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Abstract

Preference optimization methods such as DPO and RLHF use a
reference model to regularize updates, but recent evidence shows they
rarely correct preference mis-rankings inherited from the reference model
and can exhibit a growing gap between off-policy ranking metrics and
on-policy win rate. In parallel, scalable oversight work shows that
weak judges can be easily persuaded in open consultancy, risking mis-
take amplification, while adversarial protocols such as debate reduce
amplification. We bring these threads together by modeling alignment
as an auditing and resource allocation problem: given limited label-
ing capacity and compliance constraints typical of 2026 deployment
pipelines, which preference comparisons should be collected and re-
collected? Using the idealized DPO/RLHF characterization of the
optimal likelihood ratio (Chen et al., 2024), we derive a tractable
condition under which a labeled datapoint can be correctly ranked:
a > o(fc), where c is the reference log-ratio favoring the rejected out-
put. Under a Beta—Binomial model of rater noise, the expected welfare
gain from labeling a datapoint becomes a closed-form Beta tail proba-
bility. This yields an ‘alignment audit index’ that prioritizes datapoints
with large reference error magnitudes (high ¢) and high posterior un-
certainty about the threshold crossing (disagreement), and supports
greedy/index policies with near-optimality guarantees under concav-
ity /submodularity conditions. We propose practical estimators of ¢
from model log-probabilities and uncertainty from repeated ratings or
proxy judges, and outline empirical simulations on preference datasets
to show that index-based auditing dominates uniform sampling in both
ranking correction and win rate improvements for a fixed labeling bud-
get.
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1 Introduction and motivation: alignment as au-
diting under scarce labels

Much of contemporary “alignment work” can be reinterpreted as a problem
of auditing: we deploy (or plan to deploy) a powerful policy, we suspect
that some portions of its behavior are misaligned with the relevant norma-
tive or task objective, and we have a limited budget of human attention to
detect and correct those failures. The basic friction is not that we cannot
elicit any feedback, but that we cannot elicit enough feedback to compre-
hensively supervise all behaviors that matter in deployment. In practice,
labeling budgets are scarce for mundane reasons (time, money, evaluator
availability, and the cost of domain expertise), and scarce for deeper reasons
(some evaluations are intrinsically slow, adversarially hard, or require rare
contextual knowledge). If we treat human feedback as the primary corrective
signal, then alignment becomes a resource-allocation problem: how should
we spend limited comparisons, demonstrations, or audits so as to maximize
safety-relevant performance where it matters most?

This auditing perspective is especially natural under modern preference-
optimization pipelines. In RLHF-style systems, and in direct preference
optimization (DPO) variants, the learning signal is not an absolute “gold”
label but a collection of relative judgments: given a prompt (or state), which
of two candidate outputs is better? These judgments are noisy, costly, and
heterogeneous in difficulty. Moreover, the downstream optimizer does not
treat the dataset as a passive record; it treats it as evidence that is com-
bined with a reference policy through an explicit regularization mechanism
(e.g. a KL penalty or an equivalent reference-conditioning). As a result, the
training outcome is shaped by two interacting forces: (i) what humans would
prefer in principle, and (ii) how strongly the training procedure is willing to
deviate from the reference model to satisfy those preferences. From an au-
diting standpoint, this means that not all datapoints are equally “actionable”
given a fixed training recipe: some comparisons are easy for the optimizer to
incorporate because they ask for modest deviations from the reference, while
others require substantial movement against the reference model’s implicit
prior.

We can motivate this interaction without committing to any particular
algorithmic details. A reference-conditioned optimizer (whether realized as
KL-regularized RL, DPO, or a close cousin) implicitly implements a kind of
inertia: it prefers changes that do not move too far from what the reference
already assigns high probability. When a proposed improvement corresponds
to a response that the reference already finds plausible, the optimizer can
readily amplify it; when the improvement corresponds to a response that
the reference strongly disfavors, the optimizer must pay a higher “deviation
cost.” This observation is well-known informally (practitioners talk about



certain edits being “too far” from the base model), but it has a consequential
implication for auditing: the value of collecting more labels on a datapoint
depends not only on how important that datapoint is in deployment, but
also on where it lies relative to the reference model’s inductive bias and the
regularization strength.

We also emphasize that “auditing” here is not merely post hoc evalua-
tion. In a safety-oriented training loop, auditing is a governance-relevant
mechanism: it is how a principal (the lab, regulator, or deployment owner)
decides what evidence to purchase before committing to a model update or
a release. In that role, audits must be prioritized. A lab that spends its
evaluation budget uniformly across prompts is implicitly asserting that all
prompts are equally likely to be decisive for safety—an assumption that is
rarely defensible. Conversely, targeted auditing can be understood as a dis-
ciplined attempt to build a safety case with limited evidence: we want to
concentrate evaluator effort on the parts of behavior where (a) failures would
be costly, and (b) the available training update is plausibly capable of fixing
them.

The scarcity of reliable labels becomes even more salient when we move
beyond “strong supervision” and consider weak oversight schemes. In de-
bate, consultancy, recursive reward modeling, or other scalable oversight
paradigms, the evaluator is intentionally weaker than the system being trained.
Weak oversight is attractive because it promises to amortize expensive ex-
pertise, but it introduces a second bottleneck: even if we can afford many
evaluations, those evaluations may not track the intended objective on hard
instances. Put differently, we are not only label-budget constrained; we
are also judge-quality constrained. In reduced form, weak oversight can be
modeled as an increase in label noise or as a systematic bias in what is
judged “better.” This again suggests an auditing lens: when judges are
weak, we must be selective about which comparisons we buy, because some
comparisons will predictably elicit unreliable judgments (or judgments that
are manipulable by the model), while other comparisons remain stable and
informative.

A central motivation for our formalization is therefore to connect three
practical facts that are often discussed separately:

(i) Reference-conditioning creates a learnability boundary. Even
with perfect labels, a heavily regularized optimizer may not move on certain
datapoints, because doing so would require large deviations from the refer-
ence. In the language of DPO/RLHF, the regularization parameter (often
expressed as a KL weight or as an equivalent ) mediates the tradeoff be-
tween fitting preferences and staying close to mef. The same dataset can
lead to qualitatively different outcomes depending on this tradeoff. From
a safety perspective, this means that collecting additional labels on some



“hard” comparisons may be wasted effort unless we also change the training
recipe; and conversely, for “nearby” improvements, relatively few labels may
suffice.

(ii) Oversight is heterogeneous in difficulty and importance. A
preference comparison is not a monolith. Some prompts correspond to fre-
quent user requests or high-stakes domains (medical advice, cybersecurity,
legal compliance), while others are rare or low consequence. Some com-
parisons are easy for raters (e.g. clear toxicity) and others require nuanced
reasoning (e.g. subtle deception, long-horizon consequences, or domain ex-
pertise). Treating all comparisons as exchangeable ignores this heterogeneity
and can misallocate evaluator effort away from the highest-welfare opportu-
nities.

(iii) Weak judges can amplify mistakes rather than correct them.
In weak oversight settings, a model can sometimes exploit evaluator blind
spots, producing outputs that appear good under the judge but are actually
undesirable. If the training loop then optimizes against that flawed signal, it
can entrench or amplify misbehavior. Importantly, this failure mode inter-
acts with reference-conditioning: a reference model may already be biased
toward outputs that are persuasive-but-wrong, and regularized optimization
can preserve that bias unless the evidence is strong enough to overcome it.
In this sense, “better auditing” is not just about collecting more labels; it
is about choosing labels that reduce the probability of crossing the wrong
decision boundary.

These considerations motivate a resource-allocation viewpoint: we want
to decide where to spend limited comparisons to improve the probability
that training actually changes the model’s ranking in the desirable direction
on the most important behaviors. The key move in our approach is to treat
each datapoint as an “audit target” with an associated (i) deployment impor-
tance, (ii) reference-model difficulty, and (iii) uncertainty about true human
preference. This is the intuitive content behind the objects introduced in the
enclosing scope: we observe a reference log-ratio summarizing how much the
reference model prefers one candidate over another, we posit an underlying
preference probability capturing rater agreement, and we interpret the train-
ing step as succeeding on a datapoint if (and only if) the latent preference
signal is strong enough to overcome the reference-conditioned inertia.

This reframing also clarifies what is and is not being claimed. We are
not assuming that the world decomposes neatly into independent preference
pairs, nor that training literally flips a binary switch per datapoint. Rather,
we use a simplified criterion because it exposes the safety tradeoff we care
about: under reference-conditioning, there is a region where additional evi-
dence changes our beliefs but does not change the optimizer’s effective deci-



sion, and a region where evidence is decisive for whether training will correct
a ranking. Auditing should concentrate on the boundary between these re-
gions, especially when the boundary lies in high-welfare parts of the input
space. In other words, if alignment is about reducing the probability of catas-
trophic or high-cost failures under constrained oversight, then the principal’s
problem is structurally similar to optimal testing: allocate experiments to
where the expected value of information (for downstream action) is largest.

Finally, this perspective connects to governance and verification. Ex-
ternal auditors and internal red teams already face a version of the label
allocation problem: they cannot test every behavior, so they choose test
suites, adversarial prompts, and evaluation protocols. Our contribution is to
tie that selection problem to the training mechanism itself. If the deployment
owner knows that certain failures are “far” from the reference model under
a given 3, then an audit that only measures failure frequency is incomplete;
one also wants to measure whether failures are correctable by the planned
update. Conversely, if failures are near the reference boundary and raters
are uncertain, targeted additional labeling can be particularly valuable. This
yields a concrete, operational message: safety evaluations should be coupled
to an explicit model of how evidence translates into training changes, rather
than being treated as a separate, purely descriptive layer.

In the next section, we translate these intuitions into empirical desider-
ata. We will ask for a stylized model consistent with observed behavior
of preference-trained systems: that ranking flips are not ubiquitous, that
difficulty tracks the reference log-ratio in a systematic way, and that weak
judges can systematically mislead training. These facts, taken together, push
strongly toward targeted auditing and away from uniform data collection as
a default.

2 Empirical stylized facts: when labels change the
model (and when they do not)

Our allocation problem is only worth formalizing if it captures something
stable about how preference-trained systems actually behave. In this section
we summarize three empirical stylized facts—all familiar to practitioners in
one form or another—that jointly motivate treating “where to label” as a
first-class design choice rather than an afterthought. The common theme
is that preference optimization is not an unconstrained supervised learner:
it is a regularized update around a reference, and thus it exhibits sharp
heterogeneity in which comparisons are (i) learnable, (ii) important, and
(iii) trustworthy under real oversight.

