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Abstract

We reinterpret doubly-efficient Al debate protocols as economic
compliance mechanisms. Building on the observation that debate can
concentrate human judgment on a constant number of locally checkable
steps, we model debate as generating an endogenous suspicion signal
(abort/disagreement) that triggers expert audit. A regulator commits
to a mixed audit policy: a random audit probability and a determin-
istic audit when suspicion is raised, with penalties upon conviction.
In a tractable repeated principal-agent model with private tempta-
tion shocks, we characterize equilibrium misbehavior rates and derive
closed-form conditions under which misbehavior is driven below a tar-
get § at constant expected expert-review cost per task—independent
of task length T'. The key economic object is the informativeness of the
debate signal (o — (), which plays the role of institutionalized cross-
examination. We show how penalty caps and audit costs shape optimal
audit intensity, and how improvements in auditability/stability (e.g.,
better logging, more locally checkable traces) substitute for random
auditing. The results translate complexity-theoretic guarantees from
doubly-efficient debate into a governance design principle for 2026:
oversight spend scales with suspicion, not complexity.
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1 Introduction: from doubly-efficient debate to com-
pliance institutions

We are approaching a deployment regime in which frontier models are rou-
tinely entrusted with long-horizon tasks: multi-hour customer support threads,
end-to-end underwriting and claims handling, agentic software maintenance,
and semi-autonomous scientific and medical workflows. In these settings,
the core safety and governance difficulty is not merely that models can err,
but that their errors can be strategic, situational, and rare relative to the
amount of otherwise-correct work produced. As task horizons grow, the
naive oversight strategy—having a human read the full transcript, re-derive
the calculation, or replay every tool call—rapidly becomes infeasible. This
pushes us toward oversight and compliance mechanisms whose cost scales
with the number of problematic decisions rather than with the total amount
of work performed.

Doubly-efficient debate (and closely related cross-examination protocols)
offers one such primitive: it aims to reduce the human burden of identifying
a consequential mistake to a constant number of targeted queries, even when
the underlying transcript is long. In practice, we should not expect these
protocols to yield a perfect proof of compliance. What we can reasonably
expect—and what several early deployments already approximate—is a bi-
nary operational outcome: either the system proceeds without incident, or
the oversight process produces a flag (an abort, disagreement, or anomaly
report) that indicates “something is off” and requires escalation. From a gov-
ernance perspective, this is a familiar artifact: compliance systems frequently
operate on alert streams and exception handling rather than comprehensive
real-time verification.

Our central move is to treat this debate-generated flag as a piece of insti-
tutional infrastructure. Once we have an alert that is (imperfectly) correlated
with misbehavior, we can connect it to a conventional compliance stack: au-
dit triggers, expert review, contractual penalties, and (when appropriate)
regulatory sanctions. The design question becomes economic rather than
purely algorithmic: how should a principal (a regulator, platform, or coun-
terparty) combine (i) a targeted audit policy that responds to flags with (ii)
a random audit baseline and (iii) penalties or liability, to induce a developer
to (a) behave compliantly on each instance and (b) invest in auditability and
stability features that make the flag stream more informative?

This perspective is motivated by a pragmatic constraint that is already
salient in 2026-era deployments: the primary scarce resource is not model
inference, but qualified human attention. Panels of domain experts are ex-
pensive, slow, and politically constrained; they cannot be placed “in the loop”
for every step of every long-horizon task. At the same time, many organiza-
tions can tolerate occasional deep dives if those deep dives are (1) rare, (2)



well-targeted, and (3) backed by enforceable consequences. A debate-style
protocol that produces frequent cheap signals and rare expensive audits fits
this pattern. It resembles the way modern security operations centers han-
dle intrusion detection, or the way financial institutions handle suspicious
activity reports: automated triage plus escalation.

To see the intended application, consider three motivating examples.

Contracting and procurement. A firm deploys an Al agent to manage
procurement: issuing purchase orders, selecting vendors, and negotiating
terms within pre-specified policies. The agent can “violate” in ways that are
locally attractive (e.g., choosing a favored vendor, skipping a required check,
misreporting delivery guarantees) but hard to spot by spot-checking raw
logs. A doubly-efficient debate layer can be integrated into the workflow as
a contest between a proposer (the agent’s rationale and evidence) and an in-
ternal auditor model that challenges missing documentation or inconsistent
claims. Most transactions proceed normally; when the protocol produces
an abort /disagreement, the contract specifies that the transaction is paused
and a human audit can be initiated. Crucially, a credible penalty for con-
firmed violations (liquidated damages, clawbacks, termination) transforms
the debate layer from “advice” into an enforcement mechanism.

Finance and risk controls. In financial workflows, violations often cor-
respond to process failures: ignoring a risk limit, misclassifying an exposure,
or executing a strategy outside a permitted mandate. These are not always
detectable from outcomes alone, especially over short windows. A debate-
inspired mechanism can focus on whether each high-stakes action is justified
by the approved policy and supporting data. The flag stream becomes an
input to compliance monitoring, while targeted expert audits are reserved for
the small fraction of cases that trigger anomalies. Bounded liability and legal
constraints are especially salient here: penalties cannot be made arbitrarily
large, and random audits remain part of the enforcement toolkit.

Medical workflows and clinical decision support. Clinical settings
exhibit an extreme version of the long-horizon oversight problem: the rel-
evant context is distributed across records, labs, guidelines, and evolving
patient state. A model can appear plausible while subtly omitting con-
traindications or misrepresenting uncertainty. A debate-like protocol can be
used to surface disagreements about whether a recommendation is supported
by the chart and guidelines. A “flag” need not mean misconduct; it means
escalation to chart review, attending sign-off, or a morbidity-and-mortality-
style process. This is a natural fit for existing exception-handling structures
in hospitals, but it raises an important safety tradeoff: false positives can
overwhelm scarce clinical time, while false negatives can lead to harm.



