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Abstract

Doubly-efficient debate provides a complexity-theoretic route to
scalable oversight: two polynomial-time provers can convince a much
cheaper verifier using only a constant number of oracle queries, even
when the oracle represents black-box human judgment. Existing stochas-
tic results crucially rely on i.i.d. oracle samples and Chernoff bounds.
In modern 2026 oversight pipelines, however, human judgments are cor-
related (shared rubrics, common-mode bias, evaluator drift) and par-
tially adversarial (brigading, compromised contractors, reward-model
feedback loops). We extend the stochastic doubly-efficient debate
framework by replacing the verifier’s i.i.d. sampling step with robust
mean estimation under (i) Huber contamination and (ii) controlled
dependence quantified by a design-effect parameter. We show that
a median-of-means (or trimmed) audit achieves the same qualitative
guarantee as the original protocol: constant human query complex-
ity independent of the length of the underlying computation, with
completeness—soundness gap degrading gracefully in the contamina-
tion rate. We provide a clean parameterization that separates (a) task
sensitivity (the Lipschitz constant K) from (b) evaluation-system re-
liability (contamination ¢ and dependence X), and discuss empirical
calibration via clustered-rater simulations as a guide for institutional
panel design.
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1 Introduction: why i.i.d. human judgments are
the wrong abstraction in 2026; robust debate as
an auditing primitive

In much of the theoretical literature on human oversight, a convenient ab-
straction is that we can sample an i.i.d. panel of “judges” whose answers are
unbiased draws from some fixed distribution. This assumption is appealing
because it lets us import concentration inequalities essentially for free: if
each rating is an independent coin flip with mean p, then a sample aver-
age estimates p to accuracy O~(m*1/ 2), and the rest of the analysis becomes
bookkeeping. Our claim is that this abstraction is miscalibrated for the over-
sight regimes that matter in 2026. The most salient deviations from i.i.d. are
not small perturbations; they are structural features of the socio-technical
pipeline that produces “human labels” for complex, high-stakes model be-
havior.

First, independence is routinely violated. In deployed workflows, raters
are trained on shared rubrics; they consume overlapping context; they in-
fluence each other through discussion boards, exemplars, and institutional
defaults; and they are often recruited from correlated populations. Even
absent explicit coordination, shared priors and shared failure modes gener-
ate intra-class correlation: if a query is phrased in a misleading way, many
raters will err together. From a statistical perspective, the effective sample
size can be far smaller than the nominal panel size. Moreover, correlation
is not merely an inconvenience; it can be endogenous to the adversary. If a
model (or a strategic prover) can choose which questions to ask and how to
frame them, it can steer attention toward ambiguity where human judgments
are most correlated and least reliable, making naive audits systematically
overconfident.

Second, unbiasedness is routinely violated in ways that are well mod-
eled by contamination rather than by mean-zero noise. Some fraction of
ratings may be careless, rushed, or systematically biased by ideological or fi-
nancial incentives; some may be adversarial (e.g. a compromised rater pool,
prompt-injected annotator instructions, or a “brigading” event); and some
may simply reflect distribution shift, where the rubric does not apply. If
we insist on modeling all of these as i.i.d. noise, we implicitly assume that
errors cancel out in expectation. In practice, the oversight failure modes we
fear are precisely those where errors do not cancel: a small coalition can
drive the estimate by a constant amount, or a shared misunderstanding can
flip the sign of the decision. This motivates robust statistics: we would like
estimators whose performance degrades gracefully with an explicit contam-
ination rate e, rather than collapsing once a small number of samples are
adversarial.

These observations force a reframing. The object we actually need from



humans in a scalable oversight stack is not an omniscient ground-truth oracle,
and not even a perfectly calibrated probability estimate. Instead, we need a
bounded-cost auditing primitive: a procedure that, given a single contested
subclaim in a larger computational argument, can probabilistically distin-
guish “the prover’s claim is meaningfully wrong” from “the prover’s claim
is approximately right,” despite the fact that the human evidence is noisy,
correlated, and partially corrupted. This is the gap between labeling and
verification. Labeling asks humans to answer the whole question; verifica-
tion asks humans to test a targeted vulnerability in a purported reasoning
trace.

Robust debate is attractive because it turns verification into a game with
a single point of empirical contact. The high-level idea is to force a powerful
agent A that claims “the computation is correct” to expose intermediate
probabilistic assertions, while an opposing agent B is incentivized to locate
a step where A’s assertion diverges from reality. The verifier V' does not need
to inspect the full computation; it needs only to conduct a one-shot audit
at the disputed step. Economically, this matches how oversight is actually
budgeted: human attention is the scarce resource, and we can afford to spend
it only once per task (or at most a constant number of times), even as the
model’s internal reasoning trace becomes arbitrarily long.

The obstacle is that the classical analysis of such protocols typically re-
lies on Chernoff-style concentration at the audit step: if the verifier draws
m independent samples from an oracle and takes the empirical mean, then
with high probability the estimate is close to the truth. Once we leave the
i.i.d. world, that inference no longer holds. Correlation inflates variance, and
contamination introduces bias. If we continue to use the empirical mean any-
way, a strategic prover can exploit the gap: it can craft disputed steps whose
true conditional probability p sits near the verifier’s acceptance threshold
and then rely on the audit’s miscalibration to slip through. This is a safety
issue, not a technicality, because the entire point of the protocol is to make
it expensive for the prover to lie; a fragile audit statistic reopens the attack
surface.

Our approach is to explicitly separate two roles that are often conflated:
(i) the debate protocol, which is a complexity-theoretic reduction that says
“if you can accurately check these local probability claims, then you can ver-
ify the global computation”; and (ii) the human aggregation rule used in the
audit, which is a statistical component that says “given m noisy ratings, we
can estimate the local probability claim to tolerance 7.” Once separated,
we can robustify (ii) without changing the conceptual structure of (i). Con-
cretely, instead of treating the human panel as i.i.d. draws, we model it as
a mixture of an uncorrupted process and an adversarial process, with a de-
pendence parameter capturing variance inflation. We then plug in a robust
mean estimator (e.g. median-of-means) whose deviation guarantees degrade
as O(y/x/m + ¢€) rather than O(1/y/m). The key point is not the specific



estimator, but the existence of an estimator with a clean tradeoff: a finite-
sample bound that is explicit in € and x, and therefore can be wired into the
protocol’s completeness and soundness constants.

Why is this enough? The debate protocol only needs the audit to succeed
on the single step where B chooses to abort. If A is honest, it can arrange
that all reported probabilities are approximately correct, and then even a
noisy audit will tend to accept. If A is dishonest, B can hunt for a step
where A’s reported conditional probability is off by a margin. The verifier’s
audit, if robust, will detect such a deviation with high probability provided
the margin exceeds the audit tolerance 7 plus the irreducible contamination
term O(e). Thus, robustness buys us a quantitative statement: we can
maintain a constant completeness—soundness gap as long as € is below a
constant threshold and the effective sample size m/x is large enough. This
is the sense in which robust debate is an auditing primitive: it converts an
untrusted, strategic computation into a single statistical test whose operating
characteristics we can calibrate.

This framing also makes the governance implications clearer. In many
proposed oversight deployments, we are not trying to “prove correctness” in
the mathematical sense; we are trying to create a credible deterrent against
strategic misrepresentation by highly capable models and their operators. A
protocol with a constant number of human ratings per task is not merely
an asymptotic curiosity: it is the difference between an oversight mechanism
that can be integrated into routine model evaluations and one that collapses
under scale. At the same time, the formalism reveals the safety tradeoff.
If contamination is too high (e.g. a compromised panel) or dependence is
too strong (e.g. all raters share the same blind spot), then no single-step
audit can reliably distinguish truth from falsehood at constant cost. Robust
debate does not eliminate the need for institutional controls on rater quality;
it clarifies what those controls must achieve in quantitative terms.

Finally, we should be explicit about what this introduction does not
claim. We are not assuming that humans can answer arbitrarily complex
questions correctly; rather, we assume that the audited query can be pre-
sented in a way that elicits a meaningful binary judgment with some stable
success probability p(z). We are also not claiming that correlation and con-
tamination are the only pathologies; framing effects, strategic ambiguity,
and adversarially chosen queries can all break naive pipelines. Our goal is
narrower: to replace a brittle i.i.d. assumption with a deployment-motivated
model that captures two dominant failures (dependence and corruption) and
to show that, under that model, the debate protocol retains a constant-gap
guarantee at constant human cost when parameters are favorable. The next
section will recall the baseline protocol structure and highlight exactly where
the classical Chernoff argument enters, so that the robust replacement is
transparent rather than magical.