Fact 1: ranking flips are rare under DPO unless we push aggres-
sively (or stop early for the wrong reason). In many DPO/RLHF



training runs, especially those tuned for stability, the post-training policy
does not massively reorder preferences across the space of prompts. Instead,
most comparisons remain essentially as they were under the reference pol-
icy: the model may become more consistent, less toxic, or more helpful in
aggregate, but for a large fraction of specific prompt-response pairs, the
direction of preference between two candidates is unchanged. This is visi-
ble operationally in several ways: win-rate improvements plateau quickly on
in-distribution preference sets; many prompts show negligible change in pair-
wise log-odds; and fine-tuning often yields a small number of salient behavior
shifts (e.g. refusal boundary movement) rather than pervasive re-ranking ev-
erywhere.

There are benign and non-benign interpretations of this. The benign
story is simply that the reference model was already near a local optimum
for the preference distribution we care about, and the update merely refines
it. The non-benign story is that we are constrained by inertia: KL regu-
larization, implicit trust-region behavior, and conservative hyperparameter
choices can prevent learning on comparisons that would require moving “far”
from the reference. In practice, teams often observe that making the up-
date more aggressive—larger effective step sizes, lower regularization, more
epochs—can increase measurable preference fitting but also increases insta-
bility: regressions on unrelated capabilities, reward hacking-like artifacts, or
brittle behavior changes. These observations are consistent with a picture in
which many potential “fixes” exist, but only a subset can be realized under
a stable update.

From an auditing perspective, the key implication is that additional labels
do not uniformly translate into behavior change. If most pairwise rankings
would not flip under the intended training recipe, then auditing should focus
on identifying (and resolving uncertainty around) the subset of cases where
a flip is both feasible and consequential. Uniform data collection implicitly
assumes the opposite: that every label has comparable marginal influence
on the trained policy. The empirical reality is closer to a sparse-influence
regime, where only a minority of comparisons are decision-relevant for the
update.

Fact 2: “difficulty” is strongly mediated by the reference model’s
log-ratio. A second consistent observation is that the ease with which
preference optimization can enforce a desired ranking correlates with how
the reference model already scores the two candidates. When the reference
already assigns comparable probability mass to the preferred output, training
can amplify it with little resistance. When the preferred output is far into
the reference tail, training must overcome a large log-probability gap, and
doing so is either slow, unstable, or effectively prohibited under conservative
regularization.



This dependence is not merely an artifact of optimization noise; it reflects
a structural constraint. Under reference-conditioned objectives, the update
is explicitly penalized for moving probability mass away from the reference.
Thus, the “distance” to be traveled matters: pushing probability from a
high-likelihood reference region into a low-likelihood region costs more than
reshuffling mass within a locally plausible set. Practitioners often summarize
this as: it is easy to make the model prefer one good answer over another
good answer; it 1s hard to make the model consistently produce an answer it
wnitially considered implausible.

Empirically, we can think of the reference log-ratio

as a coarse sufficient statistic for this notion of difficulty. Large positive
¢ means the reference strongly prefers the “losing” candidate 3¢ over the
human-preferred y*. These are exactly the cases where, absent very strong
preference evidence and/or a weak regularizer, the optimizer tends to “give
up” and preserve the reference ordering. Conversely, when ¢ is small or
negative, the preferred candidate is already plausible under the reference,
and even modest evidence can tip the learned policy toward preferring it
more robustly.

This fact has two immediate auditing consequences. First, if we are
trying to discover correctable misalignment, we should expect it to cluster in
regions where the reference is conflicted or only mildly wrong, not where it
is massively confident in the wrong direction (unless we are willing to change
the training recipe). Second, if we do want to target “deep” failures where
the reference is confidently wrong, then data collection alone is unlikely to
suffice; the audit should be coupled to an explicit intervention plan (e.g.
revising (3, adding demonstrations, changing the model class, or using a
different update rule). Otherwise we risk spending evaluation budget to
obtain evidence about failures that we cannot realistically fix in the current
loop.

Fact 3: weak judges can systematically amplify mistakes rather
than correct them. The third stylized fact concerns oversight quality.
In real deployments, the principal rarely has access to perfect evaluators.
Raters are time-constrained, may lack domain expertise, and can be influ-
enced by presentation effects. When models become sophisticated, the eval-
uation problem can become adversarial: the model can produce outputs that
are persuasive, fluent, and locally plausible, while being globally incorrect,
manipulative, or strategically deceptive. In such regimes, preference labels
are not merely noisy—they can be biased in a direction that the model can
exploit.



This is visible in phenomena like sycophancy (outputs that match a user’s
stated beliefs rather than the truth), plausible-sounding hallucinations that
fool non-expert raters, and “helpfulness” behaviors that trade off against
safety in subtle ways. More generally, weak oversight creates a channel for
Goodhart-like failures: optimizing a proxy (what judges select) can degrade
the true objective (what we actually want), especially when the model can
search over outputs that exploit judge blind spots. Importantly, this failure
mode interacts with reference-conditioning. If the reference already leans
toward the kinds of outputs that fool the judge, then a conservative update
can preserve that bias. If the update is aggressive, it can amplify it by
pushing probability mass toward the judge-fooling region even more strongly.

For auditing, the implication is not merely “collect more labels.” If the
marginal labels are coming from a systematically miscalibrated judge on cer-
tain categories of prompts, buying more of them can increase confidence in
the wrong conclusion—and lead the principal to authorize a model update
that entrenches misbehavior. Thus, the value of auditing is heterogeneous
not only in (z,y", Yy’ ) but also in oversight regime: which prompts are suscep-
tible to evaluator error, which are robust, and which are actively exploitable.

This suggests a richer notion of “high value of information.” The valu-
able labels are those that (i) influence the downstream training decision and
(ii) are trustworthy for the decision at hand. In practice, this pushes us
toward targeted auditing strategies that emphasize prompts where evaluator
reliability is high or can be made high via protocol design (expert review, ad-
versarial testing, model-assisted critique, calibration tasks), and away from
naively scaling weak labels on the hardest instances where raters are most
easily misled.

Synthesis: why these facts point to targeted auditing. Taken to-
gether, these facts yield a coherent picture. Because ranking flips are rare,
most additional labels have little effect on the trained policy’s decisions;
because difficulty depends on the reference log-ratio, the cases where the
model could change are predictable from reference behavior; and because
weak judges can introduce systematic bias, some labels are not merely low-
value but actively harmful if treated as ground truth.

Uniform data collection ignores all three considerations. It spends the
same marginal effort on (a) comparisons that the optimizer will not change
under the planned recipe, (b) comparisons that are already settled under
the reference and the human preference distribution, and (c) comparisons
where judges are least reliable. A targeted auditing policy, by contrast, tries
to concentrate effort on the boundary cases: prompts where the reference
is wrong but not hopelessly so, where the preference signal is plausible but
uncertain, where welfare stakes are large, and where oversight can be made
sufficiently reliable to justify acting on the evidence.



This is also the point where governance considerations enter naturally. If
alab is building a safety case for a release, it is not enough to measure average
preference win-rate; we need evidence that the update corrects high-stakes
failures that are actionable under the intended training constraints. Tar-
geted auditing can be understood as producing decision-relevant evidence:
it prioritizes datapoints that are likely to change the release decision (or
the training recipe) and deprioritizes those that are either already safe or
currently unfixable.

In the remainder of the paper we translate this qualitative picture into a
stylized but decision-theoretic model. The model will explicitly represent (i)
a per-datapoint measure of reference difficulty (via a log-ratio), (ii) a latent
preference probability that captures rater agreement and judge weakness in
reduced form, and (iii) a welfare weight capturing deployment importance.
With these primitives, the principal’s problem becomes an allocation of a
finite labeling budget across heterogeneous audit targets, where the marginal
value of a label is highest precisely in the high-stakes, high-uncertainty region
near the learnability boundary induced by reference-conditioning.

3 Setup and primitives

We now turn the qualitative auditing picture into a minimal decision-theoretic
model. The goal is not to faithfully simulate modern RLHF pipelines end-
to-end, but to isolate a few structural features that (i) are stable across
implementations and (ii) are directly relevant to where additional preference
labels change the deployed behavior. Concretely, we model a principal (the
lab, or an internal safety team) that can purchase a finite number of pair-
wise preference comparisons and must decide how to allocate them across
heterogeneous audit targets.

Datapoints and reference difficulty. We consider a finite population of
pairwise preference datapoints indexed by i € {1,..., N}. Each datapoint
consists of a prompt z; and two candidate completions (y;*, yf), where the
superscripts are ex post labels indicating which completion is intended to
be the “better” one under the target preference relation (e.g. more helpful,
more honest, less harmful) and which is the “worse” one. We assume the
principal can evaluate the reference policy m. on these candidates, yielding
the observable reference log-ratio

WYEf(yf ’ xl) (1)

¢; = lo .
' gﬂ'ref(ygu | @)

Intuitively, ¢; summarizes how strongly the reference model “disagrees” with
the intended ordering: large positive ¢; means 7t assigns much higher prob-
ability to the dispreferred completion than to the preferred completion, while
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¢; =~ 0 indicates that the reference treats the two candidates as similarly plau-
sible. We take {¢; Z]\; 1 as free, observable heterogeneity that the principal
can use before buying any labels.

Latent preference rates and rater noise. For each ¢, there is an un-
known “true” preference probability a; € (0, 1), which aggregates both hu-
man disagreement and judge weakness into a single reduced-form parameter:

a; = Pr(y’ =yl |z;). (2)

Operationally, «; is the probability that a randomly drawn rater (from the
deployed oversight process) prefers yi to yf when asked to compare them
under the lab’s rubric. We emphasize that «; is not “ground truth” in a
normative sense; it is the effective signal available to the training pipeline.
When judges are weak or systematically biased on some class of prompts,
that bias is expressed here as «; taking values that do not match the princi-
pal’s true desiderata. This is precisely why we treat the allocation of labels as
a safety-relevant decision: buying more labels can either clarify correctable
errors or concentrate confidence around an oversight failure.