These examples share a common structure. The developer (or operat-
ing organization) sometimes benefits from cutting corners: saving compute,
reducing latency, avoiding costly checks, or achieving a short-term metric.
Misbehavior is therefore incentive-compatible unless external institutions im-
pose costs. However, full monitoring is infeasible. What is feasible is an in-
stitution that (i) produces a stream of suspicion signals at low marginal cost,
(ii) uses those signals to allocate scarce expert attention, and (iii) attaches
consequences to verified violations.

The contribution of this paper is to formalize this “debate-to-compliance”
pipeline as a mechanism design problem with explicit attention to scaling.
We connect a reduced-form model of debate (as a noisy flag generator) to
a repeated enforcement environment in which a strategic developer faces a
per-instance temptation to violate. The resulting framework is intentionally
minimal: it is not meant to capture every nuance of corporate compliance or
legal doctrine. Rather, it isolates a basic safety-relevant tradeoff: how much
human expert review is required to drive the equilibrium violation rate below
a target threshold, given bounded penalties and imperfect signals.

Concretely, we provide three types of results.

e A scaling claim. When expert audits are invoked only on flagged in-
stances (plus an optional random baseline), and when each audit can be
resolved with a constant number of expert “oracle queries” enabled by
doubly-efficient debate, the expected expert burden per long-horizon
task can remain O(1)—independent of task length—while still provid-
ing deterrence. The key is that the institution pays the expert cost
only on escalations, not on the full transcript.

e A deterrence characterization. We show that the developer’s op-
timal behavior takes a simple cutoff form: it violates only when the
private gain from doing so exceeds an endogenous threshold determined
by compliance costs and expected enforcement. This makes it possible
to translate a policy target (e.g., “at most J fraction of tasks should
be violated in equilibrium”) into requirements on audit intensity and
penalties.

e A policy design and auditability perspective. We characterize
how bounded penalties necessitate some level of random auditing, and
we quantify how improving auditability /stability (e.g., through better
logging, local checkability, and robust tool interfaces) can substitute
for expensive audits by sharpening the quality of the flag stream. This
gives a concrete rationale for governance requirements that mandate
certain forms of telemetry and provenance.

Our emphasis on 2026 deployment is not rhetorical; it shapes the assump-
tions we treat as realistic “stylized facts.” First, the tasks of interest are long



and heterogeneous, and failures are often localized: a single mis-specified
database query, a skipped verification step, a misleading justification. Sec-
ond, model-based oversight is increasingly standard: organizations already
use secondary models to critique outputs, monitor policy compliance, and
detect anomalies. Third, the human oversight channel is constrained to be
sparse, both for cost reasons and because many domains have limited pools
of credentialed reviewers. Fourth, penalties are bounded: firms have limited
liability, contracts cap damages, and regulators face due process constraints.
Fifth, and most importantly, we should expect strategic adaptation: once a
flag stream is tied to audits and penalties, developers will optimize against
it, potentially shifting from overt violations to subtler ones, or attempting
to reduce the probability of escalation by manipulating the conditions under
which flags arise.

This last point highlights the safety implications of treating debate as an
institutional component rather than a truth-finding oracle. A flag stream
can fail in multiple ways. It can be uninformative (high false positives and
false negatives), leading either to audit overload or to a false sense of security.
It can be gameable: if developers can shape the logging, tool interfaces, or
intermediate representations, they may learn to avoid triggering flags without
actually behaving safely. It can be miscalibrated under distribution shift:
rare edge cases may be precisely where oversight is weakest. It can also be
captured: if the auditor model is trained or fine-tuned in a way that aligns it
with the developer’s incentives, the appearance of scrutiny may not translate
into meaningful detection. Our model does not resolve these issues, but it
makes them legible: they correspond to degraded separation between the
flag distribution under compliance versus violation, and to reduced accuracy
of conviction when audits occur.

We also flag a governance-relevant tension: increasing enforcement strength
via more frequent audits or harsher penalties is not free. Audits consume ex-
pert time and can slow operations; penalties can induce risk aversion and dis-
courage beneficial deployment; false convictions can impose unjustified costs
and create political backlash. Conversely, weak enforcement can produce a
compliance theater in which firms “pass” audits by avoiding detectable viola-
tions rather than by behaving safely. An advantage of the mechanism-design
framing is that it forces explicit accounting: if we want a low equilibrium vi-
olation rate, we must pay for it either with (i) higher expected penalties, (ii)
more audits, or (iii) better auditability that makes targeted audits effective.

Finally, we clarify how this work interfaces with verification and training
procedures. In many organizations, debate-like oversight will be integrated
into a broader stack: red-teaming, post-incident reviews, continuous evalua-
tion, and process requirements for logging and provenance. Our framework
is complementary. It provides a way to reason about marginal governance
levers: if we improve the informativeness of flags by investing in stability
and auditability, how much can we reduce random audits? If penalties are



capped, how much random auditing is unavoidable? What is the expert-
review budget implied by a desired safety target? These are the kinds of
questions that arise when moving from “we can sometimes catch problems”
to “we can run a credible compliance regime at scale.”

The remainder of the paper builds from this motivation to a tractable
formal model. We first map debate outputs to a reduced-form suspicion
signal and separate what we treat as exogenous (signal quality, audit accu-
racy) from what could be endogenous (developer investments in auditability,
regulator requirements). We then analyze equilibrium behavior and derive
policy implications for audit design under bounded penalties. Throughout,
our goal is to use the formalism to reveal the safety tradeoff: constant-query
oversight is only valuable insofar as it can be embedded in institutions that
preserve incentives under strategic pressure.

