. Two relaxations
are natural.

First, we can assume a probabilistic floor such as

P
[
Li(θB) ≥ L(B) | i ∈M

]
≥ 1− δ,

which yields a slackened ceiling Corr(B, β) ≤ FM(c∗(B, β))+δ. This matches
empirical reality: a small fraction of points may be fit extremely well, but
most are not. Second, we can allow heterogeneous floors Li(B) that depend
on prompt length, rarity, or gradient signal-to-noise. Then

Ri(θB) = 1 ⇒ Li(B) ≤ τi,

and the predicted attainable correction becomes a (computable) expecta-
tion of the form E[1[Li(B) ≤ τ(ci)] | i ∈ M]. This generalization connects
directly to optimization modeling: if we can predict which points are intrin-
sically hard to fit, we can distinguish “uncorrectable due to reference confi-
dence” (large ci) from “uncorrectable due to optimization difficulty” (large
Li(B)).
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Estimating L(B) without circularity. A practical worry is that L(B)
may look like an ex post quantity: we only know it after training. For gover-
nance, we want ex ante predictions that can be pre-registered. One approach
is to fit an empirical learning curve for a robust statistic of losses onM, e.g.,
the α-quantile of {Li(θt) : i ∈ M} over training time t, and extrapolate it
to the planned budget B. Another is to use cross-run reproducibility: if the
lower tail of per-point losses across seeds is stable, we can treat its plateau
as an operational floor. The crucial methodological point is that the ceiling
becomes meaningful when it is treated as a forecast that can be falsified: if
observed correction persistently exceeds the forecast, we should update our
model (e.g., the floor is not binding, or the effective reference has changed);
if observed correction persistently falls short, we should suspect additional
bottlenecks (data noise, mis-specifiedM, or optimization pathologies).

Future directions: dynamic references as a controlled escape hatch.
Iterative refresh protocols evade the fixed-reference ceiling precisely by chang-
ing the c-distribution for the remaining hard points. This suggests a princi-
pled design question: can we treat reference updates as a controlled process
that preserves anchoring while shrinking the uncorrectable tail? One direc-
tion is to formalize a dynamic reference schedule π

(k)
ref with constraints such

as KL(π
(k+1)
ref ∥π(k)

ref ) ≤ ϵ and explicit auditing checkpoints between updates.
In such a protocol, we can re-apply the ceiling analysis per iteration to pre-
dict how much of the remaining tail can be corrected before the next refresh,
and we can interpret failures as either “the tail is too heavy” or “the refresh
step is too conservative.” The open problem is to identify conditions un-
der which these dynamics converge to a policy that both satisfies preferences
and remains within acceptable divergence and safety constraints, rather than
entering a feedback loop that optimizes rater idiosyncrasies.

Future directions: market-like auditing and adversarial procure-
ment of signal. Finally, the ceiling suggests a new kind of auditability:
because ci and empirical loss traces are standard artifacts, third parties can
often compute (or approximate) the predicted correction envelope without
access to proprietary gradients or full training code. This creates room for
“market-like” oversight mechanisms. For example, an internal evaluation
team (or an external auditor under NDA) could run a prediction-market-style
process over Ĉorr(B, β) for a planned run, with participants rewarded for ac-
curate forecasts based on {ci} and prior L(B) estimates. More substantively,
an organization can procure information by paying for comparisons targeted
at the hard tail: identify datapoints with ci above the current c∗(B, β), then
solicit higher-quality adjudication (expert raters, richer rubrics, or decom-
posed subtasks) to either (i) confirm that the labels are correct and therefore
demand protocol changes, or (ii) reveal that the aggregate label was noisy
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and the point should not be treated as a safety-relevant mis-ranking. In
this sense, the ceiling is not only a limitation; it is also a guide for where
additional oversight effort is most valuable.

Bottom line. Our bound is intentionally modest: it does not solve align-
ment, and it does not certify safety. What it does is turn a familiar empir-
ical observation—that fixed-reference preference tuning often fails to over-
turn confident reference mistakes under early stopping—into a quantitatively
testable constraint tied to measurable tail behavior. The main limitation is
also the main opportunity: once we can diagnose futility in advance, we
can make governance decisions that change the right lever (reference qual-
ity, data targeting, or protocol class) rather than repeating a training recipe
whose improvement path is, in a precise sense, already exhausted.
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