Given «;, each purchased comparison produces a binary outcome. If the
principal buys n; labels on datapoint i, we observe w; € {0,1,...,n;} “wins”
for y:, with likelihood

wi|ai,ni ~ Binomial(n;, «;). (3)

Equivalently, each individual label is an i.i.d. Bernoulli draw with success
probability «;. This is the standard Bradley—Terry/noisy-comparison ab-
straction; it is deliberately agnostic to the microfoundations of rater error,
while still capturing the two audit-relevant dimensions: (i) the mean pref-
erence direction and (ii) the uncertainty remaining after finitely many com-
parisons.

Prior and posterior: conjugate auditing updates. We assume a con-
jugate prior a; ~ Beta(ag, by), either as a modeling choice or as a tractable
approximation to a more complex empirical Bayes procedure. The Beta prior
plays two roles. First, it provides a coherent way to translate finite-sample
label counts into calibrated uncertainty, which matters because the value
of additional labeling is driven by how often datapoints are near a decision
boundary. Second, the hyperparameters (ag,bg) can be interpreted as en-
coding the principal’s base-rate beliefs about rater agreement (e.g. whether
most comparisons are “easy” with a; near 0 or 1, or “hard” with «; near 1/2).

Let D; = (w4, n;) denote the label data purchased on datapoint i. By
Beta—Binomial conjugacy, the posterior is

Qo ‘ D; ~ Beta(ap + wi, by + n; — w;). (4)
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We write &; := w;/n; for the empirical win rate (when n; > 0), but em-
phasize that the posterior distribution, not just &;, will drive the principal’s
allocation incentives: what matters is not only where ¢&; lies, but also how
uncertain we remain about «;.

Deployment welfare weights. Not all datapoints matter equally. Some
prompts occur frequently in deployment, some correspond to high-stakes de-
cisions, and some are safety-critical even if rare. We encode this with an
exogenous welfare weight v; > 0. One interpretation is frequency weighting:
v; is proportional to the probability mass of the deployment distribution that
falls into the “region” represented by datapoint i. Another is a governance-
weighted value function: v; incorporates externalities, tail risks, or regulatory
constraints, so that a misranking on some prompts is treated as dispropor-
tionately costly. In either case, v; formalizes the core auditing idea that the
principal should spend effort where it matters for real-world outcomes, not
where it is easiest to measure.

The principal’s decision: allocating a finite label budget. The prin-
cipal has a total labeling budget K € Z., interpreted as the total number of
rater comparisons that can be purchased (due to cost, time, or governance-
imposed limits). The principal chooses a nonnegative integer allocation
{ni} | satisfying

N
i=1

We allow the allocation to be adaptive: the principal may buy labels se-
quentially, updating posteriors after each comparison and deciding where to
sample next based on observed outcomes. This adaptivity is important in
practice—auditing is often exploratory—and it is also what makes “value of
information” arguments bite: if we can stop sampling early on easy cases
and redirect effort toward ambiguous ones, the same budget can yield sub-
stantially more decision-relevant certainty.

A minimal interface to training: from labels to post-training rank-
ings. To connect auditing to behavior change, we need a reduced-form
description of what the downstream preference-optimization step does with
the collected labels. We take the downstream algorithm (DPO/RLHF with a
fixed recipe) as given, and we care only about whether it induces the correct
ranking on each audited comparison at deployment time. Accordingly, for
each datapoint 7 we define an indicator event

R; = 1{the trained policy ranks y above ! given ;}. (6)
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The principal’s deployment welfare is then modeled additively as

N
W = ZUZR’ (7)
=1

Additivity is a simplification—real systems exhibit cross-generalization and
interference—but it is the right starting point for an allocation model: it lets
us ask which datapoints have the highest marginal contribution to expected
welfare under a fixed training recipe. In later sections we discuss how this
abstraction can fail (e.g. when a small set of datapoints controls a global
refusal boundary), and how to reinterpret i as indexing clusters or features
rather than literal isolated prompt pairs.

What remains is to specify how R; depends on «;, the observed refer-
ence difficulty ¢;, and the training recipe (notably the regularization/inertia
parameter ). Our key modeling move is to assume that, conditional on
the datapoint being trained on “enough,” the algorithm has a deterministic
success criterion of the form

Ri = l{Oél' > ti}, (8)

where t; € (0, 1) is a learnability threshold that may depend on ¢; and 8. This
captures the empirical idea from the previous section: under conservative,
reference-conditioned updates, there is a boundary separating comparisons
that the optimizer will reliably flip (given sufficient evidence) from those it
will effectively preserve as in the reference. In Section 4 we derive, under
an idealized DPO optimum, the specific threshold form ¢; = o(f8¢;) and
interpret 8 as an adjustment cost that increases inertia around 7 ef.

Auditing as posterior probability of learnability. Given the threshold
template , the principal’s uncertainty about post-training behavior on
datapoint ¢ reduces to posterior uncertainty about whether «; exceeds t;.
Define the posterior tail probability

pz(nz) = Pr(ai >t ’ Dz) (9)

Then the principal’s expected welfare contribution from datapoint i, after
purchasing n; labels and observing D;, is

E[UZ‘Ri | D@] = ; pz(nz) (10)

This expression makes explicit why “more labels” is not uniformly valuable.
A label matters when it appreciably changes p;(n;), which occurs primarily
when the posterior mass of «; straddles the threshold ¢;; when the datapoint
is clearly learnable or clearly unlearnable under the training recipe, p;(n;) is
already near 1 or 0 and additional comparisons have diminishing returns.
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In summary, the primitives {(c;,v;)} are observable ex ante, the latent
«; governs rater outcomes via a Binomial model, and the principal allocates
a finite budget K to form posteriors over «; that determine expected de-
ployment welfare through a (to-be-derived) learnability threshold. The next
section provides the promised idealized link from reference-conditioning to
the threshold ¢;, which will let us turn this setup into a concrete indexable
allocation problem.

4 ldealized learnability and the threshold form

We now make precise the “learnability threshold” t; that appeared in the
setup, specializing it to the case of an idealized DPO/RLHF update with
reference-conditioning. The point of this section is not to claim that real
training dynamics are literally separable across datapoints, but to extract a
simple, decision-relevant statistic: given a comparison where the reference
policy strongly prefers the dispreferred completion (large ¢;), how much rater
evidence is required before the training rule will reliably flip the model’s
ranking?

A single-datapoint reduction. Fix a datapoint (z,y", yz) and suppress
the index 7. Write the policy log-odds on this pair as

m(y" | x)

7Tref(yw | l‘)
7o | @) 1

Spef = log —————= = —c.

= 1
0T e oot (0 | 7)

A trained policy ranks y* above y’ if and only if s > 0. Our goal is
to characterize the sign of sy under an idealized optimum of a reference-
conditioned preference objective.

Following the analysis perspective in Chen et al. 7, we treat DPO as
fitting a logistic model to preference labels where the “feature” is the change
in log-odds relative to the reference. Define the relative score

mo(y" | ) Wref(yz | ) (12)

dg = SQ—SfZIOg .
b mo(y* | 2) meet (| @)

In DPO, this quantity is passed through a logistic link with scale 5 > 0.
Intuitively, dy measures how much the current policy has “tilted” toward the
preferred completion relative to the baseline; 8 controls how aggressively such
tilts are rewarded by the objective (or, in the RLHF view, how expensive
deviations from . are).

Expected DPO objective under Bradley—Terry labels. We assume
the observed preference label is a Bernoulli random variable indicating whether
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a rater prefers 4™ to y¢, with success probability o € (0,1). Under the usual
DPO log-likelihood form, the (per-datapoint) objective is proportional to

U(dg) = alogo(Bdg) + (1 — a)logo(—pds), (13)

1
14+e=%"
classifier that predicts the preference outcome using [dy as its logitE

The key observation is that ¢(dp) is strictly concave in dy and its maxi-
mizer is characterized by matching the model-implied win probability to the

true win probability:

where o(z) = This is exactly the expected log-likelihood of a logistic

o(pdy) = «a. (14)
To see this, differentiate :
or

5% = B(oz— a(ﬂd(;)), (15)

so the unique stationary point satisfies .
Solving yields an explicit optimal relative score:
1 1 o
dy = —logit(a) = —=1lo .
0 3 git(a) 3 gl—a
Thus, under the idealized optimum, DPO shifts the policy’s log-odds on
this pair by an amount proportional to the rater log-odds logit(«), with
proportionality factor 1//.

(16)

From relative scores to a learnability threshold. Combining sy =
Sref + dg with gives the idealized post-training log-odds

1 1
Sp = Spef T Blogit(a) = —c+ Blogit(a). (17)
We obtain an immediate criterion for ranking correctness:

1
sp>0 <= —c+ Blogit(a) >0

<= logit(a) > Bc
<~ a > o(pe). (18)
This is the promised threshold form. In the notation of Section [3] we can

read off ¢ = o(fc) and so the idealized ranking event is R = 1{a > t}.
Importantly, the threshold depends on observable reference difficulty ¢ and

!More precisely, one obtains (13)) by taking the DPO objective and replacing empirical
win rates with their population expectation . This is the “infinite-data, no-generalization”
idealization that lets us isolate the role of reference-conditioning.
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the training recipe parameter 3, while « is the latent property revealed only
through labels.

Several sanity checks are worth noting. If ¢ = 0 (the reference assigns
equal probability to y* and y), then ¢t = ¢(0) = 1/2: a bare majority
preference signal suffices. If ¢ > 0 (the reference favors the dispreferred
completion), then ¢t > 1/2: we need supermajority agreement to overcome
the reference. Conversely, if ¢ < 0 (the reference already favors y*), then
t < 1/2: even modest rater evidence is enough to keep (or further reinforce)
the correct ordering.

Interpretation: [ as inertia and adjustment cost. Equation
makes the economic interpretation particularly transparent: the reference
contributes a baseline log-odds margin —c¢, and the preference signal con-
tributes an additive log-odds shift %logit(a). Increasing g shrinks the mag-
nitude of this shift for any fixed «; equivalently, it raises the threshold
t = o(fc) whenever ¢ > 0. In this sense, 3 is an inertia parameter: a larger
makes the optimizer more reluctant to move away from m.of on comparisons
where doing so would require flipping a reference-preferred ordering.

This matches the familiar RLHF interpretation in which one maximizes
expected reward subject to a KL penalty to the reference. In the simplest
two-action reduction (choose y* versus y* at ), the KL-regularized optimum
takes the exponential-tilting form

r()

751 2) o (- | x)exp<6), (19)

so that the log-odds shift satisfies

sp—sret = (r(y") —r(y)). (20)

If we take the Bradley—Terry preference rate « to be induced by an underlying
reward gap via a = o(r(y™) — r(y%)), then 7(y*) — r(y*) = logit(c) and we
recover and . Under this view, § is literally the Lagrange multiplier
trading off reward improvement against KL deviation, i.e. an adjustment
cost measured in nats.