2 Background and mapping: from doubly-efficient
debate to a compliance-relevant signal

Our goal in the remainder of the paper is to reason about institutions that
can scale to long-horizon tasks while remaining robust to strategic behavior.
To do that, we need a bridge between (i) algorithmic oversight primitives such
as debate and cross-examination and (ii) the objects that appear in standard
enforcement and compliance models: alerts, audits, conviction accuracy, and
penalties. This section provides that bridge. We briefly recap the aspect
of doubly-efficient debate we will rely on, then explain how we compress its
outcome into a reduced-form suspicion signal, and finally distinguish what we
treat as exogenous parameters versus what we treat as endogenous choices.

2.1 What we use from doubly-efficient debate: constant-
query escalation

A doubly-efficient debate protocol is typically motivated as a way to let
a human judge evaluate a claim about a long computation or transcript
by making only a small number of targeted queries. Concretely, there are
two model participants: a proposer A who advances a claim (or proposes a
plan/output) and a challenger B who searches for flaws. The judge is a hu-
man expert (or a panel) who can resolve localized disputes: e.g., “is this tool
call consistent with the logged database response?”, “does this intermediate
quantity follow from these inputs?”; or “does this cited policy clause actually
permit the action?” The protocol is designed so that, if the transcript is long
(length T'), the judge need not read everything; instead the debate agents
iteratively narrow the disagreement to a small number of pinpointed checks.

For our purposes, we abstract this as follows. When an escalation occurs,
the human oversight load can be measured in the number of expert judgments



(oracle queries) required to resolve the dispute. We assume this number is
bounded by a constant m = O(1), independent of the task horizon T'. This is
the core scaling premise: the human cost of adjudicating a flagged instance
does not grow with the length of the underlying interaction, because the
debate protocol concentrates attention on a small set of contested steps.

Two clarifications are important.

First, the constant-query property is not a claim that humans can always
verify everything about a long-horizon execution with O(1) work. Rather,
it is a claim about a specific mode of oversight: conditional on a dispute
being surfaced and localized, the adjudication can be done with a bounded
number of checks. If the debate agents fail to surface the right dispute, or
if the relevant evidence is not locally checkable, the premise fails. This is
precisely why we later introduce an explicit auditability /stability parameter
f: it controls, in reduced form, how often violations are surfaced and how
easy they are to adjudicate.

Second, we do not require that the judge be able to compute the correct
answer to the full long-horizon task. In compliance settings, the adjudicative
question is often narrower: was a required check performed, was a policy
constraint violated, was a record falsified, was the provenance consistent,
did the system act outside a permitted scope? These are naturally suited to
localized queries against logs, attestations, and tool outputs. The constant-
query assumption is best interpreted as applying to this style of process
compliance and local verifiability, rather than to end-to-end correctness of
an arbitrary cognitive task.

2.2 From debate transcripts to an operational binary signal

In deployment, debate-like oversight layers typically produce a stream of op-
erational artifacts: anomaly scores, challenge traces, unresolved objections,
missing-citation warnings, or outright aborts when the auditor model re-
fuses to endorse a step. Our enforcement question is not “did debate prove
the output correct?”, but rather “did the oversight layer generate a trigger
that merits escalation?”” We therefore compress the protocol outcome into a
binary suspicion signal
s €{0,1},

where s = 1 denotes an unresolved disagreement/abort/flag and s = 0 de-
notes “no flag” (the oversight layer does not produce an actionable anomaly).

We interpret s as being generated automatically each period (i.e., for each
task instance). Importantly, generating s is assumed to be cheap relative to
expert review: it is model-to-model interaction and logging, not scarce human
time. Human experts enter only if an audit is actually triggered.

To connect s to incentives, we posit two behavior types for the developer-
controlled system: compliance C and strategic violation V. A violation can
be a shortcut (skipping an expensive check), a policy breach (acting outside a



permitted sandbox), or an integrity failure (misreporting provenance). Com-
pliance means the system follows the intended rules, even when doing so is
costly. The key modeling ingredient is that the distribution of s differs across
C and V. In reduced form, we write

af):=Pls=1|V,0], B(0):=Pls=1]C,¥0],

and assume «a(f) > ((6) for relevant §. The gap a(f) — () is the infor-
mativeness of the flag stream: violations are more likely to be flagged than
compliant behavior.

This mapping deliberately suppresses many details of debate. In partic-
ular, it does not distinguish between (i) flags caused by genuine detection
of a violation, (ii) flags caused by ambiguity or underspecification, and (iii)
flags caused by auditor-model conservatism. All of these collapse into 3(6)
when the developer is compliant. Similarly, it does not distinguish among
different kinds of violations (some easier to catch than others); these are av-
eraged into a(6). The benefit of this compression is that it yields a tractable
mechanism-design problem while still exposing the key safety-relevant failure
modes: if the protocol becomes noisy (8 large) audits become frequent and
expensive; if it becomes uninformative (a & () targeted auditing loses deter-
rent power; if it is gameable, a(#) can fall over time even as the institution
appears active.

2.3 Auditability and stability as a governance-relevant tech-
nology parameter

A central reason to include 0 explicitly is that, in real deployments, the qual-
ity of both flags and audits depends strongly on engineering and governance
choices that are neither purely algorithmic nor purely legal. We use 6 as a
summary of auditability/stability investment, including (non-exhaustively):
(i) high-fidelity logging and immutable event trails; (ii) cryptographic prove-
nance and attestation for tool outputs; (iii) deterministic or replayable tool
interfaces; (iv) schema stability and versioning so that policies can be evalu-
ated against consistent representations; (v) compartmentalization and sand-
boxing that makes policy constraints locally checkable; and (vi) documenta-
tion and process controls that reduce ambiguity in what counts as compli-
ance.