2 Background and baseline: stochastic doubly-efficient
debate

We now recall the baseline “stochastic doubly-efficient debate” template (as
in the source) in the idealized setting where the verifier can query the oracle
O directly and obtain independent samples. Our goal in this section is not
to re-prove the full theorem, but to isolate (a) the protocol structure that
reduces global correctness to a single local probability check, (b) the exact
point where a Chernoff/Hoeffding argument is invoked, and (c) why a K-
Lipschitz stability condition is the right interface between the complexity-
theoretic reduction and the statistics of the audit.

2.1 From a probabilistic oracle computation to local condi-
tional probabilities

Fix an input = of length n, and let M be a time-T'(n) probabilistic oracle
Turing machine deciding L. One can think of an execution of M©(z) as
producing a transcript

he = (r<i, 2<t,0<t)

consisting of (some encoding of) internal random coins r, oracle queries z,
and oracle replies 0o € {0, 1}, revealed over time. The key object for the
debate is the Doob martingale of conditional acceptance probabilities:

pe = Pr[M°(z) =1|h], t=0,1,...,T,

where hg is empty and pp € {0, 1} is the realized output bit once the entire
transcript is fixed. Intuitively, pg is the quantity we ultimately care about
(the acceptance probability of M on z), while each increment p; — p;—1 is
a local update induced by either (i) revealing a fresh random coin or (ii)
revealing an oracle answer to some query z;.

The debate protocol can be read as a mechanism that forces a powerful
prover A to expose (approximations to) these p;’s as the computation un-
folds, while giving an opposing prover B the ability to “zoom in” on a specific
time ¢ where A’s asserted local update is inconsistent with the true oracle
behavior. The verifier V itself does not try to recompute p;; it only needs
the ability to audit one contested local claim.

2.2 Protocol skeleton: sampling a trajectory and allowing a
single abort-audit

At a high level, the baseline protocol proceeds along a single sampled trajec-
tory of the computation, maintaining the invariant that if A is honest then
the distribution of the transcript matches that of M (z). One convenient
way to describe the interaction (suppressing some engineering details from



the source, such as discretization and coin-flipping to prevent A from biasing
randomness) is:

1. For each round ¢, A outputs a claimed conditional probability p; € [0, 1]
for the next stochastic event relevant to the unfolding transcript (e.g.
the probability that the next oracle reply equals 1, conditional on the
current history, or the probability that the computation accepts given
a branch choice).

2. Using public randomness (or a standard coin-flipping subroutine with
A), the verifier realizes an outcome a; € {0,1} that is supposed to
be distributed as Bern(p;). This outcome is appended to the public
transcript, and the parties proceed.

3. The challenger B monitors the transcript. At any time ¢, B may abort
and point to the current step as the one to audit. The protocol then
terminates after a single audit. If B never aborts, the verifier outputs
the final realized bit ap, which (under honesty) is coupled to M’s
output.

Two features matter for later robustness. First, there is at most one em-
pirical contact with the oracle: the single audit triggered by B’s abort. Sec-
ond, the verifier is “doubly-efficient” in the sense that it does not need to sim-
ulate M end-to-end; the source protocol includes a cross-examination /localization
mechanism ensuring that, when B aborts, the disputed claim can be reduced
to an explicit oracle query string z of length [, together with a well-defined
target probability p(z) = Pr[O(z) = 1] that the verifier can estimate by
repeated oracle calls. This is where the 6(l log T') bookkeeping in the ver-
ifier running time comes from: the verifier only needs to index into the
computation and extract the relevant local query/step, not re-run the full
computation.

2.3 Where the Chernoff bound enters in the ideal-oracle
analysis

In the ideal baseline, the audit is conceptually simple. Suppose B aborts at
a step whose correctness reduces to the claim

Pt = P,

where p; is, after localization, a conditional probability determined by a
single oracle query z (or a constant-size gadget of such queries). The verifier
samples the oracle m times on that same z,

0(z)M,...,0(z)"™ ~ iid. Bemn(p(z)),



and forms the empirical mean

The verifier then compares p to p; with a tolerance threshold 7 > 0, accepting
the disputed step if [p — p¢| < 7 and rejecting otherwise.
The only probabilistic estimate needed here is the standard concentration
guarantee
Pr (|ﬁ —p(2)| > 7') < 2exp(—2m7?),

or an equivalent Chernoff/Hoeffding bound. Choosing
m = O(r *log(1/5))

ensures that, with probability at least 1 — §, the verifier’s estimate is 7-
accurate. In the baseline soundness argument, this implies: if A reports a
value p; that is wrong by more than (roughly) 27, then with probability 1—¢
the audit detects it and rejects. Conversely, if A is honest, the audit accepts
except with probability . Thus, the statistical content of the baseline pro-
tocol is entirely encapsulated in a one-shot concentration inequality for an
empirical mean under i.i.d. sampling.

This is precisely the point of fragility that motivates our later evaluator
model: once samples are correlated or partially adversarial, p may no longer
concentrate at the claimed O~(m*1/ 2) rate, and the entire deterrence story
(“lying triggers an abort which triggers a reliable audit”) can fail.

2.4 Why K-Lipschitzness is the right stability condition

The other key interface is the K-Lipschitz condition on M at the oracle
O. Informally, K-Lipschitzness says that small perturbations in the oracle’s
response probabilities cannot change M’s overall acceptance probability by
more than K times the size of the perturbation. This is a stability require-
ment: it rules out computations where an exponentially amplified depen-
dence on a tiny probability discrepancy makes local auditing meaningless.

Operationally, Lipschitzness is what allows the debate to tolerate approx-
tmate probability checking. The source protocol discretizes claimed proba-
bilities onto a grid of resolution about 1/d (with d = ©(K)), and sets an
audit tolerance 7 = ©(1/d). The reason is that, if every audited local claim
is correct up to *+7, then the induced deviation in the global acceptance
probability is bounded on the order of K7, which becomes a constant once
we take 7 = O(1/K). In other words, the protocol only needs to distinguish
“local error smaller than 7”7 from “local error larger than 7”; it is not trying
to recover probabilities to vanishing precision.

This yields the characteristic quadratic sample scaling in the audit:

m = O(r *log(1/0)) = O(K?log(1/s)).



Crucially, because there is only one audit, this K? factor is the entire hu-
man/oracle sampling cost, independent of the machine’s running time 7.
The complexity-theoretic reduction buys us the fact that we never need to
union-bound over T audits; the stability condition buys us the fact that we
do not need to set 7 to something like 1/7.

2.5 Completeness and soundness intuition: why one audited
step suffices

Finally, we briefly summarize the game-theoretic intuition for why a single
audited step is enough to obtain a constant completeness—soundness gap in
the ideal model. If A is honest, then (up to discretization) the transcript
distribution matches the true stochastic process of M (z), so the final bit
ar has essentially the right acceptance probability, and any audit B triggers
will pass except with probability §.

If A is dishonest and aims to shift the verifier’s acceptance probability
by a constant amount, then (by a hybrid/telescoping argument along the
martingale of conditional acceptance probabilities) there must exist some
step where A’s claimed local conditional probability is off by 2(1/K), i.e. by
more than the tolerance scale 7 = ©(1/K). The role of B is to locate such
a step and abort there. Once B aborts, Chernoff concentration ensures the
verifier’s audit test reliably distinguishes truthful from sufficiently untruthful
reporting. Thus the strategic equilibrium is that A is incentivized to stay
within the allowed tolerance everywhere, because any significant deviation
can be singled out and empirically falsified at bounded cost.

This pinpoints the exact dependency we will exploit next: the baseline
proof only needs a guarantee of the form “the audit statistic p; is within 4+7 of
the true p; with probability 1—4§.” In the i.i.d. oracle world, Chernoff provides
this immediately for p; = p. In the oversight world we care about, we must
instead earn an analogous guarantee under contamination and dependence,
which is the purpose of the evaluator model introduced in the next section.

3 A clean evaluator model: contamination and de-
pendence

To robustify the audit step, we need a statistical interface that is (i) faithful
to how human judgments fail in practice, yet (ii) simple enough to yield finite-
sample guarantees that can be plugged into the existing debate reduction.
We therefore model the “oracle” not as an algorithm but as a panel process
that returns multiple noisy binary judgments about the same query. The
key move is to separate two qualitatively different deviations from the ideal
i.i.d. Bernoulli model: a small adversarial or arbitrarily biased fraction of
ratings (Huber contamination), and correlation among the remaining ratings



(dependence inflation / design effect).