Safety implications and failure modes of the threshold picture.
The threshold formalizes a safety-relevant asymmetry: comparisons
that the reference model already gets “mostly right” (negative or small c)
are easy to preserve, while comparisons where the reference strongly prefers
the dispreferred completion (large ¢) require very strong and reliable over-
sight signals to correct. This is desirable when high-c cases correspond to
adversarial, ambiguous, or underspecified prompts where rater labels are
noisy or exploitable: a conservative [ prevents the policy from overreacting
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to weak evidence. However, the same mechanism can entrench misalignment
when the reference’s high-c region corresponds to genuine systematic failures
(e.g. rare but high-stakes safety issues, or out-of-distribution behaviors). In
that regime, increasing § makes it harder to fix the very cases we most want
to correct, unless we invest enough labeling to establish o well above the
elevated threshold.

This exposes a governance-relevant tradeoft: labs often tune 8 to main-
tain linguistic quality and prevent reward hacking, but suggests that
doing so also determines which parts of the error surface are even reach-
able by preference optimization. When auditors report that “RLHF did not
change behavior” on a class of failure cases, one plausible structural explana-
tion is not merely insufficient data, but that those cases lie in a high-c region
where o(fc) is close to one—so only near-unanimous preferences would move
the trained policy.

Limitations of the idealization (and why we keep it anyway). The
separable, per-datapoint optimum used above ignores the coupled nature of
real training: parameters are shared across prompts, gradients interact, and
the training set induces generalization rather than independent “fips.” More-
over, the mapping from win rates to logit(a) is only as good as the Bradley—
Terry abstraction, and the DPO optimum may be unattainable with finite
compute or imperfect optimization. Nonetheless, the threshold form serves
as a compact interface between auditing and training. It turns the question
“will more labels on i change deployment behavior?” into the probabilistic
question “how likely is a; to exceed o(f¢;)?” This is precisely the quantity
we will index in the next section when defining the audit value I; and the
marginal label value A;(n;).

5 An audit index from posterior learnability

Given the threshold form from Section [4 each datapoint ¢ induces a binary
(but latent) event,

L;, = 1{051' >ti}, t; = U(ﬁci),

where L; = 1 means that, under the idealized update rule, the trained policy
will rank y;” above yf on z;. The principal never observes L; directly; instead,
they purchase noisy comparisons and maintain a posterior over «;. This
turns auditing into a posterior inference problem about whether «; clears a
reference-conditioned bar t; that depends on the observable log-ratio ¢; and
the training hyperparameter (.
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Closed-form posterior tail probability. Let D; = (w;,n;) be the ob-
served label data for datapoint i, and define posterior parameters

a; = ag + w;, b; := by + n; —w;, (o7} ’ D; ~ Beta(ai,bi).

The core statistic we will use is the posterior probability that ¢ is learnable:

1,a;—1 b;—1
u® (1 — )
i(n;) = Pr(ay >t; | D;) = /

du = 1— Iti(ai, bi),

(21)
where B(-,-) is the Beta function and I;(a,b) is the regularized incomplete
beta function (i.e. the Beta CDF). Equation is useful operationally: it
is a one-line computation (available in standard numerical libraries), and it
cleanly separates (i) reference difficulty via t; = o(f¢;) from (ii) evidence
strength via (a;, b;).

Two immediate comparative statics match the informal deployment story.
First, holding D; fixed, increasing ¢; (or ) increases t; and weakly decreases
pi(n;): if the reference model strongly prefers yf , We require stronger rater
agreement to believe training will flip the ranking. Second, holding ¢; fixed,
increasing n; concentrates the posterior and pushes p;(n;) toward either 0
or 1 depending on whether the realized win rate lies below or above the
threshold.

From posterior learnability to an audit index. The quantity v;p;(n;)
is the expected welfare contribution of datapoint ¢ under the idealized pipeline
if we stop labeling now. However, for auditing we typically care about where
additional labels are decision-relevant. Intuitively, datapoints fall into three
regimes:

1. Confidently learnable: the posterior puts almost all mass above t; (p; ~

1).

2. Confidently unlearnable: the posterior puts almost all mass below t;
(pi = 0).

3. Contested: substantial posterior mass lies on both sides of ¢; (p; =~ 1/2).

Only the contested regime is one where an audit can plausibly change our
conclusion about whether this datapoint is reachable by preference optimiza-
tion. This motivates an audit indexr that upweights posterior disagreement
about L;. A canonical choice is the posterior variance of the learnability
indicator, scaled by welfare:

Ii == v; Var(L; | D;) = v; pi(ng) (1 — pi(ni)). (22)

This index is maximized at p; = 1/2 and vanishes as p; — 0 or 1. In other
words, I; prioritizes datapoints where (i) the deployment weight v; is large
and (ii) we are currently uncertain whether training will correct the ordering.
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While is not the only sensible index, it captures a safety-relevant
notion of “known unknowns”: if a high-stakes behavior is either clearly fixable
or clearly not fixable (under the idealization), then extra auditing has low
informational value; if it is ambiguous relative to the threshold, auditing is
valuable because it can resolve whether the pipeline will actually move the
deployed model in the desired direction.

How disagreement enters through mass near the threshold. The
reason p;(1 — p;) is the right qualitative shape can be seen by looking at
how sensitive p; is to perturbations in either the threshold ¢; or the posterior
location. Differentiating with respect to t; yields

Op;
ot;

= — fBeta(ti; i, b;), (23)

where fBeta(-; @i, b;) is the Beta density. Thus, whenever the posterior density
is large at the threshold (i.e. substantial probability mass sits near t;), small
changes to the threshold or to posterior parameters can materially change
p;. This is exactly the “disagreement” condition: the posterior neither safely
clears the bar nor safely misses it; it is concentrated around the bar.

A complementary view uses a normal approximation for moderate n;. If

i | D; = N (m;, s?) with mean m; = aﬁ‘:bi and variance s? ~ %, then
t; —m; op; 1 t; —m;
pz(nl) ~ 1_®<’L Z>’ p’L ~ ¢<Z ’L>’
S; om; S Si

so the sensitivity is governed by the Gaussian pdf ¢ evaluated at the stan-
dardized gap (t; —m;)/s;. Again, the expected impact of additional evidence
is largest when the threshold lies within roughly one posterior standard de-
viation of the posterior mean, i.e. when the posterior places significant mass
near t;.

Marginal value of one additional label. To move from a static audit
index to a decision rule for buying labels, we define the expected marginal
gain from purchasing one more comparison on i. Under the Beta—Bernoulli
model, the posterior predictive probability that the next rater prefers ;" is

the posterior mean
Qg

a; +b;
If the next label is a win, the posterior becomes Beta(a; + 1,b;); if it is

a loss, it becomes Beta(a;, b; + 1). Define the corresponding updated tail
probabilities

pi = Ela; | Di] =

pi+ = Pr(ai > i ‘ aﬁ—l,bi) = 1_It¢(ai+1abi)7 p; = Pr(ai > i ‘ ai,bi—l—l) = 1_Iti(ai7bi+1)'
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Then the (one-step) marginal value of an extra label is

Ai(ni) = Elvipi(n; + 1) —vipi(ni) | Di] = v (Mipf + (1 — wi)p; —pi>~

(24)
Equation (24)) makes two features explicit. First, v; scales value linearly:
high-frequency or high-stakes datapoints are always more attractive to audit,
holding everything else fixed. Second, A;(n;) is largest precisely when an
additional Bernoulli observation is likely to move substantial posterior mass
across the threshold. In the extreme regimes, A;(n;) is small: if p; ~ 1,
then both pj and p; are close to 1; if p; = 0, both updates are close to 0.
The only way for the expectation in to be sizeable is for the posterior
to be “poised” near t;, so that a single win versus loss meaningfully changes
Pr(ai > ti).

This connects back to reference difficulty ¢;. Since t; = o(B¢;), large
¢; pushes t; toward 1, meaning that only datapoints with strong evidence
of near-unanimous rater agreement will yield p; near one. In practice, this
creates a characteristic auditing pattern: high-c¢; regions tend to be either
confidently unlearnable (if raters do not strongly agree) or highly contested
(if evidence is limited but plausible), and prioritizes the latter. This is
the sense in which optimal auditing (in our model) oversamples high-¢; and
high-disagreement regions relative to uniform sampling.

Safety and governance interpretation. The pair (p;, A;) supports a
clean separation between status and leverage. The tail probability p; answers:
“How likely is it that our current training recipe can fix this behavior?”
The marginal value A; answers: “Is it worth spending one more comparison
to refine that answer?” This is useful for governance because it provides
an auditable, quantitative rationale for label allocation that is not merely
“collect more data” but “collect data where the training pipeline is near an
actionable boundary.” At the same time, this picture inherits all of the usual
failure modes: if rater noise is systematically biased, if «; is not well-modeled
by i.i.d. Bradley—Terry labels, or if the idealized threshold rule mispredicts
real training dynamics, then p; and A; can be miscalibrated. Those issues
do not eliminate the value of an index; they instead shift the burden to
robustness (e.g. hierarchical priors, rater modeling, adversarial evaluation)
and to validating that the threshold approximation remains predictive in the
regimes we intend to audit.

In the next section, we treat {A;(n;)} as the primitives of a label al-
location problem: we contrast a one-shot knapsack view with a sequential
(bandit-style) view, and we characterize when greedy index policies are prov-
ably near-optimal under monotonicity and diminishing-returns conditions.
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6 Label allocation: knapsack versus sequential (ban-
dit) auditing

We now formalize the principal’s label-allocation problem. The key ob-
ject from the previous section is the posterior tail probability p;(n;) =
Pr(a; > t; | D;), which converts noisy comparisons into a belief about
whether datapoint ¢ clears the reference-conditioned learnability threshold
t; = o(Bci). Given welfare weights {v;}, this induces an additive welfare
surrogate » . v;p;(n;), and the central operational question becomes: how
should we spend a finite budget of comparisons K across datapoints to max-
imize expected downstream welfare under this surrogate?

Two allocation models: one-shot (knapsack) versus sequential (adap-
tive). There are two natural ways to pose the decision problem, corre-
sponding to different operational pipelines.