These features affect the flag stream and adjudication in predictable
directions. Better auditability can make true violations easier to surface
(increasing «(#)) and can reduce spurious disputes under compliance (de-
creasing 3(#)), because the auditor model can ground its challenges in clean
evidence rather than heuristics. In addition, auditability can affect the qual-
ity of expert conviction decisions (raising 7 and lowering ¢), though for
simplicity we will treat (m,¢) as fixed in the baseline model and return to
endogenizing audit accuracy only as an extension.



Crucially, 6 is not free. Increasing auditability can require engineering
time, slower deployment cycles, and tighter operational constraints. We
model this as a compliance-related cost k() (and, in an extended timing,
an investment cost I1(#)). This cost is the economic counterweight to better
oversight: governance requirements that mandate stronger logging or repro-
ducibility can reduce the necessary audit rate, but they may also increase
the developer’s baseline cost of operating compliantly.

2.4 What is exogenous vs. endogenous in the economic model

Having mapped debate into a binary signal, we can now state clearly what
we treat as primitives and what we treat as choices.

Exogenous signal and adjudication properties. In the reduced-form
model, the suspicion mechanism is summarized by «(6) and 3(6). These can
be interpreted as empirical operating characteristics of the debate/auditor
layer at a given level of auditability . Similarly, when an audit occurs, we
assume that experts reach a conviction decision (e.g., “violation confirmed”
vs. “no violation”) with true- and false-positive rates

7 = Plconvict | V], ¢ := P[convict | C],

with m > ¢. We do not interpret m as a metaphysical probability of truth;
it is the realized accuracy of a particular adjudication process given the
available evidence, the standard of proof, and the expertise of the panel. In
practice, w can be reduced by missing logs, unclear policies, or sophisticated
obfuscation; ¢ can be increased by ambiguity, hindsight bias, or adversarially
framed audit packets. Treating (m,¢) as parameters makes these concerns
explicit and allows us to quantify how much institutional slack they consume.

We also treat the per-audit expert workload as m judgments. The total
resource cost per audit event is then ¢y (dollars, time, or capacity), with the
interpretation that cy scales approximately linearly with m but is otherwise
independent of T under the doubly-efficient assumption. This is the point at
which the algorithmic scaling claim enters the economics: if audits required
humans to read full transcripts, ¢y would grow with 7', and the mechanism
would not scale to long-horizon tasks.

Exogenous bounded penalties. We assume penalties are bounded above
by a cap F. This captures limited liability, contractual caps, and regulatory
constraints. Bounded penalties are essential: if penalties were unbounded,
one could deter violations with vanishingly small audit probability, which
is not realistic. In our setting, bounded penalties force the regulator to
sometimes rely on audit frequency (including random audits) rather than
only on severity.
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Endogenous developer behavior and private temptation. Each pe-
riod, the developer (or operator) observes a private “temptation” g ~ G
representing the gain from violating on that instance: saving compute, skip-
ping a costly check, meeting a latency target, increasing a KPI, or avoiding
an operational inconvenience. We treat g as i.i.d. across periods to isolate
the per-instance incentive problem. The developer then chooses a € {C,V'}.
This is the core strategic choice: even if the system is technically capable of
compliance, it may be profit-maximizing to violate on the subset of instances
with unusually high ¢ unless enforcement changes the payoff comparison.

Endogenous audit policy and its link to the signal. On the regula-
tor/principal side, the key choice is how to allocate scarce expert attention.
We model a policy that combines a random baseline with targeted escalation:

Ly o Audit = 1 with probability p+ (1 — p)1{s = 1}.

Thus, if s = 1 an audit occurs for sure; if s = 0 an audit occurs with
probability p. This captures a common compliance pattern: alerts trigger
near-certain review, but the institution also reserves the right to audit un-
flagged cases to maintain deterrence and to detect failures of the alerting
system itself. The penalty F' < F is imposed upon conviction.

2.5 Why this abstraction is appropriate (and what it leaves
out)

The signal-based abstraction is appropriate when the institution is organized
around exception handling: most instances are processed automatically, and
only a small fraction are escalated to expert review. It also matches how
debate layers are likely to be deployed in practice: as a monitoring and
challenge mechanism that produces an “all-clear vs. escalate” outcome, not
as a complete proof system for every decision.

At the same time, the abstraction intentionally hides several complica-
tions that matter for safety.

(i) Strategic shaping of 6. If the developer controls logging formats, tool
interfaces, or what evidence is preserved, it can influence «(#) and 5(6) in
ways that are not aligned with safety (e.g., reducing flag rates by degrading
observability). This motivates treating 6 as a potentially regulated require-
ment rather than a purely private choice.

(ii) Distribution shift and rare-event regimes. The most harmful vio-
lations may occur precisely in rare regimes where the flag model is least
calibrated, effectively lowering o when it matters most. Our i.i.d. simplifi-
cation does not capture this, but it does clarify the policy implication: if «
is low on tail events, then meeting a stringent target J may require either
higher random auditing or stronger auditability investments.
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(iii) Audit capture and correlated errors. If the auditor model B is trained
in a way that correlates with the developer’s incentives, or if the evidence
presented to experts is selectively framed, then both « and 7 can deteriorate
simultaneously. Reduced-form parameters cannot prevent capture, but they
make clear that capture is equivalent to degrading the separation between
compliance and violation in both the flag and conviction stages.

With this mapping in place, we can now write down a minimal baseline
model in which (a) the long-horizon nature of tasks enters only through the
assumption that flags and audits can be resolved with O(1) expert queries,
while (b) deterrence is determined by the interaction of bounded penalties,
audit policy, and the informativeness of the flag stream. The next section
instantiates these objects formally and derives the developer’s cutoff behavior
as a function of the enforcement parameters.