The human-panel oracle O. Fixa query string z € {0,1}!. Under the
ideal stochastic oracle O, the verifier would observe a draw in {0,1} with

success probability
p(z) = Pr[O(z) =1].

In the deployment setting we care about, the verifier instead issues z to a
panel of m human raters (or, more generally, to m noisy evaluation channels)
and receives binary ratings

O(2) = (X1(2),..., Xm(2)) € {0,1}™

We interpret X;(z) = 1 as “rater i endorses the event whose probability
is p(z)” (e.g. “the correct oracle reply is 1”). The verifier will aggregate
these m bits into an estimate p(z) of p(z) during the single audit. Because
the protocol performs at most one audit, it is sufficient—and conceptually
clean—to model the distribution of O(z) for a fized audited query z, without
committing to a full joint model across many queries or time steps.

Huber contamination ¢: a worst-case fraction of arbitrary ratings.
The first failure mode is that some ratings may be uninformative or strate-
gically manipulated. This includes overt adversarial behavior (malicious
raters, coordinated brigading, compromised accounts), but also effectively
adversarial artifacts (systematic prompt injection into the evaluation inter-
face, labelers misunderstanding the rubric, or a tooling bug that flips out-
puts). We model this using the standard e-contamination (Huber) model,
per query:
Xi(z) ~ (1 —=¢9)Yi(z) + €Zi(2),

where Y;(z) € {0,1} is the latent “clean” rating for rater i, and Z;(z) is an
arbitrary {0, 1}-valued draw whose distribution can depend on z and on i.
Equivalently, for each ¢ there exists an arbitrary Q. ; € A({0,1}) such that

Xi(z) ~ (1—¢)Bern(p(z)) + Q...

This is a deliberately pessimistic model: the contaminated samples need not
be mean-zero noise, need not be independent, and can be chosen in a way
that attempts to pass the audit. In return for this pessimism, we get a clear
and interpretable residual term in our estimation guarantees: no estimator
can generally identify p(z) to accuracy o(e) under e-contamination, so an
O(e) additive slack is information-theoretically the right target.

Two practical clarifications are useful. First, € is not necessarily the
literal fraction of “bad people” in the pool; it is a bound on the fraction of
ratings that behave arbitrarily on the audited question. Second, we allow
Q. to vary with z, since some tasks are more confusing or more attackable

10



than others; the protocol and analysis only require a uniform upper bound
€ over the class of audited queries.

Dependence inflation y: effective sample size under correlation.
Even when raters are non-adversarial, their judgments are rarely indepen-
dent. Shared training, shared cultural priors, common failure modes induced
by the wording of z, and even real-time coordination can induce positive cor-
relation. If we naively treated X;(z),..., X;n(2) as i.i.d., we would overstate
confidence and potentially make the audit brittle.

We therefore parameterize correlation by a single design effect x > 1 that
upper-bounds the variance proxy of sums of the clean components. Formally,
writing Y;(z) ~ Bern(p(z)) for the latent uncorrupted ratings, we assume a
sub-Gaussian moment bound: for all A € R and all subsets S C [m],

Bexp(A Y ((2) —p(2) < exp(MI),

€S

When x = 1, this is consistent with the usual i.i.d. sub-Gaussian behavior
of bounded Bernoulli variables. When x > 1, it asserts that concentration
is worse by a factor \/x, which can be read as an effective sample size m/x.
This single-parameter summary is exactly what we need downstream: the
audit estimator’s deviation term will scale like y/x/m rather than 1/y/m.

We emphasize what this assumption is and is not. It is not a claim that
ratings follow a Gaussian model, nor that dependence takes a specific form;
it is an upper bound on exponential moments of sums, which is the minimal
structure required for high-probability bounds. It also cleanly decouples
from contamination: Yy governs the concentration of the clean part, while
governs the magnitude of worst-case bias we must tolerate.

Interpretable special cases. The (g, ) interface is meant to be oper-
ational. Several common panel pathologies can be translated into these
parameters.

(1) Independent panel with occasional label noise. If each rater independently
produces Y;(z) ~ Bern(p(z)) and a fraction € of ratings are arbitrarily cor-
rupted (e.g. random clicks, spam), then x = 1. This recovers the familiar
i.i.d. setting up to an additive O(g) bias floor.

(2) Clustered panels / shared latent bias (intra-class correlation). Suppose
raters are drawn from clusters (e.g. the same contractor team, the same
region, or the same moderation community), and within each cluster judg-
ments are positively correlated because they share a rubric interpretation.
A classical approximation is that, for the clean components, the pairwise
correlation within a cluster is p > 0 while different clusters are nearly in-
dependent. If the typical cluster size is s, then the variance of the sample

11



mean inflates by roughly
X ~ 1 + (S - 1)p7

the standard design-effect formula from survey sampling. This makes the
governance lever explicit: diversifying across clusters (reducing s) or reducing
shared bias (reducing p) improves x and therefore reduces the number of
ratings m needed for a reliable audit.

(3) Drifting raters / temporally correlated evaluations. In some oversight
pipelines, the m “panel” ratings are not collected simultaneously; they are
accumulated over time, possibly with rater reuse. Fatigue, learning, or mood
can create dependence across a single rater’s outputs. Even if each individual
rating is marginally unbiased, positive temporal correlation again inflates the
variance of the average. Our x parameter can be read as capturing the worst-
case impact of such drift on concentration for the particular audited query,
without requiring a full time-series model.

(4) Strategic contamination and partial capture. If an adversary can influ-
ence a bounded fraction of ratings (e.g. by inserting compromised evaluators
into the pool, or selectively attacking some of the tasks), then e captures
this directly. Crucially, our model allows the contaminated ratings to be co-
ordinated and adaptive to z, which matches realistic red-team threat models
for evaluators.

Why these parameters align with the debate reduction. The debate
protocol needs only a one-shot guarantee: when an audit is triggered on
some z, the verifier can estimate p(z) to within tolerance 7 with failure
probability at most §, and can still detect a prover’s misreporting if it exceeds
the tolerance by a constant factor. The (e,x) model is tailored to yield
exactly this kind of bound with the right qualitative tradeoffs:

estimation error ~ O(\/X/m> + O(e),

so that increasing panel size improves only the stochastic term, while the
contamination term imposes a residual bias floor. In particular, because
the protocol’s tolerance 7 is set on the order of 1/K, we should expect a
deployment constraint of the form ¢ < 1/K: when the computation is more
Lipschitz-sensitive, even a small adversarial bias in the audit can be amplified
into a nontrivial completeness—soundness loss.

In the next section we turn this interface into a concrete tool: robust esti-
mators (median-of-means and related variants) that achieve high-probability
deviation bounds under e-contamination and sub-Gaussian dependence infla-
tion y, with explicit finite-sample scaling suitable for the protocol constants.
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4 A robust estimation toolkit for the audit: median-
of-means and trimmed means

When the challenger aborts, the verifier must estimate a single Bernoulli
mean p(z) from the panel bits Xi(z),..., X (2) under the (g, x) interface.
Since the overall debate reduction only ever invokes one audit, we can treat
the statistical problem as one-shot: given m dependent-and-contaminated
samples in {0, 1}, return p(z) such that, with probability at least 1 — 4§,

|p(2)—p(2z)| < (stochastic term) + (contamination term) ~ O(\/Xlog(l/cS)/m) + O(e).

This section records two off-the-shelf estimators that achieve exactly this
structure with explicit finite-sample constants. We present them in a form
tailored to the debate audit: bounded {0, 1} observations, sub-Gaussian con-
centration for the clean component with variance proxy x, and Huber con-
tamination that creates an irreducible O(e) bias floor.

Notation for a fixed audited query. Fix the audited query z and write
p = p(2), X; = X;(2), Vi := Yi(z). Thus Y; € {0,1} has mean p and
satisfies the dependence inflation bound summarized by x, while X; is the
possibly contaminated observation. We suppress z throughout.

4.1 Median-of-means (MoM): a robust estimator with clean
constants

The median-of-means estimator uses coarse-graining to isolate the effect of
outliers. Intuitively, averaging within blocks controls variance (even under
dependence inflation x), and taking a median across blocks prevents a mi-
nority of corrupted blocks from dominating the estimate.