(i) One-shot allocation (knapsack view). The principal commits ex ante
to an integer allocation n = (ni,...,ny) € Zf satisfying >, n; < K. Since
outcomes are stochastic, the resulting posteriors (and thus {p;(n;)}) are ran-
dom, so the ex ante objective is

N
nezﬁrznzaj(nigf( ;E[Uz pz(nz)] ) (25)
where the expectation is over the label draws induced by the (unknown) «;
under the assumed data-generating process. This is a knapsack-style resource
allocation problem with separable value functions.

(ii) Sequential allocation (bandit view). The principal chooses compar-
isons one at a time. At step k € {1,..., K}, they select an index iy, observe
the win/loss outcome, update (a;,b;), and proceed. The resulting policy =
maps the current collection of posteriors (equivalently, the vector of Beta
parameters {(a;,b;)}) to a choice of which datapoint to label next. The
objective becomes the expected terminal welfare surrogate

max [E,
s

N
> v pi(ni(K))] , (26)
i=1

where n;(K) denotes the (random) number of labels allocated to datapoint
i by time K. This is a finite-horizon Bayesian bandit/MDP: each datapoint
is an “arm” with a posterior state (a;,b;), and sampling an arm produces a
Bernoulli outcome that updates only that arm.

The one-shot formulation is appropriate when procurement requires com-
mitting to batches (e.g. contracting for n; labels per cluster). The sequential
formulation is appropriate when we can route tasks online and react to early
evidence (e.g. stopping early on clearly learnable/unlearnable points and re-
allocating to contested ones).
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A separable concave resource allocation problem (and why concav-
ity matters). Both and become tractable—and admit index-like
solutions—when the per-datapoint value of additional labels exhibits dimin-
ishing returns. To express this in the one-shot setting, define

gi(n) = Elv;pi(n)], n e Zy,
and its discrete marginal increments
Ai(n) = gi(n+1) = gi(n) = Elvipi(n+1) —vipi(n)]. (27)

A natural regularity condition is discrete concavity of g;, equivalently A;(n)
nonincreasing in n. Intuitively, once we have purchased many comparisons on
1, the posterior about whether «a; clears t; becomes tight, so the informational
(and thus welfare) benefit of one additional label should shrink.

This diminishing-returns condition is also what distinguishes the present
problem from a generic knapsack. With arbitrary g;(-), can encode
hard combinatorial structure. With separability plus concavity, the problem
becomes a form of discrete concave resource allocation, for which simple
greedy rules and exchange arguments often apply (and, in the adaptive case,
motivate index policies).

Continuous relaxation and KKT characterization (shadow price
of labels). A standard way to expose the structure is to relax the in-
tegrality constraint and allow n; € R,. Writing the relaxed objective as
MaX, >0, 5> n,<K »_; 9i(Ni), assume g; is concave and differentiable on R (e.g.
justified by a normal approximation to the Beta posterior for moderate n).
The Lagrangian is

N N
L(n,\) = Zgi(ni)—)\(Zni—K>, A>0.
i=1 i=1

The KKT conditions imply that at an optimal relaxed solution n* there
exists A* such that, for each 1,

gi(nf) < X\, with equality if n > 0, (28)

and ), n; = K whenever A\* > 0. Economically, A* is the shadow price of one
additional comparison: we allocate labels to datapoints until their marginal
welfare gain equals the common price A\*. Datapoints whose marginal value
is everywhere below A* receive zero labels; datapoints with high v; and pos-
terior mass near the threshold ¢; tend to have high marginal value and thus
receive more.

In the integer problem, an analogous characterization holds using discrete
marginals: for an “active” i, the last allocated label is one whose A;(n; —1) is
(approximately) at the cutoff, and the next label A;(n;) is (approximately)
below it. This is the discrete counterpart of and motivates incremental
label allocation rules.
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Greedy/index policies as incremental solutions. The KKT picture
suggests an incremental implementation: allocate labels one at a time to the
datapoint with the largest current marginal value.

In a one-shot (non-adaptive) implementation, one would conceptually
rank all unit-increments (7,n) by A;(n) and take the top K. When each g;
is concave, this incremental greedy procedure is closely related to classical
algorithms for separable concave allocation: adding one unit at a time to
the coordinate with the largest remaining marginal automatically equalizes
marginals, mirroring .

In a sequential (adaptive) implementation, we instead use the posterior-
conditioned one-step marginal defined in :

Ai(ni) = Elvipi(n; + 1) —vipi(ni) | Dy,

which is computable from the current Beta parameters (a;,b;) via the two
updated tail probabilities pj, p; - An index policy then takes the form

iy € argie{r{laxN} Ai(ni(k—1)), (29)

with ties broken arbitrarily (or by secondary criteria such as preferring larger
v; or larger ¢;). Operationally, is attractive because it is local: it requires
only maintaining per-datapoint posteriors and recomputing A; for the chosen
1 after each label.

This greedy rule is also the cleanest embodiment of the “audit where
labels are decision-relevant” principle. If the posterior is already far above
or far below the threshold ¢;, then (typically) p?_ N p; =~ P, so A; is small.
Conversely, if the posterior places substantial mass near ¢;, then p:” and p;
can differ materially, and A; is large: one more label has real leverage to
move our belief about learnability.

When is greedy sensible? Monotonicity and diminishing returns.
Greedy and index policies rely on two qualitative properties.

Monotonicity. We want the value of additional labels to be nonnega-
tive in expectation: g;(n 4+ 1) > g;(n), or at least that negative increments
are rare and dominated by positive ones when averaged over uncertainty. In
deployment terms, this says that collecting more evidence should not system-
atically reduce expected welfare—it should either increase it (by revealing
learnability we can exploit) or leave it roughly unchanged (by confirming
what we already knew).

Diminishing returns. We want A;(n) (and often its posterior-conditioned
analog A;(n)) to decrease as n grows. In the Beta—Bernoulli model, poste-
rior concentration increases like 1/(a; + b;), so the probability mass near
the threshold ¢; typically shrinks with n; this is the informal driver of di-
minishing returns. Under a normal approximation «; | D; =~ N(m;, s?), the

i
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“actionable” region is where |t; — m;| < s;, and s; decays on the order of
1//ni, shrinking the region in which another label can change conclusions.

These conditions are not purely mathematical conveniences; they are also
safety-relevant. If diminishing returns fails (e.g. due to distribution shift
across raters, nonstationary «;, or systematic annotation artifacts), then an
index policy can get stuck oversampling misleading regions or chasing spu-
rious uncertainty. In such cases, it can be necessary to augment the model
(hierarchical priors, rater mixture models, drift detection) or to impose gov-
ernance constraints (minimum auditing across critical clusters) that break
the purely myopic logic.

Algorithmic spectrum: from knapsack solvers to Bayesian bandits.
Finally, it is useful to situate greedy within a spectrum of solution concepts.
At one end, if we treat as a deterministic knapsack with precomputed
values g;(n), then dynamic programming or convex-cost flow methods can be
used when N and K are modest. At the other end, the fully adaptive problem
(26)) is, in principle, solvable by dynamic programming on the full posterior
state, but the state space grows quickly with N and K. Index policies like
occupy the pragmatic middle: they are computationally light, easy to
audit, and often near-optimal when monotonicity and diminishing returns
hold.

In the next section we make this precise: we state sufficient conditions
(submodularity /concavity) under which greedy achieves formal approxima-
tion guarantees, and we discuss when those conditions break—mnecessitating
heavier numerical machinery (e.g. bandit relaxations, lookahead, or problem-
specific dynamic programs).

7. Near-optimality of greedy: concavity, (adaptive) submodularity,
and when we need heavier machinery. The previous section motivated
the incremental rule on economic grounds (equalizing marginal value
across datapoints). We now make the corresponding performance claim more
explicit. The core message is that diminishing returns is not just a heuristic:
under standard concavity /submodularity conditions it yields formal approx-
imation guarantees for greedy, while violations of these conditions are pre-
cisely the regimes where we should expect to need dynamic programming,
bandit relaxations, or explicit lookahead.

Offline (one-shot) view: separable concave allocation is essentially
“already solved”. Consider first the relaxed one-shot objective with
separable values g;(n) = E[v;p;(n)]. When each g; is concave (in the discrete
sense that A;(n) = gi(n + 1) — g;(n) is nonincreasing), the resulting integer
allocation problem is a classical separable concave resource allocation prob-
lem. In this setting, the unit-cost greedy algorithm that repeatedly assigns
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the next label to the coordinate with largest remaining marginal A;(n;) is
not merely a (1 — 1gP3)-approximation; it is (under mild tie-breaking con-
ditions) optimal for the integer problem. Intuitively, concavity rules out
“complementarities” across labels on the same datapoint: if the first few la-
bels on ¢ are valuable, then later labels on ¢ cannot become more valuable
than earlier ones. This exchange property is exactly what greedy exploits.

Formally, if we represent an allocation by the multiset of K unit incre-
ments {(¢,1),...,(i,n;)} for each i, concavity ensures that the sorted list
of all marginals {A;(n)};, is “prefix optimal” taking the top K marginals
yields an allocation that cannot be improved by swapping any chosen unit
with any unchosen unit. This is the discrete analog of the KKT equal-
marginal condition and explains why, in the one-shot model, greedy is
a principled baseline rather than an ad hoc heuristic.

Set-function view: monotone submodularity yields the (1 — 1/e)
guarantee. The preceding argument leverages separability. To understand
guarantees that survive beyond strict separability (or that extend to richer
objectives), it is useful to re-encode the allocation problem as maximization
of a set function. Let £ denote the ground set of available “labeling actions”
and let S C & denote the set of K actions we take. Define F(S) as the ex-
pected terminal welfare surrogate after executing S (with the understanding
that S may contain multiple labels for the same datapoint, so technically
S can be treated as a multiset, or one can expand £ into K time-stamped
copies). In many information-gathering problems, F' is monotone submod-
ular: (i) monotonicity says additional labels do not reduce expected value,
F(SuU{e}) > F(S); (ii) submodularity says marginal gains diminish with
more information, F(SU{e}) — F(S) > F(T'U{e}) — F(T') whenever S C T.

When F' is monotone submodular and we have a cardinality constraint
|S| < K, the standard Nemhauser—Wolsey result implies that the greedy
algorithm achieves

F(Sgreedy) = (1 —1/e) F(57),

where S* is an optimal set of size K. In our context, this guarantee can
be read as a robustness statement: even if the per-datapoint value is not
perfectly concave or perfectly separable, as long as the overall value of infor-
mation exhibits diminishing returns in the submodular sense, greedy remains
provably near-optimal.