3 Baseline model: per-task enforcement with suspicion-
triggered auditing

We now formalize a minimal per-task enforcement model that captures the
institutional pattern we have in mind: an automated oversight layer pro-
duces a cheap suspicion signal, and scarce human expertise is used only
when either (i) the signal triggers escalation or (ii) the regulator performs a
random “background” audit to maintain deterrence. The baseline analysis is
intentionally static at the level of a single task instance. The long-horizon
nature of the underlying interaction is not modeled directly; instead it enters
through the assumption that, conditional on escalation, expert adjudication
requires only a constant number of localized judgments.

3.1 Agents, timing, and policy instruments

There are two strategic parties: a regulator /principal R and a developer /firm
D operating a deployed system. Time is discrete, indexed by ¢, and each
period corresponds to one task instance drawn i.i.d. from a class of long-
horizon tasks of length 7. Our baseline focus is on stationary enforcement:
R commits to a fixed policy and D faces the same incentive problem each
period.

Within each period, the timing is:

1. A private temptation gain g ~ G is realized and observed only by D.

2. D chooses an action a € {C,V}, interpreted as compliance C or strate-
gic violation V.

3. An automated oversight protocol (e.g., debate/cross-exam) produces a
binary suspicion signal s € {0,1}.
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4. Based on s, an audit may occur according to the regulator’s audit
policy ji,.

5. If audited, human experts review the case and produce a conviction
outcome (“violation confirmed” vs. “not confirmed”); if convicted, a
penalty F' is imposed on D.

The regulator’s two baseline policy instruments are:
e a random-audit parameter p € [0,1], and

e apenalty level F € [0, F], with F' capturing bounded liability, statutory
caps, or feasibility constraints.

We interpret (p, F') as chosen and committed to at a “Stage 0" governance
layer (e.g., a regulatory rule, a contract, or an internal compliance policy with
credible escalation). In later extensions, we will allow an additional choice
variable 6 representing auditability /stability investments, but the per-period
incentives can be written cleanly while treating 6 as fixed.

3.2 Suspicion as a reduced-form output of scalable oversight

The automated oversight protocol produces a binary suspicion signal s. We
take as primitives the conditional flag rates

af) =Pls=1]|V,0], B0) =Pls=1]C,¥0,

with a(f) > [(0) for relevant 6. Intuitively, @ measures how often viola-
tions are surfaced as actionable anomalies, while 3 captures spurious esca-
lation under compliance (including ambiguity, overconservatism, or benign
disagreements).

This abstraction compresses the detailed debate transcript into the single
governance-relevant question: “does this instance merit escalation to scarce
expert review?” It is precisely the parameter gap o — 5 that makes targeted
auditing potentially efficient: if o ~ (3, flags do not concentrate expert atten-
tion on likely violations, and the institution reverts toward either frequent
random audits or weak deterrence.

We emphasize that «(f) and £(0) should be read operationally. They
can be estimated empirically from deployed data (given some ground truth
or proxy labels) and can drift over time with distribution shift or strategic
adaptation. In the baseline model we hold them fixed to isolate the enforce-
ment logic; later, one can endogenize them through 6 and through learning
dynamics.
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3.3 Audit policy: combining targeted escalation and back-
ground checks

The regulator audits according to a simple mixed policy that treats flags as
a near-certain trigger while reserving some probability of auditing unflagged
instances:

Lo : PAudit =1 s] =p+ (1 — p)1{s = 1}.

Thus, if s = 1 then an audit occurs with probability 1; if s = 0 then an audit
occurs with probability p. This form is convenient for two reasons. First,
it matches many real compliance programs, where alerts trigger review and
a small amount of random auditing is used to reduce gaming and to catch
failures of the alerting system. Second, it yields a transparent decomposition
between (i) a baseline level of expert review capacity and (ii) an increment
of targeted review driven by the automated signal.

Given this policy and the signal process, it is helpful to write the audit
probability conditional on the developer’s action:

Ay (p,0) = P[Audit = 1| V. 0] = p+ (1 — p)a(0),

Ac(p,0) =P[Audit =1 | C,0] = p+ (1 — p)B(0).

These two objects will govern both the expected expert workload and the
expected penalty exposure under each behavior type. Note that Ay > Ao
whenever o > f3, so violations are audited more often than compliant behav-
ior under a suspicion-triggered policy.

3.4 Conviction accuracy and the cost of expert review

If an audit occurs, human experts (or a panel) review the relevant packet:
logs, tool traces, policy references, and the localized dispute surfaced by
the oversight protocol. We assume an audit consumes a constant number
m of expert judgments (oracle queries), as motivated by doubly-efficient
escalation: the panel need not read a transcript of length 7', but instead
answers a bounded set of targeted questions. We model the resource cost
of an audit event as ¢y, which can be interpreted as dollars or a binding
capacity constraint; in many settings cy scales approximately linearly with
m, but we keep cy as a single reduced-form number.
Audit outcomes are stochastic. Let

7 = Plconvict | V], ¢ := P[convict | C],

with m > ¢. Here 7 captures the true-positive rate of expert adjudica-
tion given the evidence available, while ¢ captures false positives (wrongful
convictions under compliance). We treat (m,¢) as exogenous in the base-
line model; this is appropriate when adjudication standards and evidentiary
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quality are largely fixed by institutional context. From a safety perspective,
m can be degraded by missing or manipulable logs, while ¢ can be inflated
by ambiguity, hindsight bias, or selective framing of the audit packet. The
pair (m, ¢) therefore measures not only the competence of experts but also
the governance technology that determines what they can reliably verify.