Definition (MoM estimator). Choose an integer g > 2 (the number of
blocks) and let b := |m/g| be the block size. Partition [m] into g disjoint
blocks By, ..., B, of size b (ignoring at most m — gb leftover samples). For
each block j, compute the block mean

= 1
Xj= 5 Z Xi,
lGBj
and output
DPMoM = median(Xl, e ,X'g).

Operationally, we can take the blocks to be formed by a fresh random permu-
tation of the m indices before computing block means. (This is not needed
for the clean sub-Gaussian concentration, but it is useful in deployments to
avoid systematic clustering of correlated raters into the same block.)

13



Clean concentration within a block. Under the dependence inflation
assumption for the clean draws Y;, each clean block mean concentrates like
a sub-Gaussian with variance proxy x/b. Concretely, for any threshold ¢t > 0
and any block Bj,

_ bt? _ 1
Pr(|V; —pl >t) < 2 (——), V.= - S v. 1
r([Y; —pl >1t) < 2exp f b; (1)
? J

This is the precise sense in which y acts like a variance inflation (or an effec-
tive sample size loss): compared to the i.i.d. case, we pay x multiplicatively
in the exponent.

How contamination enters. Because X; € {0, 1}, within any block B;
the difference between X and Y; is controlled by the fraction of contaminated
samples in that block. Let C; € {0, 1} be the latent indicator that sample i
is contaminated (so X; = Y; when C; = 0, and X; is arbitrary when C; = 1).
Then )
X5 =Yl < gzci =t aj.
i€B;

In particular, if o; < o for many blocks, then those blocks are within o of
the corresponding clean block means.

To turn this into a high-probability statement, we use the standard
Huber-mixture interpretation in which the contamination indicators are in-
dependent Bernoulli(e) across samplesﬂ

Finite-sample MoM bound (explicit constants). Fix a target failure
probability ¢ € (0,1/2). Set

2 m . .
g = [SIOgé—‘, b = {J7 P ‘= PMoM-
g

Assume b > 32 and € < 1/16. Then

Pr<]ﬁ—pl>4 2)(1051(2/5) + 85) < 4 (2)

The bound has the form we need downstream: a stochastic term scaling
as y/x/m (up to y/log(1/6)) and an additive contamination term linear in

If one instead allows an adversary to choose an arbitrary subset of em indices to cor-
rupt after seeing the block partition, then MoM still provides an O(g) guarantee (because
> FRCTIS €g), but controlling the number of heavily corrupted blocks requires either ran-
dom blocking hidden from the adversary or an explicit assumption that the contamination
indicators are not adversarially coupled to the partition. Since our intended deployment
model is a noisy panel rather than an adaptive worst-case scheduler, independent contam-
ination is a clean sufficient condition.
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e. The mild side conditions b > 32 and ¢ < 1/16 are consistent with our
intended regime: b is a constant once we choose m = O(xlog(1/4)), and
€ must be a small constant anyway to preserve a constant completeness—
soundness gap.

Proof sketch (what is doing the work). There are two ingredients.
First, by (1) with ¢ := 21/2x log(2/0)/m (which is on the order of y/x1log(1/5)/(gb))
most clean block means Y; lie within ¢ of p. Second, by a Chernoff bound
onaj =b! Ziij C; with C; ~ Bern(e), most blocks satisfy a; < 2e. On
the intersection of these two majority events, at least half the observed block
means X ;j lie within ¢ + 2¢ of p, hence their median p lies within the same
interval (up to constant slack absorbed into (2)).

4.2 Trimmed means: simpler aggregation and similar guar-
antees

Median-of-means is robust but can be slightly discontinuous as a function of
the data. A closely related alternative is to compute block means and then
take a trimmed mean across blocks, which can be easier to implement and
tune in practice (e.g. when we want a smooth dependence on samples for
monitoring).

Definition (blockwise trimmed mean). Asabove, partition into g blocks
and compute X7, ... ,Xg. Fix a trimming fraction o € (0,1/2). Let X(l) <
<X (¢ denote the sorted block means, and define

1 g—ng B
Dtrim =~ X
-2
9= 2leal ;{5

We will use @ = 1/4, which trims away the most suspicious quarter of blocks
on each side.

Finite-sample trimmed-mean bound (explicit constants). With g, b
as above and trimming o = 1/4, under the same side conditions b > 32 and
e < 1/16, we have

2xlog(2/9)

Pr(mtrim —p| > 6 + 128) < 0. (3)

The constants are slightly worse than MoM (reflecting the fact that trimming
averages the surviving blocks, so a few moderately biased blocks can still shift
the estimate), but the same qualitative tradeoff holds, and in practice the
trimmed mean is often numerically stable.
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4.3 A plug-in corollary for the audit threshold

The debate audit does not require vanishing estimation error; it requires
that, for a tolerance 7 (later set to ©(1/K)), the verifier can enforce

Ip—p| < 7 with probability at least 1 — 4,

up to an unavoidable O(e) slack. Combining (or (B)) with a simple
rearrangement yields the parameterization we will use in the protocol.

Corollary (sample size sufficient for 7-accuracy). Using median-of-
means, if

2
m > 128 y 772 logg and ¢ < 116’

then the audit estimate p satisfies
Pr(lp—p|>71) < 0.

Thus, once we fix the protocol’s tolerance 7, the required number of human
ratings scales as ©(x7~2?log(1/6)), matching the “effective sample size” in-
tuition and making explicit how correlation (x) and desired confidence (¢)
translate into audit cost. In the next section we instantiate 7 in terms of the
machine’s Lipschitz sensitivity K, and we show how this one-shot estimate
suffices to robustify the entire abort-audit step.

5 Robustified debate protocol: modifying the abort—
audit step

We now describe the protocol-level modification that turns the one-shot ro-
bust mean estimators from the previous section into a verifier that tolerates
(e, x)-imperfect human panels. Conceptually, nothing about the stochastic
doubly-efficient debate changes except what happens when the challenger
aborts: instead of treating the panel as an i.i.d. Bernoulli oracle and ap-
plying a Chernoff-style check, we (i) aggregate the m binary ratings with a
robust estimator (median-of-means or trimmed mean), and (ii) choose the
tolerance 7 and sample size m so that this robust estimate is accurate enough
at the single audited step.

5.1 What the verifier needs from the audit

Recall the role of the audit in the underlying debate reduction. At each
debate round ¢, prover A announces a conditional probability p; € [0,1]
for the next oracle bit in the stochastic simulation (formally, a conditional
probability of the form p; = Pr[O(z;) = 1 | transcript_,] for an implicit query
string z; determined by the transcript). Prover B monitors the transcript
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and can abort at some round t to force an audit of that specific conditional
probability claim.

At an abort round ¢, the verifier must implement the following predicate
with high probability: accept if |p; — p¢| is small, and reject if |p; — py] is
noticeably large. Importantly, we do not need to estimate p; to vanishing
error; we only need separation at a tolerance scale 7 that is later tied to
the discretization in the debate protocol. The previous section gives exactly
the right tool: for a single query z, from m bits X;(z),..., X;n(2) we can
compute p(z) such that, with probability at least 1 — 4,

5() — p(2)] < O(v/xTog(1/0)/m) + O).

The additive O(e) term is information-theoretically unavoidable under Huber
contamination, so we will explicitly budget for it in the audit threshold.

5.2 Protocol modification: robust audit rule

Fix an input instance x of length n. The robustified debate protocol is
identical to the source stochastic doubly-efficient debate up to the abort
rule, with the following replacement.

Robust audit subroutine at round ¢. Upon abort by B at round ¢, the
verifier:

1. Identifies the audited query string z; € {0, 1} implicit in the transcript
(the same query that the source protocol would audit at this point).

2. Queries the human-panel oracle O on 2z to obtain m binary ratings
Xl(Zt), ceey Xm('zt)

3. Computes a robust estimate p; := p(z;) using either:

o Median-of-means: partition the m indices into g blocks, average
within blocks, and take the median; or

e Blockwise trimmed mean: partition into g blocks, average, sort
the block means, and average after trimming a constant fraction.

We recommend median-of-means for analysis and trimmed means for
monitoring; either satisfies the required deviation inequality with the
same scaling.

4. Accept the audit if
Pt —pe|l < T, (4)

and reject otherwise.
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If no abort occurs, the verifier follows the source protocol and outputs the
final sampled bit ap.

This rule is deliberately minimal: it preserves the single-audit structure
that makes the debate doubly efficient, and it localizes all human imperfec-
tion into a one-shot statistical guarantee.