It is important, however, to be honest about what must be true for
monotone submodularity to hold. The functional p;(n) = Pr(a; > t; | D;)
is a thresholded posterior quantity, and thresholded objectives can create
regions where additional data has highly nonlinear effects (e.g., when the
posterior mean is near t;). Submodularity is therefore not automatic; it is
best viewed as an approximation justified by posterior concentration: once n
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is moderate, additional labels mostly sharpen an already-unimodal posterior,
making the marginal value of data naturally decrease.

Sequential (adaptive) view: adaptive submodularity explains why
myopic sampling works. The sequential formulation is more deli-
cate because the principal conditions on realized outcomes. In this setting,
the appropriate concept is adaptive submodularity (Golovin—Krause): the
expected marginal benefit of selecting an action e should decrease as we con-
dition on a richer history. Concretely, let 1) denote the current posterior
state (here, the collection of Beta parameters {(a;,b;)}). Define the con-
ditional marginal value of sampling datapoint ¢ once more as the posterior
one-step gain A;(n;) already used in . Adaptive submodularity asserts
that, as ¥ becomes more informative (more labels observed), the conditional
expected gain from an additional sample does not increase.

Under adaptive monotonicity and adaptive submodularity, the adaptive
greedy policy enjoys the same (1—1/e) approximation guarantee relative
to the optimal adaptive policy (up to technicalities about ties and feasibility).
The interpretation is exactly the one we want for auditing: if labels have
diminishing decision relevance as evidence accumulates, then it is safe (in the
approximation sense) to spend budget myopically on whichever datapoint is
currently most likely to flip our “learnable vs. not” conclusion.

Why these sufficient conditions are safety-relevant. The concav-
ity /submodularity assumptions are not merely mathematical conveniences;
they encode a substantive claim about how evidence interacts with down-
stream training: that information value saturates rather than exhibiting
strong complementarities or delayed payoffs. From a safety perspective, the
danger is that if the assumptions fail, greedy can become systematically
miscalibrated in ways that matter for oversight.
Three failure modes are worth flagging.

1. Non-monotonic value of evidence. If additional labels can reduce ex-
pected welfare (for example because they reveal that a datapoint is
unlearnable under the current 8 and reference model, or because the
training pipeline reacts pathologically to certain labeled examples),
then the objective is not monotone. Greedy policies can still be used,
but classical guarantees do not apply and one should expect regimes
where “stop labeling” or “label elsewhere” dominates.

2. Complementarities across datapoints (non-separability). Our surrogate
>, vipi(n;) assumes independent contributions. In reality, gradient up-
dates from one region of the data distribution can generalize (positively
or negatively) to another. Such cross-effects create complementarities
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(or interference) across datapoints that violate submodularity. Over-
sight implication: we may need to audit clusters jointly, or explicitly
model transfer, rather than treat datapoints as independent arms.

3. Nonstationarity and rater mizture structure. If «; drifts over time
(policy-dependent preferences, changing rater populations) or labels
are generated by heterogeneous subpopulations, then the Beta—Bernoulli
conjugate model is misspecified. Misspecification can create spurious
“persistent uncertainty” where additional labels keep changing conclu-
sions, breaking diminishing returns and potentially causing greedy to
chase noise.

When we should expect to need numerical methods (DP, bandits,
lookahead). When the sufficient conditions do not hold, the principal’s
problem becomes closer to a general finite-horizon Bayesian bandit/MDP.
Exact solutions require dynamic programming over a state space that scales
with [[;(n; + 1), which is quickly infeasible as N and K grow. In these
regimes, we see three pragmatic escalations.

(i) Small-scale exact or near-exact DP. When N is small (e.g. auditing
a small number of high-stakes clusters) and K is modest, value iteration or
backward induction on the Beta parameters is feasible. This can serve as a
gold standard to evaluate greedy/index policies and to quantify the cost of
myopia.

(ii) Bandit relazations and indices. For longer horizons, one can con-
sider discounted or infinite-horizon relaxations where indexability emerges
(e.g. Gittins-style indices). While our objective is terminal rather than dis-
counted, such relaxations can provide computable heuristics with some the-
oretical backing. A related approach is Lagrangian relaxation: treat the
budget constraint via a penalty A and solve decoupled per-arm problems to
derive a Whittle-like index, then tune A to meet the budget.

(iii) Approzimate planning. When the environment is misspecified or
strongly non-submodular, Monte Carlo tree search, limited lookahead, or
rollout policies (greedy plus one-step or few-step planning) can materially
improve performance. These methods are also compatible with governance
constraints (e.g. minimum auditing quotas per safety-critical slice), which
can be integrated as hard constraints in the planner rather than as after-
the-fact patches.

Taken together, the near-optimality results give us a disciplined story:
greedy is not a leap of faith but a consequence of diminishing returns in
the value of evidence. At the same time, the precise ways in which the
assumptions fail point directly to the operational situations where we should
invest in richer modeling, stronger oversight constraints, or heavier numerical
optimization.
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8. Comparative statics and design implications: how design choices
tilt the audit index. The index rule is only as useful as our understand-
ing of how it changes when we touch the knobs the training pipeline actu-
ally exposes. In our reduced model those knobs appear in three places: (i)
the regularization/inertia parameter (3, which converts reference log-ratios
¢; into a learnability threshold ¢; = o(f¢;); (ii) the quality and calibration
of the reference policy myf, which determines the distribution and scale of
the observable ¢;; and (iii) the labeling protocol, which governs the effective
noise in rater outcomes and hence the posterior concentration of «; as n;
grows. Comparative statics along these axes tell us, operationally, when an
“audit-the-disagreement” strategy is sufficient, and when we should instead
treat auditing as a targeted effort to overcome reference inertia on particular
slices.

How f reshapes the threshold and reorders what is worth auditing.
Because t; = o(f¢;), the mechanical sensitivity is

gtl = G U(,@Ci)(l - U(,@Cz)) = C; ti(l - ti),
B
Two qualitative consequences follow immediately. First, increasing 8 polar-
izes the threshold: for ¢; > 0 (the reference prefers yf), the threshold rises
toward 1, making such datapoints harder to “flip” via preference training;
for ¢; < 0, the threshold falls toward 0, making such points essentially au-
tomatically learnable. Second, the sensitivity is largest when Se¢; ~ 0, i.e.
precisely when the reference is uncertain (or indifferent) between y% and y; .
Thus [ does not just scale difficulty uniformly; it reallocates difficulty mass
from the “near-tie” region to the “reference-confident-but-wrong” region.
This feeds directly into the audit index through p;(n) = Pr(a; > t; | D;).
A useful approximation for intuition is a normal approximation to the Beta
posterior: if o; | D; ~ N (i, 72) (with 72 shrinking like 1/n;), then

t._ .
pi(n;) ~ 1—<I>< ! MZ),

Ti

ot;

9o Bti(1—t;).

so the marginal value of additional labels is largest when (¢; — p;)/7; is near
0, i.e. when the posterior mass straddles the threshold. Increasing § moves
t; upward for ¢; > 0, meaning that (holding u;, 7; fixed) the posterior must
be pushed further upward—requiring more evidence—to reach the same tail
probability. In welfare terms, a larger § shifts the optimal allocation toward
(a) higher v; and (b) larger positive ¢; points where p; is plausibly high
but we need more labels to prove «; > t;. In contrast, when § is small,
t; = 1/2 across a wide range of ¢;, so auditing behaves more like generic “is
the preference direction stable?” sampling, with less emphasis on overriding
the reference.
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A design implication is that 8 and K are coupled choices. If governance
or product constraints force a large 8 (high inertia to preserve reference
behavior), then auditing must budget for the fact that high-c overrides be-
come label-expensive; if we cannot afford that, then the implied deployment
behavior is that the system will systematically refuse to learn from human
preferences in precisely the regimes where the reference is most in conflict
with them. Conversely, if we lower 8 to make more datapoints learnable at
fixed K, we should expect stronger sensitivity to residual rater noise and
distribution shift, and we may need additional safeguards (held-out evalua-
tions, conservative updates, or explicit constraints) to avoid overcorrecting
on thin evidence.

9

Reference strength and calibration: why “better 7.’ is not one-

Tref (yflxz)
ﬂref(y;'up?i)
which side the reference favors and how confidently. If 7 improves in the

usual sense (higher likelihood on genuinely preferred completions), then the
mass of datapoints with ¢; > 0 should shrink, and many remaining ¢; will
become more negative. Under our thresholding, this makes more of the
distribution “trivially learnable” (since t; becomes small), which reduces the
need for auditing those regions: the pipeline will get them right even with
weak preference evidence.

However, there is an important countervailing effect: reference confidence
interacts with 8. A reference that is occasionally wrong but very confi-
dent when wrong produces large positive ¢; outliers. Because t; = o(f5¢;)
is steep in fc¢;, these outliers can become practically unlearnable unless «;
is extremely close to 1. In oversight terms, improving the reference with-
out controlling calibration can concentrate residual risk into a thinner but
higher-stakes tail: fewer failures, but failures that are harder for preference
optimization to repair. This is exactly the regime where an index that up-
weights high ¢; is most valuable, because uniform sampling will miss the
tail.

Operationally, this suggests treating reference calibration as a first-class
audit target. If we can reduce the magnitude of erroneous positive ¢; (e.g. via
temperature scaling, better uncertainty estimation, or a reference ensemble
that dampens overconfidence), then for fixed 8 we lower ¢; on the problematic
cases and make them label-feasible. Said differently: at fixed label budget,
there is a three-way trade among (i) reference calibration, (ii) £, and (iii)
achievable coverage of “override” slices.

dimensional. The observable ¢; = log plays two roles: it encodes

Rater noise and protocol choice: labels as information vs. labels
as decisions. In our baseline model, each label is Bernoulli(«;), so “noise”
is subsumed into «; itself (values near 1/2 correspond to high disagreement
or ambiguity). In practice we often have additional, avoidable noise: in-
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consistent instructions, low-effort ratings, presentation effects, or systematic
subgroup differences. A convenient way to separate these is to posit a la-
tent “clean” preference probability &; and a protocol-dependent flipping rate
n € [0,1/2), so that the observed label probability becomes

o = (1=n)a;+n(l—a&) = n+(1-2n)a.

Under this model, improving the protocol (reducing 1) stretches «; away from
1/2, which has two benefits for auditing. First, it increases the chance that
o clears the threshold ¢; on genuinely learnable points (especially important
when ¢; > 1/2 due to ¢; > 0). Second, it increases per-label information:
posteriors concentrate faster around the true «;, raising A;(n;) early in the
process and making greedy allocation more decisive.