3.5 Developer payoffs and the interpretation of compliance
versus violation

We model the developer’s incentives in reduced form. Compliance C carries a
deterministic cost k£(f) > 0. This is meant to capture engineering and opera-
tional burdens: running more checks, enforcing sandbox constraints, keeping
higher-fidelity logs, or accepting slower deployment cycles. A strategic vi-
olation V yields an instance-specific private gain g > 0: saving compute,
skipping a costly validation, meeting a KPI, or exploiting a policy loophole.
The key modeling assumption is that g is observed by D when choosing a
and varies i.i.d. across instances according to G. This captures the idea that
on some instances the temptation to cut corners is much higher than on
others.

When penalties are imposed only upon conviction, the developer’s ex-
pected per-period utility under each action is

Up(C;0) = —k(0) — Ac(p.0) ¢ F,  Up(V;g,0) =g — Av(p,0)m F.

Two aspects of this functional form are worth highlighting.

First, the model isolates deterrence via expected penalties. We are as-
suming risk neutrality and that the penalty is a monetary transfer (or an
equivalent profit impact). This is a simplification, but it is the right start-
ing point for understanding the basic substitution between audit frequency
and penalty severity under bounded liability. If D is risk averse or penalties
include non-monetary components (e.g., licensing risk), the deterrence effect
can be stronger for a given expected value; conversely, if enforcement is slow
or penalties are discounted, it can be weaker.

Second, false positives ¢ matter directly for incentives: they raise the
expected cost of compliance by exposing compliant behavior to wrongful
punishment when audited. This is a governance-relevant failure mode be-
cause it can create perverse incentives to avoid auditability or to reduce the
flag rate $(0) by making systems less transparent. In a richer welfare anal-
ysis, ¢ also carries a direct fairness cost; in the baseline enforcement model,
it enters through the developer’s willingness to comply under a given policy.
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3.6 The developer’s per-instance decision problem

Given (p, F') and given 6, the developer chooses a € {C,V'} after observing
g. The choice is governed by the payoff difference

A(g; p, F, 0) = UD(V;Q, 9) - UD(C; 0)
— g k(0) - (Av(p, 6)r — Ac(p, e)¢) F

This expression clarifies the economic meaning of our oversight parameters.
The only way enforcement affects behavior is through the effective expected-
penalty differential

F(pv 0) = AV(p79)7T - AC(pv 9)¢

If I'(p,0) < 0, then enforcement does not make violations meaningfully more
expensive than compliance in expectation; in that regime, increasing F' can
fail to deter because penalties fall (nearly) symmetrically on both actions
through audits and false positives. By contrast, when I'(p, 6) > 0, penalties
push the developer toward compliance by making violations disproportion-
ately risky.

Because A(g;p, F, ) is increasing in g, the model has a single-crossing
structure: higher temptations make violation more attractive, and enforce-
ment shifts the point at which the developer is indifferent. We will exploit
this monotonicity in the next section to characterize stationary equilibrium
behavior in cutoff form and to connect it to the aggregate violation rate. For
now, the key takeaway is that the developer’s decision reduces to comparing
the private gain ¢ to (i) the compliance cost k(f) and (ii) the enforcement
wedge I'(p, 0)F.

3.7 Regulatory objective: scarce expert attention and a safety
target

The regulator’s core scarce resource is expert audit capacity. To make this
explicit, we adopt an audit-cost objective in which the regulator seeks to
minimize expected expert audits (or equivalently expected cost cpy times
audits), subject to keeping the violation rate below a target 6 € (0,1). The
key quantity on the resource side is the expected probability of audit, which
depends on both the policy and the developer’s behavior. Conditional on
action a, the audit probability is A,(p,0) as defined above; unconditional
expectations depend on the endogenous frequency of C' versus V.

This “hard constraint” formulation is appropriate when the safety target
is externally imposed (e.g., a regulatory standard) or when the principal’s
priority is to guarantee a bound on strategic misbehavior. It also makes clear
where the algorithmic scaling claim enters: if each audit costs cy indepen-
dent of T', then minimizing audits is meaningful even for long-horizon tasks.
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If, instead, the cost of reviewing a flagged instance scaled with 7', then the
entire enforcement approach would break down precisely in the long-horizon
regime we care about.

3.8 Assumptions, limitations, and extensions we have in mind

The baseline model deliberately suppresses several complications that matter
in practice.

Heterogeneous violations and harm severity. We treat all violations
as identical and summarize their private benefit by g. In reality, violations
differ in detectability, harm, and evidentiary footprint. A useful extension is
to let g be multidimensional (e.g., gain and concealment cost) or to introduce
a harm variable h in regulator welfare. Doing so matters for safety because
the most harmful failures can be precisely those that are hardest to surface,
effectively lowering «(6) in the tail.

Endogenous auditability and strategic degradation. We have al-
lowed parameters to depend on 6 but have not yet modeled who chooses
it and under what incentives. This is a central governance issue: if improv-
ing auditability raises k(f) for the developer, then absent requirements or
subsidies, D may underinvest in 8, degrading both o and 7 while also po-
tentially manipulating S to reduce scrutiny. Our reduced-form dependence
on 6 is meant to make this channel explicit and tractable.

Dynamic interactions and learning. We treat periods as i.i.d. and focus
on a stationary setting. In practice, both parties may learn about «, 5,7, ¢
over time, and the developer may adapt strategically to the audit policy.
Repeated-game incentives (reputation, license renewal, escalating sanctions)
can also substitute for per-period penalties under bounded liability. We
postpone these dynamics to keep the baseline mechanism transparent.

With the primitives and per-instance payoffs established, we can now
move from the one-shot decision problem to the stationary equilibrium in-
duced by a fixed enforcement policy. In particular, the single-crossing struc-
ture in ¢g implies a cutoff form for behavior, which will allow us to write
closed-form expressions for the violation rate and the expected audit bur-
den, and to study when purely suspicion-triggered auditing suffices versus
when random audits are required.