5.3 Setting the tolerance 7 via discretization and Lipschitz-
ness

The remaining question is how to set 7. In the source construction, prob-
abilities are discretized to a grid of width ©(1/d), where d is chosen pro-
portional to the Lipschitz constant K of the oracle machine M. Intuitively,
K-Lipschitzness says that if we perturb the oracle answers by a small amount
at each query, the overall acceptance probability of M (z) changes by at most
K times the perturbation magnitude. Thus, if we enforce that each audited
conditional probability is correct to within ©(1/K), then the induced per-
turbation on the final acceptance probability is O(1), which is exactly what
we need to maintain a constant completeness—soundness gap.
Concretely, we set

d = [cgK], T=
for absolute constants cg,c¢; > 0 chosen to match the source protocol’s
discretization and to leave slack for the robust estimation error. Since
d = O(K), this enforces 7 = ©(1/K). The only additional requirement
induced by human imperfection is that the contamination floor O(g) must
be below the tolerance scale: we will assume

e < T = O(1/K), (5)

for a sufficiently small absolute constant ¢, > 0. This is the operational form
of the condition “contamination must be small enough to be auditable.”

5.4 Choosing the panel size m and block count ¢

Given 7 and a target audit failure probability ¢ € (0,1/2), we choose m so
that the robust estimate p; is 7-accurate up to the contamination floor. Using
the plug-in corollary from the previous section (stated there with explicit
constants for median-of-means), it suffices to take

2
m > cmx7 2 log 5 (6)

for a large enough absolute constant c¢,,, together with the side condition
e <c.7 as in (f)). Substituting 7 = ©(1/K) yields the headline scaling

m = @(XK2 log(1 /5)),
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which is the only place where human cost enters the debate.
For median-of-means (or trimmed means on block averages), we also set
the number of blocks

g = [cglog?‘, b = \‘Z;J,

with ¢, a sufficiently large absolute constant so that a median argument
drives the failure probability down to §. In implementation, we can randomly
permute rater indices before blocking; this does not change correctness under
our y-sub-Gaussian assumption, but it reduces the chance that a correlated
subgroup is concentrated into a single block in deployments.

5.5 Why this is the only change we need

The core debate analysis (carried out in the next section) reduces complete-
ness and soundness to the existence of a single round ¢ where B can force an
informative audit if A deviates from truthful conditional probabilities. Our
robust audit rule preserves exactly that structure. The key property we will
repeatedly invoke is the following implication, which is immediate from the
deviation inequality for p; and a triangle inequality:

Audit separation guarantee (informal). If at an abort round ¢ the true
conditional probability is p; and A misreports by more than the estimator’s
error budget—namely if

|pr — pe| > 27+ O(e),

then with probability at least 1 — § the verifier rejects the audit because
|pt — pt| > 7. Conversely, if A is truthful up to 7 and e-slack, the verifier
accepts with probability at least 1 — 4.

This is precisely the “local soundness” condition that the source protocol
needs at the abort point, except that (i) we pay an additive O(e) degradation,
and (ii) we replace i.i.d. Chernoff tails by x-inflated concentration and a
robust estimator. Since the debate triggers at most one audit, we do not
need to union bound over many human queries; § can therefore be treated
as a protocol constant, and the total number of human ratings is ¢ = m up
to constant factors.

5.6 Complexity and deployment interpretation

The verifier’s running time increases only by the cost of computing p; from
m bits: median-of-means and trimmed means run in time O(m) (dominated
by sorting ¢ = ©(log(1/4)) block means if we implement trimming, or by
selecting the median). Thus the overall verifier time becomes

O(llogT +m) = O<llogT+xK2log(1/5)),
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and, critically, the human cost m is independent of the computation length
T.

From an oversight perspective, xy summarizes correlation and shared-
mode failure in the panel (a design effect), while € summarizes the irreducible
adversarial or systematically biased fraction. The protocol’s parameteriza-
tion makes the tradeoff explicit: if we can diversify panels to reduce y, we
reduce required m linearly; but if € is too large relative to 7 = O(1/K),
then no choice of m can recover a clean separation at the required tolerance
scale, and the debate’s constant gap necessarily collapses. The next section
formalizes this in the completeness—soundness theorem by propagating the
7-level audit guarantee through the stochastic debate induction.

6 Main theorem: completeness and soundness un-
der (e, x)-imperfect panels

We now state and prove the quantitative guarantee that the robustified
abort—audit rule suffices to recover a constant completeness—soundness gap
while keeping the total number of human ratings independent of the simu-
lated runtime 7". The high-level structure of the argument is unchanged from
the source stochastic doubly-efficient debate: we still reduce global correct-
ness of the debate outcome to the existence of a single round ¢ at which (i)
any meaningful misreport by A induces a local discrepancy in a conditional
probability claim, and (ii) B can force an audit at such a round. The only
new work is to show that our robust estimator-based audit instantiates the
same local predicate, up to an additive degradation proportional to € and 9.

Theorem (robust stochastic doubly-efficient debate). Fix an input
x € {0,1}", and let M be a time-T'(n) probabilistic oracle Turing machine
with query length [, which is K-Lipschitz at an ideal stochastic oracle O.
Suppose the human-panel oracle O satisfies the Huber contamination model
with rate € and the y-inflated sub-Gaussian dependence condition as speci-
fied in the enclosing scope. Consider the robustified protocol in which, upon
abort at time ¢, the verifier estimates p; = Pr[O(z;) = 1| transcript_;] by a
robust mean estimator p; from m panel ratings and accepts iff [p; — pi| < 7,
where 7 = O(1/K).

There exist absolute constants ¢y, C1,Cy > 0 such that if ¢ < ¢g/K and

2
m > CmXT_2 logg = @(XK21Og(1/5)),
then the protocol decides L with

rel — Pr[V = 1] > ——(Che—C59, x ¢ L — Pr[V = 1} < §+015+C’25,

ot W
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and the verifier runs in time 6([ log T'4+ m) while using at most ¢ = m total
human ratings.

6.1 Proof strategy: reduce to a single audited predicate

The source debate analysis can be viewed as an induction over rounds t =
1,...,T that compares two processes: (i) a “truthful” stochastic simulation
driven by the ideal oracle probabilities p;, and (ii) the transcript distribution
induced when A announces p; and the protocol samples the next bit a; using
Pt (together with the standard cross-examination steps that ensure p; is
binding). The key technical invariant is that if all conditional probabilities
are accurate on a discretization grid at tolerance 7, then the final acceptance
probability differs by at most O(K7), which we choose to be a sufficiently
small absolute constant by setting 7 = ©(1/K).

Thus, to preserve the source completeness—soundness gap, it suffices that
the abort—audit step implements a local correctness test: whenever |p; —py| is
noticeably larger than 7, an abort at round ¢ causes rejection with probability
at least 1 — 0; and whenever |p; — p;| is at most 7 (up to the unavoidable
e-bias), the audit accepts with probability at least 1 — §. This is exactly the
role played by Chernoff bounds in the i.i.d. oracle model, and it is exactly
what robust mean estimation restores under (e, x)-imperfect panels.

6.2 Step 1: local audit correctness with contamination and
dependence

Fix a round t at which B aborts, and write z; for the audited query de-
termined by the transcript. Let p; := p(z;) denote the ideal conditional
probability of the audited bit under O. The verifier forms p; from m ratings
X1(2¢), ..., Xm(z) using median-of-means (or an equivalent robust block-
wise estimator). By the robust mean estimation lemma stated earlier, for a
suitable absolute constant C' > 0,

Pr(1pe— il > C(V/xTog(2/0) fm +¢) ) <. (7)

Choosing m as in the theorem makes the stochastic term at most 7 (up to
constant factors), and our standing assumption ¢ < ¢o/K = O(7) ensures
the contamination floor is also within the audit slack budget. Concretely,
we can pick constants so that

C( Xlog(2/6)/m+€) < T
On this event, we have a clean triangle-inequality implication:

Dt —pe| > 21 = |pr—pi| >, (8)
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so the verifier rejects the audit with probability at least 1 — §. Conversely,
if |py — pt| < 7, then |py — pr| < 27 on the same good event, and by slightly
widening constants in the accept region (as the source protocol already does
via discretization slack), we obtain acceptance with probability at least 1—4.
The only substantive difference from the i.i.d. setting is that the “good event”
now costs § and its radius contains an irreducible O(e) term.