This motivates a cost-quality trade: rather than spending budget K
on many low-quality labels, the principal may prefer fewer higher-quality
comparisons (expert raters, adjudication, better task design) if the effective
reduction in 7 is large. In the index language, changing the protocol changes
the entire curve n — E[p;(n)], not just the realized w;. A practical gov-
ernance rule is therefore: treat protocol upgrades as multiplicative on all
high-c, high-v slices, because those are exactly where the required posterior
evidence to establish «; > t; is most demanding.

Joint design of 8 and auditing: “how much inertia can we afford?”
Because the learnability condition is o > o(f¢;), for any fixed (o, ¢;) with
¢; > 0 there is an implicit upper bound on j:

&7

g < 1 log
C; 1-— (673

While «; is unknown, the posterior gives a distribution over admissible
values for each datapoint. This suggests a design workflow that is more ex-
plicit than “pick 8 and hope™: choose (8 to keep the set of high-welfare points
plausibly learnable under the posterior, then allocate labels to resolve the
remaining uncertainty. Concretely, if we define a target coverage constraint
such as ), v; Pr(a; > t; | D;) > 7, then 8 becomes a policy lever for trading
off reliance on 7 against the attainable audited improvement. This makes
the safety trade-off legible: larger 8 protects against spurious overrides but
risks baking in reference failures; smaller 8 enables correction but demands
stronger controls on rater quality and distributional robustness.

Iterative and on-policy refresh: when ¢; should be recomputed, and
what that does to oversight. So far ¢; is defined with respect to a fixed
Tref, but in many pipelines the “reference” is periodically refreshed (e.g. set
to a recent checkpoint) to keep KL costs meaningful and to avoid training
pathologies. Under refresh, both the ¢; values and the underlying «; can

30



drift (since the model generates different candidates and raters may respond
differently to different outputs). Our index logic still applies, but the object
being optimized becomes time-dependent: we are no longer allocating labels
to estimate a static a; relative to a static threshold; we are allocating labels
to track a moving decision boundary.

Two implications matter for protocol design. First, refresh tends to
shrink the magnitude of ¢; on-policy (the current model is closer to itself
than to an old anchor), which pushes ¢; back toward 1/2 and makes more
points “contestable” by labels. This can improve sample efficiency, but it
also means auditing becomes less targeted toward correcting old reference
mistakes and more about detecting local preference gradients. Second, re-
fresh can create a governance hazard: if 7.t is allowed to move freely, then
failures that were once high-c (clearly in conflict with the anchor reference)
may disappear from the audit surface, even though the deployed policy still
exhibits problematic behavior relative to human preferences. A conservative

compromise is to maintain two references: a moving 72" for optimization

stability and an anchored ﬂ?&d“ for longitudinal accountability, and to com-

pute complementary indices against each.

What these statics give us going into evaluation. The overarching
lesson is that the audit index is not a fixed recipe; it is a diagnostic for where
the pipeline is structurally unable to learn at a given (mwf, 3, protocol, K).
By varying (3, perturbing reference quality (including calibration), and mod-
eling rater noise, we can predict when optimal auditing should concentrate
on high-c tail slices versus broadly sampling around ambiguity. The next
step is to test whether these predicted reallocations translate into measur-
able gains on real preference corpora and realistic disagreement patterns, and
to quantify how sensitive the gains are to reference quality and the choice of

8.

9. Empirical evaluation plan: simulating audit-driven acquisition
on real preference corpora. Our theory makes a sharp prediction about
where labels are most valuable: not where preferences are merely noisy, but
where (i) deployment welfare weight is high, (ii) the reference is confident in
the wrong direction (large positive ¢;), and (iii) the posterior mass over «;
still straddles the learnability threshold t; = o(8¢;). The most direct way
to test this is an offline simulation on existing multi-annotated preference
datasets, where we can treat cross-annotations as ground truth about «;
and then “replay” alternative acquisition policies under a fixed label budget
K. We complement this with a smaller number of end-to-end preference-
optimization runs to check that the index gains survive the idealization.

31



Datasets and basic construction of (z;,y",yf). We will use corpora
that include repeated comparisons for the same prompt-output pair, such as
AlpacaFarm-style cross-annotations (multiple independent raters per pair)
and analogous multi-rater preference sets. Each datapoint ¢ consists of a
prompt z; and two candidate completions; we set (y,y) according to the
majority label in the full pool of annotations for that pair, reserving the
remaining annotations as an evaluation reservoir. The key requirement is
that for each i we have enough independent rater votes to estimate a stable
“ground-truth” preference rate

N #wins for y;"

7

~

™ #total annotations for pair i’

with uncertainty bands (e.g. Wilson intervals) reported to flag intrinsically
ambiguous items. This produces a realistic mix of near-consensus items (o
near 0 or 1) and disagreement-heavy items (o near 1/2).

Estimating ¢; from a chosen reference policy. Given a fixed reference
model m.f, we compute

7Tref(yf | xz)

= 1Ogﬂ-rf ye Z; 710g77rf ?/w Zi),
Wref(ylw|l'i) e(z‘ l) e(z | ’L)

c¢; = log
using standard token-level log-likelihood under teacher forcing. Because
completion lengths vary, we will report both (i) raw log-likelihood ratios
(as above) and (ii) length-normalized variants, e.g. dividing by total tokens,
and check that qualitative conclusions are invariant. We then fix 8 (and vary
it in sensitivity sweeps) to obtain thresholds t; = o(f¢;). This step is opera-
tionally important: it turns “reference confidence” into a concrete notion of
how much human preference probability is needed to overcome inertia.

Offline acquisition simulation: how we generate labels and update
posteriors. To simulate the sequential purchase of labels, we treat the
held-out annotations for each pair i as an empirical proxy for i.i.d. Bernoulli
draws with success probability a;. Concretely, when an acquisition policy
requests a label for i, we sample (without replacement, when available) one
rater vote from the held-out pool for that pair and record it as a Bernoulli
outcome. Starting from a shared Beta prior «o; ~ Beta(ag, by), we update

«; ’ D; ~ Beta(ao + w;, bo + n; — wi), pz(nz) = PI‘(O&i >t ‘ Di),

where p;(n;) is computed via the regularized incomplete beta function. We
track both the posterior tail p;(n;) and the posterior variance as functions
of the acquired labels, since the index is fundamentally about buying infor-
mation near the decision boundary.
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Acquisition policies to compare (fixed K). We will compare a family
of label allocation rules under the same total budget K:

1. Uniform: choose i uniformly at random.

2. Uncertainty-only: oversample pairs with posterior mean near 1/2, e.g.
maximize p;(1 — p;) where p; = Elay | D;l.

3. High-c heuristic: oversample large positive ¢; (the “reference-confident
against the winner” tail), ignoring posterior uncertainty.

4. Index policy (ours): sequentially choose
ik41 € arg max Ai(n;) = arg m?XE[Ui (pi(ni +1) — pi(ny))]

where the expectation is taken over the next Bernoulli label under the
current posterior for «;. In practice this expectation is a two-point
mixture over win/loss outcomes, so it is cheap to compute.

For transparency, we will run the index both with uniform welfare weights
(v; = 1) and with synthetic heavy-tailed weights (to emulate deployment
frequency skew), because the welfare-weight channel is where governance
and product priorities enter.

Offline metrics: what “better auditing” means in the simulation.
We will report four classes of outcomes. First, the posterior welfare objective
itself,

/WK = sz‘pz’(nz’),

which directly measures what the principal believes about coverage after
spending K labels. Second, an oracle welfare computed using o as ground
truth,

w* = Z v; H{a] > t;}, and the audited estimate error |Wgx — W*|.
i

Third, coverage and confidence diagnostics: the mass of deployment weight

for which the audit has become decisive,

ConfMassk (e) = Zvi 1{pi(n;) > 1 — € or pj(n;) < e},
(3

which captures whether labels are resolving actionable questions rather than
repeatedly sampling intrinsically ambiguous items. Fourth, tail targeting
summaries that connect back to the mechanism: histograms of acquired
labels over ¢;, and the share of budget allocated to the slice {i : ¢; >
co, pi(n;) € (6,1 — €)}, i.e. “high reference inertia and unresolved learn-
ability.”
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Measuring “ranking flips” and the structure of overrides. To con-
nect the audit to downstream behavior, we will compute a pairwise “override
mass”’ that counts how often human preferences plausibly overturn the ref-
erence. The simplest diagnostic is the reference sign disagreement 1{c; > 0}
(reference prefers y¢) combined with learnability 1{a} > t;} (humans are
strong enough to override inertia). The weighted sum

OverrideMass* = Zvi 1{c; > 0} 1{a] > t;}
i

identifies the welfare-relevant region where the pipeline must “flip” relative
to mes to satisfy preferences. We then check whether acquisition policies
preferentially resolve uncertainty on this region by reporting the analogous
posterior quantity > . v; 1{c; > 0} p;i(n;) as K grows.

Sensitivity sweeps over § and reference quality. We will run the full
simulation across a grid of 8 values to test the central comparative-static
claim: as § increases, value concentrates in large positive ¢; slices because
thresholds ¢; rise, and the index should increasingly dominate uncertainty-
only heuristics that ignore reference inertia. Separately, we will vary the
reference itself to emulate shifts in reference quality and calibration: (i) swap-
ping myef across model sizes/families; (ii) temperature scaling or logit smooth-
ing before computing ¢; (to damp overconfidence); and (iii) ensembling-based
¢; (mean log-prob vs. log-mean-prob) to test whether the index gains are
driven by calibration artifacts. The main object we expect to move is the
tail behavior of the ¢; distribution; the evaluation will explicitly report how
the index performance correlates with statistics such as Pr(¢; > 0) and upper
quantiles of ¢;.

End-to-end check: does index-based acquisition improve actual
preference optimization? Because our auditing model abstracts away
many training dynamics, we will also run an end-to-end experiment on a
smaller subset. For each policy and budget K, we build a training set by
taking exactly the acquired labels (with multiplicity) and run a standard
preference-optimization procedure (e.g. DPO) starting from a fixed initial-
ization, holding all optimizer hyperparameters constant across policies. We
then evaluate on a disjoint held-out set of preference comparisons with fresh
annotations, reporting:

e Win rate of the trained policy against the reference and against the
baseline policy on held-out comparisons.

e Flip rate on the specific subset with ¢; > 0 (where the reference initially
prefers yz), which is the regime where learning requires overcoming
inertia.
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e Stability metrics: variance across random seeds and across different
rater-subset samplings, to ensure gains are not driven by lucky draws.