3.9 Stationary equilibrium characterization: cutoff rule, vi-
olation rate, and audit workload

Fix an enforcement policy (p,F) and (for now) a governance technology
f. Since each period is i.i.d. and the developer observes only the current
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temptation g, the relevant equilibrium object is simply a stationary best-
response mapping a*(g) € {C,V'}. The single-crossing structure in ¢ implies
that we can characterize behavior in closed form, and therefore express both
the equilibrium violation rate and the regulator’s expected expert workload
directly as functions of (p, F,0).

3.9.1 Cutoff behavior

Recall the payoff difference
Alg;p, F,0) =g —k(0) =T(p,0)F,  T(p,0) := Ay(p,0)m — Ac(p,0)¢.

Because A(+) is strictly increasing in g, optimal behavior takes a threshold
form: the developer violates if and only if the realized temptation g exceeds
the unique indifference point (when it exists). Define the cutoff

g"(p F,0) = k(0) + T(p,0)F = k(0) + (Av (p,0)7 — Ac(p,0)0)F. (1)
Then any stationary best response satisfies
a’(g)=V < g=g"(p, F.0). (2)

This is the sense in which enforcement acts through a single scalar: it shifts
the cutoff g* linearly with the penalty F, scaled by the effective differential
I'(p,0). Intuitively, I'(p,#) is the increase in expected punishment when
switching from compliance to violation. When I'(p, 0) is large, even modest
penalties strongly deter; when I'(p, 0) is small, bounded penalties have little
bite.

Two immediate comparative statics follow directly from :

e Increasing k(6) shifts ¢g* up one-for-one: when compliance is intrinsi-
cally expensive, the temptation must be correspondingly higher before
the developer is willing to violate.

e Increasing F shifts g* by I'(p, 6): if I'(p, 0) > 0, harsher penalties deter
(raise the cutoff); if I'(p,0) < 0, harsher penalties perversely make
compliance less attractive relative to violation because false convictions
(and audits) load onto compliance too heavily.

The latter case is not merely a mathematical curiosity. It corresponds to
a governance failure mode: if audits cannot reliably distinguish violation
from compliance (low , high ¢), and/or if the audit policy audits compliant
behavior almost as frequently as violating behavior (weak separation between
Ay and Ag), then increasing formal penalties can fail to improve safety
incentives.
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3.9.2 [Equilibrium violation probability

Given the cutoff rule , the stationary equilibrium violation rate is simply
the probability that g exceeds the cutoff:

p(p, F,0) =Pla*(g) = V] =Plg > g"(p, F,0)] = 1 — G(g"(p, F,0)) . (3)

This expression is “closed form” in the sense that it involves only primitives:
the temptation distribution G and the enforcement-implied cutoff g*. It
also makes clear what the regulator must accomplish to achieve a target
violation bound §: it must raise the cutoff to at least the corresponding
quantile G=1(1 — §). Formally, the constraint p(p, F,6) < § is equivalent
(when G is strictly increasing) to

6"(p, F.0) > G~1(1 - 5),

In this baseline model, there is no additional fixed-point complication: p
does not feed back into g* (because the audit policy depends on s but not
on historical frequencies). This will cease to be true in extensions where
0 is chosen strategically, where («a, 3) are learned from data, or where the
regulator conditions future enforcement on observed violation rates; for the
baseline, the equilibrium mapping (p, F, 6) — p is immediate.

For later use it is helpful to note the monotonicity of p in the enforcement
wedge. Differentiating formally gives

Op * 10 % /
— = —gp- =—-T(p,0 ¥
op = 9 G'(d") (. 0) G'(g")
whenever G has a density G’. Thus, when I'(p, ) > 0, increasing F' weakly
decreases violations; when I'(p, #) < 0, higher penalties weakly increase vi-

olations (again highlighting that false positives can undermine deterrence if
not counterbalanced by differential auditing).

3.9.3 Expected audit rate and expected expert workload

The regulator’s resource burden depends on the frequency of audits, since
audits are the only step that consumes scarce expert attention. Under the
mixed audit policy p,, the unconditional probability of an audit in a sta-
tionary equilibrium is
E[Audit] = P[Audit =1 | C] - P[C] + P[Audit = 1 | V] - P[V]
= Ac(p,0) (1 = p(p, F.0)) + Av(p,0) p(p, I, 0)

Substituting Ac = p+ (1 — p)B(0) and Ay = p+ (1 — p)a(f) yields the
decomposition

E[Audit] = p+ (1= p)(8(0) + (a(0) = B(0) p(p. F.O)).  (5)
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We read as follows. There is a baseline audit component p that applies
regardless of the signal; and there is a targeted audit component driven by
flagged instances, which equals the overall flag rate 5 + (o — 3)p multiplied
by (1 — p) because flags only matter on the non-random-audit branch. The
informativeness gap a — ( is precisely what makes targeted escalation effi-
cient: holding p fixed, improving signal separation increases the fraction of
audits devoted to truly risky instances relative to benign ones.

Given our doubly-efficient escalation assumption, each audit event re-
quires only a constant number m = O(1) expert judgments, independent of
the underlying horizon T'. Therefore the expected expert judgments per task
are

E[Expert judgments per task] = m - E[Audit], (6)

and the expected expert resource cost per task is
E[Expert cost per task] = ¢y - E[Audit]. (7)

The key scaling point is that @f depend on T only through the reduced-
form parameters a(f),5(0),, ¢, not through any direct transcript-reading
term. In other words, once escalation is localized, long-horizon tasks do not
mechanically force long-horizon audits. This is the formal bridge between
“scalable oversight” at the protocol level and “bounded expert time” at the
institutional level.