6.3 Step 2: plug the local predicate into the source induction

We now treat the robust audit guarantee as a black-box replacement for
the source “audit succeeds with overwhelming probability” claim. Since the
protocol performs at most one audit, we do not pay a union bound over
t; 0 enters only once, additively, and can be interpreted as a verifier-level
constant rather than something that scales with T

Completeness follows by exhibiting a polynomial-time A strategy A*
for x € L: namely, A* announces the discretized truthful probabilities p;
(rounded to the protocol grid of width ©(1/d) = ©(7)) and otherwise fol-
lows the source protocol. In the no-abort branch, the distribution of ar is
within O(K'7) total variation of the ideal simulation, hence yields acceptance
probability at least 3/5 after choosing constants in d = O(K). If B aborts,
then by construction |p; — p;| < O(7) for every ¢, so the robust audit accepts
with probability at least 1 — J, again up to discretization slack. The only
new degradation is that the truthful discretization must be wide enough to
absorb the unavoidable O(e) bias from ([7)); this is where the additive —Cie
term enters, and why we require ¢ < O(7) = ©(1/K) to prevent the local
test from becoming information-theoretically impossible.

Soundness is symmetric: for z ¢ L, the source analysis constructs a
polynomial-time challenger B* that monitors the transcript and aborts at
the first round ¢ where A’s implied conditional probability claim must deviate
from the truth by Q(7) in order to maintain the appearance of a globally
accepting computation. The existence of such a round is exactly what the
source induction proves, using the discretization and the K-Lipschitz bound
to argue that if all |p; — p| were small then the final acceptance probability
could not cross the constant gap. Once B* aborts at such a round, implies
the robust audit rejects with probability at least 1—9, except for the additive
slack due to e. This yields Pr[V = 1] < 2/5+ C1e + C26 after accounting for
the single audit-failure event and the same O(K ) discretization error.

6.4 Verifier complexity and the “constant-cost” interpreta-
tion

The verifier’s additional work beyond the source protocol is confined to the
one-shot computation of p; from m bits, which can be done in O(m) time
(partitioning plus median selection, or sorting g = ©(log(1/d)) block means).
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Hence total verifier time is 5(l logT + m), and total human ratings are ex-
actly ¢ = m, independent of T. From a deployment perspective, this is
the point at which the formalism reveals the safety tradeoff: we can buy
down correlation in the panel by lowering x (e.g. by diversifying rater pools),
thereby reducing cost linearly, but we cannot buy down € with more samples
beyond the additive floor. The protocol therefore cleanly separates two over-
sight failure modes—shared-mode dependence () and adversarial /systems-
level bias (£)—and makes explicit when each becomes the binding constraint.

Finally, we emphasize a limitation that will matter in governance settings:
the theorem guarantees a constant gap only under ¢ < O(1/K). When K
is large (high sensitivity of M to oracle perturbations), the required audit
tolerance T is correspondingly small, and even modest systematic bias in hu-
man judgments can swamp the audit signal. The next section formalizes this
intuition as a tightness result: beyond constant thresholds in & (or when x
effectively grows with task difficulty), any single-audit constant-cost scheme
must fail.

7 Tightness and limits: when constant-cost single-
audit oversight must fail

The previous section makes a strong claim: a verifier can certify an arbitrarily
long stochastic computation while paying for only a single, constant-sized
human audit. This is only plausible because the protocol reduces global
correctness to a local probability check with tolerance 7 = O(1/K), and
because median-of-means turns m noisy panel bits into an estimate p; that
is accurate up to y/x/m plus an irreducible e-bias. In this section we justify
that these are not merely artifacts of analysis: if the contamination rate ¢ is
too large, or if the dependence inflation x grows so that the effective sample
size is bounded, then any protocol that performs only one such audit with
O(1) total ratings cannot maintain a constant completeness-soundness gap
uniformly over all tasks.

7.1 Why ¢ creates an information-theoretic floor

At a high level, single-audit debate reduces to the following statistical prim-
itive. Conditioned on the transcript up to the abort time ¢, there is a fixed
query z and a fixed (ideal) Bernoulli parameter p; = p(z;). The verifier ob-
serves m binary ratings Xi(z¢),..., Xm(2¢) drawn from an (e, x)-imperfect
panel, and must decide whether A’s reported p; is within tolerance 7 of
p:. No matter what estimator or test we use, we cannot beat the minimax
distinguishability limits of contaminated Bernoulli samples.

A simple way to see the floor is to consider worst-case Huber contami-
nation with no dependence (set x = 1 for this argument). Fix two Bernoulli
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parameters p and p’ with |p — p’| < 2¢. Define contamination distributions
on {0, 1} by choosing

p—(1—-¢)p p—(1—e)p

Q(l) # Q/ (1) #

Y

3 9

i

which lie in [0, 1] precisely when |p — p/| < 2e. Then the two contaminated
marginals coincide:

(1—¢)Bern(p) +eQ = (1 —¢)Bern(p)) +eQ’.

Consequently, for every sample size m and every estimator p = p(Xy, ..., X;n),
the joint distributions of (X7, ..., X,,) under the two hypotheses are iden-
tical (in fact product-identical), and no procedure can reliably tell whether
the underlying ideal mean was p or p’. In particular, for any target accuracy
a < g, there exist p, p’ separated by 2« such that

inf sup Pr (\ﬁ—p\ > a) >
P Huber (¢)

N =

This demonstrates the qualitative tightness of the additive € term in robust
mean estimation: beyond constant factors, contamination behaves like an
unremovable shift in the parameter.

Two corollaries matter for our oversight setting. First, if ¢ > 1/2, then
by the same construction (taking p =0, p’ = 1) the contaminated marginal
can be made identical even when the ideal oracle answers are maximally
different; therefore no single-audit protocol with a bounded number of ratings
can maintain any nontrivial completeness—soundness gap across all inputs.
Second, even when ¢ < 1/2; any local predicate that attempts to certify
correctness to tolerance 7 must have 7 2 ¢ in the worst case. Since our
global reduction forces 7 = O(1/K), we obtain a necessary condition of the

form .
< = —
e < ecr ®(K>’

matching the theorem’s standing assumption up to constants. Intuitively:
when the simulated computation is highly sensitive (large K), the protocol
demands extremely fine-grained probability checking, and adversarial or sys-
tematically biased human judgments can swamp that signal even if we query
more people.

7.2 Dependence inflation and the collapse of effective sample
size

The second failure mode is not bias but correlation. The dependence pa-
rameter y enters our concentration bounds exactly as a variance inflation

(a design effect): the stochastic term in (7)) behaves like y/x/m rather than
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1/y/m. This scaling is also tight in the sense that, without further assump-
tions, x can render additional panelists almost useless.

To make this concrete, consider an exchangeable “copying” model at a
fixed audited query z: with probability p, all m raters output the same latent
draw Y ~ Bern(p) (perfect within-panel correlation), and with probability
1 — p they are i.i.d. Bern(p). Then the variance of the sample mean X is

Var(X) = p(1 —p) (1;1/) +p> ,

so once p is bounded away from 0, Var(X) = O(1) regardless of m. In the
language of design effects, x is on the order of 1 + (m — 1)p, so achieving
Vx/m < 1 requires p < 1/m. Said differently, if the panel is effectively
one shared latent opinion (because of common framing, common sources, or
outright coordination), then we do not have m independent bits of evidence;
we have O(1).

This yields an impossibility statement for constant-cost single-audit over-
sight: suppose we wish to distinguish p = 1/2 + v from p = 1/2 — v at
constant advantage. Under standard two-point testing lower bounds (e.g.
Le Cam’s method), the required number of effective independent samples
is (1/4%). Under dependence inflation, m panel ratings supply only m/x
effective samples, so any audit that succeeds with constant probability must
satisfy

In our protocol the relevant separation scale is v = ©(7), hence m =
Q(x772) = Q(xK?) is not merely sufficient but essentially necessary. There-
fore, if y is allowed to grow with task difficulty in such a way that yK? is
unbounded, then the “constant-cost” promise breaks: either the verifier must
increase m accordingly, or accept that the audit frequently cannot tell truth
from misreport.

7.3 Why Y can scale with T' in realistic deployments

The theoretical role of x is to summarize whatever dependence structure
remains after we choose a panel and a presentation format for z;. In de-
ployments, there are at least three reasons y may effectively scale with the
underlying runtime 7', even though the audit targets only one step.