The point of this end-to-end check is not to perfectly validate the ideal-
ized threshold model, but to test whether the ordering signal provided by
(¢;, posterior straddling) translates into measurable gains in realistic train-

ing.

Practicalities, failure modes, and what would falsify the story. We
will pre-register two key falsifiable expectations. First, if the index is correct,
then at moderate K it should achieve higher ConfMassg (€) and higher esti-
mated override mass than uniform sampling, while also reducing ]WK —W*;
failure here would indicate that the marginal-value computation A;(n;) is not
aligned with information gain in real rater data. Second, index gains should
increase with 8 and with heavier-tailed positive-c reference errors; if gains
do not increase in these regimes, that would suggest either (i) ¢; is too noisy
a proxy for true reference inertia (e.g. due to length effects or scoring mis-
match), or (ii) the pipeline is dominated by phenomena outside the model
(e.g. generalization across datapoints, nonlocal parameter sharing, or system-
atic rater biases). In either case, the empirical results still provide a useful
outcome: they tell us whether an auditable, reference-conditioned index is
a meaningful organizing principle for label allocation, or whether we need
richer primitives (e.g. clustered tasks, latent rater models, or training-aware
value estimates) to make auditing predictive.

10. Discussion: auditability and governance in 2026. By 2026, preference-
optimized models are increasingly embedded in products whose failure modes
are not well summarized by average win rates. What matters operationally
is whether the training pipeline can reliably override the reference policy on
the specific slices of behavior where (i) humans strongly disagree with the
reference, and (ii) that slice carries meaningful deployment weight. Our for-
malism is intentionally narrow—it compresses the downstream optimization
into a threshold test a; > t; = o(fc¢;)—but this compression has a gov-
ernance upside: it yields quantities that an assurance team can compute,
monitor, and report without re-running training for every audit question.
The core claim is that (c¢;, D;,v;) induces an auditable interface between
model-centric artifacts (log-probabilities under 7ef) and human-centric un-
certainty (posterior mass over «;), and that this interface can be made legible
to external stakeholders.

What a regulator (or internal assurance team) can compute. In
settings where teams can log reference likelihoods and store preference-
collection traces, three families of statistics become straightforward to com-
pute and hard to fake post hoc.
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(i) The distribution of reference inertia, via the c-profile. The object

Trof (Y5 |@s)
B ﬂ'ref(yzwlxi)
probability mass the reference puts on the dispreferred completion relative
to the preferred one, i.e. how far the pipeline must push against the reference
to implement the preference. For governance, the important quantity is not
a single mean but the tail behavior of ¢;, because high positive ¢; items
are precisely where inertia makes learning brittle. An assurance report can
therefore publish (possibly weight-adjusted) summaries such as

¢ =lo is not merely a training artifact; it measures how much

Qoo(c), Qooo(c), Pr(c; >0), and Pr(e¢; > ¢ and v; large),

as well as a welfare-weighted CDF
1

Zj vy

These are not sufficient for safety, but they are a minimal transparency layer:
they reveal whether the system relies on preference training to correct a small
number of easy overrides or a long tail of high-inertia corrections.

(i1) Audited coverage, as decisive posterior mass rather than label count.
Raw labeling spend is a poor proxy for assurance because labels can be
wasted on intrinsically ambiguous comparisons. What can be reported in-
stead is how much deployment weight has become audit-decided. A simple
template is a weight-adjusted decisive-mass curve

Fo(u) =

Zvi 1{62' S u}

DecisiveMassk (€) = Zvi 1{pi(n;) > 1 — € or p;(n;) < €},
i

where p;(n;) = Pr(a; > t; | D;). This statistic answers a governance-relevant
question: “After spending K comparisons, for what fraction of what we care
about do we have high confidence that the pipeline can (or cannot) overcome
inertia?’ Because € is explicit, stakeholders can demand confidence levels
appropriate to the domain (e.g. stricter in medicine than in entertainment).

(iii) Expected correction mass: how much welfare-relevant behavior re-
quires overriding the reference. A central safety concern is whether pref-
erence optimization is mostly polishing already-good reference behavior or
actually correcting systematic reference mistakes. In our abstraction, the
correction-relevant region is ¢; > 0 (reference favors y*) combined with learn-
ability a; > t;. Since «y is unobserved, an auditable surrogate is the posterior
expectation

ECMg = ZUZ' 1{67; > O}pl(n,),
i
which we can interpret as expected correction mass under the audit poste-
rior. Reporting ECM g alongside ), v;p;(n;) separates “coverage of learnable
preferences” from “coverage of overrides.” This distinction matters because
a system can have high apparent preference alignment on easy items while

still failing exactly where the reference is confidently wrong.
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What should be reported, and how it can be gamed. A plausible
2026 assurance norm is a “reference-conditioned audit card” that reports the
three objects above across a grid of  values (or, equivalently, across thresh-
olds t;). The reason is straightforward: § functions like an inertia knob, and
many organizations will tune it for product stability, latency, or brand risk.
A governance regime that only evaluates one [ risks Goodharting: teams
can pick S to look good on an audit while leaving high-inertia corrections
unaddressed. A robust report would therefore include sensitivity curves

S +— DecisiveMassg (¢; 3), B — ECMk(p),

and would flag regimes where small changes in 5 cause large drops in ex-
pected correction mass (an indicator of brittle reliance on borderline over-
rides).

At the same time, these metrics can be gamed if the organization can
arbitrarily choose what pairs (y, yf) are surfaced to auditors. The remedy
is procedural: auditors must sample z; from deployment-weighted logs (to
anchor v;), and the organization must provide the paired candidates that the
pipeline actually encounters (to anchor ¢;). In other words, the governance
surface is not just a metric suite; it is a data provenance constraint.

Safety implications and failure modes. The main safety-relevant fail-
ure mode in this framework is illusory coverage: high decisive mass on low-c
regions combined with persistent uncertainty on high-c regions. This can
happen even when overall win rate is high, because low-c items are cheap
to resolve. A second failure mode is calibration collapse in ¢;: if reference
likelihood ratios are distorted by length effects, prompt formatting shifts, or
log-probability miscalibration, then the threshold ¢; = o(8¢;) ceases to track
true inertia. Governance reports should therefore include basic calibration
diagnostics, e.g. length-normalized c¢; variants and stability of the c-profile
under temperature scaling of mer. A third failure mode is non-stationarity:
as the deployed system shifts the distribution of encountered prompts, both
v; and the effective a; change, so historical audit coverage can become stale.
This suggests an operational requirement: the audit index should be recom-
puted on a rolling basis, and “coverage over time” should be treated as a
monitored quantity rather than a one-time certification.

Limitations of the single-threshold idealization. Our threshold model
is a deliberate simplification of preference optimization. In reality, param-
eter sharing couples datapoints; learning on one slice may generalize (or
anti-generalize) to another; and optimization dynamics can fail even when
a; > t;. From a governance perspective, this means the reported quantities
should be interpreted as pipeline capability under an idealized mechanism,
not as guarantees of realized behavior. The right use is comparative and
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diagnostic: identifying where the pipeline is least likely to correct the ref-
erence absent additional evidence, and prioritizing those regions for more
labels, better rater protocols, or targeted evaluations.

Extensions: multi-output ranking and richer training signals. Many
production systems do not train on isolated pairs but on lists of candidates,
tool-augmented trajectories, or multi-turn dialogues. The natural extension
is to replace a; with a structured preference object (e.g. a Plackett—Luce
model over multiple outputs, or a latent utility function), and to replace ¢;
with a vector of reference log-odds that captures which alternative the refer-
ence prefers and by how much. The governance analog would report not just
a scalar c-tail but a confusion geometry: where the reference concentrates
probability among undesirable modes. Technically, this pushes the posterior
tail probability p;(n;) into higher-dimensional integrals, but the qualitative
audit logic remains: label value concentrates near the reference-conditioned
decision boundary, and welfare weights determine which boundaries matter.

Extensions: heterogeneous raters and institutional disagreement.
In many domains, «; is not a property of the world but of a rater population.
If raters are heterogeneous, then a single Bernoulli parameter conflates moral
uncertainty, expertise gaps, and demographic disagreement. For governance,
this is not a nuisance; it is often the point. A more faithful model treats
labels as drawn from a mixture (e.g. agg) per group ¢g) or from a hierarchical
rater model with rater-specific bias and noise. The audit surface then ex-
pands: instead of reporting Pr(c; > t; | D;), one reports group-conditional
learnability probabilities and a decomposition of decisive mass by popula-
tion. This makes value conflicts explicit and enables a regulator to ask the
correct question: “Which populations does the system have evidence of sat-
isfying in the high-inertia override regime?” The downside is political as well
as statistical: organizations must commit to a rater sampling frame, and
audits become contested when stakeholder groups disagree.

Extensions: strategic judges and adversarial feedback. Finally, the
assumption that labels are i.i.d. Bernoulli draws is fragile when raters have in-
centives (financial, ideological, or adversarial) to misreport, or when “raters”
are themselves models. In 2026 this is not hypothetical: red-teaming mar-
kets, sybil attacks on feedback channels, and automated judging are all live.
The natural extension is to model raters as strategic agents and treat a; as
endogenous to the mechanism (payments, auditing of raters, reputation sys-
tems). In that setting, the principal’s control problem becomes two-layered:
allocate budget across datapoints and invest in label integrity. The gover-
nance translation is that assurance reports should include not only coverage
metrics but also label provenance metrics: rater diversity, fraud detection
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rates, and robustness checks (e.g. whether ECM g materially changes after
removing a suspected rater cluster). The open problem is to integrate such
integrity constraints into the same index framework without losing tractabil-

ity.

Takeaway for governance. The central contribution of this line of work
is not a new training objective but an accountability primitive: a way to say,
in deployment-weighted terms, where preference optimization is expected to
override the reference, how confident we are about those overrides, and how
that confidence depends on inertia 8 and on the reference’s own likelihood
geometry. Even if the threshold abstraction is imperfect, it forces a disci-
pline that aligns with governance needs: treating label budgets as scarce,
treating “alignment” as coverage over high-stakes regions rather than aver-
age performance, and exposing the tails—the exact places where both safety
and regulatory scrutiny concentrate.
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