First, query complexity can induce shared heuristics: as the audited step
becomes more abstract or underspecified, raters may converge on the same
superficial cue, increasing intra-class correlation. Second, selection effects
can couple rater errors across tasks: if the same pool of experts repeatedly
audits related queries, their shared background (and shared blind spots)
induces positive correlation that is hard to average out. Third, strategic
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dependence can arise under adversarial pressure: if there exist channels by
which raters can be influenced (common media narratives, coordinated cam-
paigns, or organizational capture), then many ratings can shift together,
again behaving like a large y even without explicit collusion.

These observations connect the mathematical limit to a governance im-
plication. The debate protocol by itself does not create independence; it
merely exploits it. If we cannot design oversight so that different ratings are
meaningfully de-correlated (small x) and not systematically biased (small ¢),
then there is no purely algorithmic fix that preserves constant human cost
while maintaining a constant correctness gap.

7.4 Takeaway for the next section

The theorem and the limits together give a crisp agenda for calibration. The
only way the single-audit idea remains economically attractive is if, in the
targeted domain, we can empirically bound (or actively control) both (i) the
contamination-like bias floor € relative to the required tolerance 7 = ©(1/K),
and (ii) the design effect x so that m = ©(xK?log(1/6)) is practically small.
The next section therefore turns from worst-case theory to measurement: we
specify clustered-rater generative models, estimate intra-class correlation and
map it to x, and numerically explore how audit size and error change as we
vary diversification, instruction design, and rater-pool structure.

8 Practical calibration and simulations (numerical):
clustered-rater models, mapping ICC to y, and
audit sensitivity

The previous section reduces “single-audit oversight” to two measurable quan-
tities: a bias floor (captured by €) and an effective sample-size collapse factor
(captured by x). What we do not get for free from the theory is a trustwor-
thy value of x (or €) for a given deployment. In practice, both parameters
are properties of a panel design (who we recruit, what we show them, how
we randomize prompts, and how we aggregate), not just properties of the
underlying task. This section therefore treats calibration explicitly as an
empirical-numerical step: we specify simple clustered-rater generative mod-
els that expose the relevant failure modes, show how to estimate intra-class
correlation (ICC) and translate it into a conservative y, and run sensitivity
analyses that convert measured (£, X) into audit sizes m and expected error.
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8.1 Clustered-rater generative models for a single audited
query

Fix an audited query z with ideal oracle parameter p = p(z). We want a
model family that separates (i) shared sources of variance (framing effects,
common heuristics, common misinformation) from (ii) idiosyncratic rater
noise, and then overlays (iii) adversarial or arbitrarily biased contamination.

A convenient abstraction is a two-level random-effects model on the latent
“uncorrupted” ratings:

0~P, V|05 Bemn(d), X~ (1—c)Y;+cZ,

where P, is a distribution on [0, 1] with mean p (capturing a shared latent
“panel state”), and Z; is arbitrary (capturing Huber contamination).
Two concrete special cases are useful in simulations.

Copying / common-shock model (exchangeable, interpretable ICC).
Let C ~ Bern(p) and Y ~ Bern(p). If C =1, set Y; = Y for all i (a per-

fect common shock); if C' = 0, draw Y; b Bern(p). This produces exact
exchangeability and an ICC equal to p for the latent Y; (up to the usual
p(1—p) scaling). It captures the extreme regime where correlation is caused
by “everyone using the same cue.”

Beta—binomial model (continuous shared uncertainty). Let 6§ ~
Beta(a, ) with E[#] = p. Then Y; | 6 are i.i.d. Bernoulli. This corresponds
to a softer shared effect: the panel collectively drifts toward optimism or
pessimism about the query, then individuals add independent noise. Writ-
ing u = p and o3 = Var(f), one obtains

Cov(V;, Yj) =05, Var(¥;) = p(1 — p),
and therefore an ICC (for the latent Bernoulli draws) of
Cov(Y;,Y;) 03

Var(Y;) p(l—p)

This p increases when shared framing dominates individual-level noise.

We emphasize that these are measurement models: they are not claims
about human cognition, but convenient ways to parameterize how quickly
additional raters stop helping.

8.2 From ICC to a conservative y

The analysis in the previous sections packages dependence into a design-
effect-like x that inflates concentration as if we had only m/y effective sam-
ples. In the common exchangeable case (a good first approximation when
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raters are drawn from a homogeneous pool under a shared prompt), x can
be tied directly to ICC.

If p denotes the ICC of the (uncorrupted) Bernoulli ratings, then the
variance of the sample mean satisfies the familiar identity

_ 1—
var(7) = M1 (1 4 1)),
Comparing to the independent case Var(Y) = pu(l — u)/m suggests the
mapping
x(m) = 1+ (m—1)p.

This is not merely algebraic convenience: it makes the core deployment lesson
explicit. When p is bounded away from 0, x(m) grows linearly with m, so
Vx(m)/m = +/p+ (1 —p)/m plateaus at \/p. No estimator can average
away a shared error mode.

For protocol parameter-setting, we recommend using a conservative x
derived from an upper confidence bound on p, evaluated at the intended
audit size m. If we target a tolerance 7, then the correlation plateau yields
an immediate feasibility check:

VP ST = pITh
If empirical calibration finds p > 72 for the current prompt and pool, then
increasing m cannot achieve the desired local accuracy, and the only remedies
are to (i) redesign the panel to reduce p (diversify, change framing, isolate
raters), or (ii) relax 7 (which in our setting is constrained by K), or (iii)
abandon single-audit constant-cost ambitions for that domain.

8.3 Estimating ICC (and thus y) from pilot audits

A practical calibration protocol is:

1. Collect pilot queries. Sample a set of representative audited-query
templates z from the intended application distribution (including “hard”
ambiguous cases, since they often drive correlation).

2. Run repeated panels. For each z, solicit ratings from multiple raters
across multiple pools (e.g. contractors, experts, geographically sepa-
rated groups), recording pool identity and minimal metadata needed
for clustering.

3. Fit a clustered binary model. For binary ratings, a mixed-effects
logistic model is often more stable than ANOVA-style ICC:

logit Pr[X,; = 1] = 8, + upool(i) + vi;

28



where u is a pool-level random effect (shared), and v; is an individual
random effect. One can then compute an implied ICC on the latent-
logit scale and translate it to an approximate probability-scale p by
simulation (parametric bootstrap).

4. Convert to x. Use p (or an upper confidence bound) to set x(m) =
1+(m~—1)p for the planned m, or more conservatively X = sup,,,<,,.... (1+
(m — 1)p) if m may vary.

Two cautions matter. First, ICC is often heterogeneous across query
types; using a single global x is safe only if it is pegged to a high quantile of
the observed ICC distribution. Second, contamination can inflate apparent
ICC if adversarial raters coordinate; this is not a nuisance but a signal that
the procurement process is failing in a strategically relevant way.

8.4 Numerical sensitivity: translating (¢, y) into audit sizes
and error

Given (&, X), the theorem-level guidance for audit sizing is
m ~ cX7 2log(2/d),

up to constants depending on the robust estimator and the precise depen-
dence model. Numerically, we care about three linked outputs: (i) the em-
pirical deviation Pr(|p — p| > 7) under the panel model, (ii) the audit test
power Pr(|p — p| > 7) when p is wrong by a margin, and (iii) the realized
completeness—soundness gap once these local events are plugged into the
global protocol.

A simple simulation harness for a fixed query proceeds as follows. Choose
p € [0,1] (typically p = 1/2 is worst-case for variance), choose a dependence
parameter (e.g. p in the copying model or («, ) in the beta—binomial), choose
¢ and a contamination strategy (e.g. flipping to maximize bias relative to p),
draw m ratings, compute p using (a) the sample mean and (b) median-of-
means with ¢ =< log(2/9) blocks, and record whether the audit would accept
for a given p.

Across such simulations, three robust qualitative patterns recur.

(1) Robust aggregation mainly buys protection against ¢, not against
p. Median-of-means (and similar estimators) sharply reduces the impact of
a small fraction of arbitrarily corrupted ratings, but once the dominant fail-
ure mode is a shared latent shift (high ICC), all estimators inherit the |/p
plateau. This matches the feasibility condition p < 72 above.
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(2) “More raters” exhibits diminishing returns when p > 0. Even
in the absence of explicit contamination, the marginal gain from increasing
m drops quickly as m exceeds O(1/p). This is the numerical face of x(m) =
1+ (m — 1)p: the effective sample size saturates near 1/p.

(3) Diversification acts like a structural reduction in y. If we sim-
ulate stratified panels where ratings are drawn from multiple pools with low
cross-pool correlation (e.g. each block of a median-of-means estimator draws
one rater per pool), the empirical concentration tracks a block-level design
effect rather than the within-pool ICC. This suggests that how we allocate
raters to blocks can be as important as the total m.

Operationally, these simulations let us produce domain-specific “audit
sizing curves™ for each query class, a map from (7,d) to the minimal m
achieving an empirical failure probability below J under conservative (e, p)
assumptions. These curves are the actionable bridge from the theoretical
audit bound to a budget and staffing plan.

8.5 What we should report before claiming “constant-cost”

Before moving to oversight design, we can state a minimal empirical bar for
making the constant-cost claim credible in a domain: we should be able to
(i) bound an effective ICC p (or directly x) for the intended panel design, (ii)
bound a contamination-like bias floor € via red-teaming and held-out gold
queries, and (iii) demonstrate by simulation (or live fire drills) that the chosen
robust estimator with the chosen m achieves the intended local tolerance
T = O(1/K) at the target §. The next section uses these requirements
to derive concrete procurement and process implications: how to engineer
independence, how to standardize robust aggregation, and how to integrate
calibrated audits into training and governance workflows.

9 Implications for oversight design: procurement,
aggregation standards, and training integration

The calibration story in Section [§] has a concrete operational moral: if we
want “single-audit” oversight to scale, then we must treat independence and
bias control as first-class engineered resources. In our formalism, these re-
sources appear as the effective dependence inflation y and the contamination
rate €. In deployment, however, x and € are not abstract constants; they are
functions of procurement (who we hire), workflow (how we isolate and incen-
tivize them), and interface (what context we show). This section translates
the theorem’s knobs into process requirements, and flags the main failure
modes when those requirements are not met.
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9.1 Panel procurement as an independence engineering prob-
lem

The most important design lesson is that “more raters” is not the same as
“more information.” Once correlation is present, the marginal value of addi-
tional ratings can collapse, and the relevant objective becomes minimizing y
subject to budget and latency constraints. Practically, this pushes us toward
diversified panels rather than larger homogeneous pools.

A procurement pipeline that targets low x typically includes:

e Multiple pools with low shared context. We want raters whose
errors are not driven by a single shared artifact (one training document,
one subreddit, one internal style guide). Using multiple vendors, ge-
ographies, and professional backgrounds is not “fairness theater” here;
it is a concentration bound.

e Isolation and non-communication controls. If raters can coordi-
nate (or are exposed to the same justifications generated by the model),
correlation increases and may become strategic. Operationally, this
means time-windowed tasks, no shared chat, and strict controls on
what model-produced artifacts are shown.

e Prompt randomization and counterbalancing. Small framing
changes can dominate outcomes for ambiguous queries; randomizing
presentation order, paraphrasing, and hiding irrelevant metadata is
often the cheapest way to reduce common shocks.

¢ Rater rotation and freshness. Repeated exposure can create shared
heuristics and brittle shortcuts. Rotating raters across tasks and keep-
ing a “fresh” reserve pool reduces the chance that y drifts upward over
time.

These steps also interact with €. In our model, ¢ captures arbitrary
contamination: adversarial raters, compromised accounts, or persistent sys-
tematic biases not covered by the benign dependence model. Procurement
must therefore include adversarial thinking: background checks where ap-
propriate, rate-limiting and anomaly detection, and continuous red-teaming
to estimate a conservative £ (e.g., via hidden gold questions and canary
tasks). A key governance takeaway is that if we cannot bound e away from
the information-theoretic limit (e.g. £ ~ 1/2), then no amount of clever
aggregation will save a constant-cost audit.

Finally, we can exploit the structure of robust estimators when allocating
raters. Median-of-means (MoM) partitions ratings into blocks; if we can
assign raters so that each block draws from distinct pools, then the relevant
dependence becomes closer to a block-level design effect. Put differently: the
procurement goal is not merely “low within-pool ICC,” but “low cross-block
correlation,” because the protocol’s test statistic is block-robust.
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9.2 Robust aggregation standards as a safety interface

Once we accept that audits are statistical hypothesis tests under contamina-
tion and dependence, we should standardize the estimator and its reporting
in the same way safety-critical fields standardize test procedures. The veri-
fier’s decision rule depends on the event

‘ﬁt _ﬁt| Z T,

so the aggregation pipeline should specify, at minimum: (i) how p; is com-
puted, (ii) how blocks are formed, (iii) how missing or low-quality ratings
are handled, and (iv) what auxiliary diagnostics are logged.

A reasonable “default standard” consistent with our guarantees is:

e Estimator: MoM with g =< log(2/6) blocks, fixed publicly by policy,
and block size b = m/g chosen to satisfy the constant requirements of
the robust mean lemma.

e Block construction: stratified by pool where possible (one rater per
pool per block), and randomized using an auditable randomness source
to prevent either prover from steering which raters land in which block.

¢ Robustness checks: log the empirical block means and their disper-
sion; a high between-block spread is an early warning for either con-
tamination (large ¢) or shared ambiguity (high y). These diagnostics
are also the raw material for updating ¥ online.

We emphasize that standardization is part of the security model. If dif-
ferent teams choose different aggregators ad hoc, the system creates attack
surface: the agent can learn which variants are easiest to manipulate and
route tasks accordingly. In economic terms, aggregation is a commitment
device that shrinks the strategic space.

There is also a subtle but important deployment constraint: robust es-
timation mitigates outliers, not shared shifts. If a query template system-
atically induces a common wrong intuition (high ICC), then MoM will con-
fidently return the wrong answer. This is exactly the regime where the
feasibility condition p < 72 fails. Operationally, the remedy is not “increase
m,” but “change the prompt / panel design” or “escalate” (e.g. expert review,
multi-step deliberation, or abandoning single-audit for that task class).

9.3 Integrating calibrated audits into reward models and
training loops

A natural next step is to use audited outcomes not only for one-off verifica-
tion, but also as training signal—for example, training a reward model (RM)
to predict p¢, or training the agent to propose actions that pass audits. This
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can reduce audit frequency over time, but it also introduces new feedback
loops.

From our perspective, the key principle is: audits are a stochastic oracle
with known failure modes. If we train directly on audit outcomes without
preserving independence, we risk “teaching to the test”: the model adapts to
rater quirks, increasing effective x (shared exploitation) and potentially in-
creasing ¢ (if compromised raters become focal). Concretely, we recommend:

e Hold-out oversight: maintain a separate, rotating hold-out panel de-
sign for evaluation and for the occasional “ground truth” recalibration

of (5,%):

e Distribution shift monitoring: as the model improves, it may seek
edge cases where humans correlate strongly. Monitoring the time series
of ICC proxies and block-dispersion diagnostics can detect this.

e Conservative label use: treat p; as a noisy label with a bias floor. In
particular, if the theoretical error is O(y/x/m + ¢€), then downstream
learners should incorporate this as label uncertainty, rather than over-

fitting.

A useful framing is to view audits as scarce, high-integrity data used to
calibrate cheaper automated checks. In governance terms, this suggests a
two-layer control system: automated monitoring for breadth, and calibrated
human audits for depth, with clear triggers for escalation when the auto-
mated layer drifts.

9.4 Open problems and likely breaking points

Several gaps remain between the clean theorem statement and a robust end-
to-end oversight system.

Strategic dependence and endogenous y. Our dependence control is
exogenous; in reality, a capable model may actively create correlation (e.g.
by generating misleading but compelling rationales that many raters adopt).
Understanding protocols where y is adversarially influenced is a priority.

Online estimation with incentives. We sketched pilot-based estimation
of ICC and contamination, but deployments are nonstationary. We need
sequential methods that update ¥ and & under strategic behavior, while
preventing Goodharting against the estimator itself.

Beyond single-audit: adaptive and multi-step audits. Single-audit
protocols are attractive because they bound human cost, but they are brittle
when p is large or when K forces 7 to be small. Characterizing the optimal
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tradeoff between “one expensive audit” and “a few cheap audits” (and how
this composes with the debate transcript) remains open.

Task-dependent Lipschitzness and interface design. The parameter
K is a property of the machine and oracle interface, not just the task. De-
signing oversight query languages that reduce effective sensitivity (smaller
K) could be as impactful as improving panels.

Overall, the safety tradeoff is now explicit: constant-cost oversight is fea-
sible only if we can buy sufficiently low x and e through procurement and
process. Where we cannot, the correct response is not to overclaim theoreti-
cal scalability, but to switch regimes: increase audit depth, change the oracle
interface, or restrict deployment to domains where calibrated independence
is achievable.
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