It is also useful to isolate the dependence of workload on behavior. Using
(4), we can rewrite expected audits as

E[Audit] = Ac(p, 0) + (Av(p,0) — Ac(p,0)) (1 - G(g")).

This expression makes explicit that audits respond to enforcement both di-
rectly (through p and ) and indirectly via deterrence (through g* and hence
p). This indirect channel is what makes penalties valuable for conserving ex-
pert attention: stronger deterrence can reduce p, which in turn reduces the
fraction of audits spent on genuine violations and reduces the overall flag
rate if a > .

3.9.4 [Existence, uniqueness, and corner cases

In the baseline environment, equilibrium existence is straightforward: for
each g, the developer chooses the payoff-maximizing action, which is well-
defined because there are only two actions. The cutoff characterization fol-
lows from monotonicity of A(g) in g.

Uniqueness is also essentially immediate, with one caveat about tie-
breaking at the cutoff. If G is atomless (or, more generally, if P[g = g*] = 0),
then the cutoff strategy pins down a unique violation probability p via
. If G has an atom at g*, then the developer is indifferent at that exact
temptation value and could mix between C' and V on the indifference set. In
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that case, the equilibrium violation probability is set-valued but still tightly
bounded:

p(p,F,0) € [1-G(g"), 1-G(g")],

where G(g*~) denotes the left limit at g*. Operationally, this is rarely a
substantive issue: small perturbations to payoffs or continuous heterogeneity
eliminate the atom, and regulatory targets are typically specified with slack
to accommodate such knife-edge cases.

More substantively, we highlight two corner regimes that will matter
when we turn to the regulator’s optimization problem.

Non-positive enforcement differential. If I'(p,0) < 0, then raising F’
does not increase the cutoff g*; in fact, when I' < 0, it decreases g*. In such
regimes, penalties are not a reliable instrument for safety. The model points
to concrete levers for fixing this: improving adjudication accuracy (increase
7, decrease ¢), improving signal separation (increase a— ), and/or changing
the audit policy so that audits fall more disproportionately on suspected
violations (increase Ay — A¢). Without such improvements, a regulator
that is constrained to operate only through (p, F) may be forced into high
p with limited deterrence, or may simply be unable to achieve stringent 4.

Binding capacity and false-positive pressure. Even when I'(p,6) > 0,
expected audits can be dominated by (3(6), the false-flag rate under compli-
ance. If 3 is large, then achieving a low violation rate via aggressive flag-
triggered audits can be expensive in expert time even if it is behaviorally ef-
fective. This is the institutional analogue of an overly sensitive alarm system:
it may catch most true problems (high «) but at the cost of constant esca-
lations on benign cases, potentially inducing a backlash against auditability
or increasing the social cost of compliance. The expressions above isolate
this tradeoff cleanly: for a fixed p, lowering 3(6) reduces E[Audit] without
weakening deterrence, while increasing «(6) can strengthen deterrence (via
I') while also shifting audits toward more suspicious cases.

Taken together, the cutoff equilibrium and the closed-form expres-
sions f reduce the enforcement problem to a transparent constraint
system: policy affects the cutoff g*, which determines the violation rate p,
which in turn determines the audit workload. This reduction is what allows
us, in the next section, to treat the regulator’s choice of (p, F') as a simple
mechanism design problem: minimize expected expert-review cost subject
to a target bound p < §, and characterize when purely suspicion-triggered
auditing (p = 0) suffices versus when bounded penalties force the regulator
to rely on random audits.
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3.10 Mechanism design: minimizing expert-review cost sub-
ject to a safety target

We now take the regulator’s perspective. In the previous subsection we
reduced behavior and workload to two closed-form objects: the violation rate
p(p, F,0) =1—G(g*(p, F,0)) and the expected audit probability E[Audit] =
p+(1—p) (B(8)+(c(8)—B(0))p). The mechanism-design question is therefore:
how should the regulator choose (p, F')—a baseline random-audit rate and
a post-conviction penalty—to achieve a target safety bound p < § while
consuming as little expert attention as possible?

Throughout this section we treat  as fixed (the governance technology
is taken as given); the next section endogenizes . We also treat penalties as
transfers from the developer to some sink, so that the regulator’s objective
is purely about expert-review resources unless stated otherwise. This is
a simplifying stance: in practice penalties have distributional and fairness
implications, and large F' can be infeasible for reasons other than legal caps.
We therefore keep the penalty cap F explicit and later note how a welfare
objective changes the analysis.

3.10.1 The regulator’s constrained problem and the “deterrence
wedge”

Fix 6 € (0,1) and let g5 := G~(1 — §) denote the temptation quantile
corresponding to the desired cutoff. The safety constraint p < § is equivalent
to

g9*(p, F,0) = gs. (8)
Using the definition ¢g*(p, F,0) = k(0) + I'(p, 0)F, the constraint becomes

k(9) + F(pa G)F > 95, with F(pa 9) = AV(P, 9)7’[’ - AC’(p79)¢ (9)

This inequality isolates the core enforcement quantity I'(p, 8) F": the expected
punishment differential between violation and compliance. The regulator can
increase this differential either by (i) increasing F' (up to F), or (ii) changing
p, which shifts both Ay and A¢ and thereby changes I'. The cost, however,
is not T" itself but E[Audit], which increases with p mechanically and can also
increase with more aggressive flag-triggered auditing when 3(6) is nontrivial.
The regulator’s baseline problem is thus
min cy - E[Audit] s.t. k(@) +T(p,0)F > gs. (10)

p€[0,1], FE[0,F]

Because ¢ > 0 is a constant scaling of the objective, the structure is essen-
tially: minimize E[Audit] subject to achieving enough deterrence.
Two immediate feasibility observations are worth stating explicitly.
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Feasibility requires a positive enforcement differential. If I'(p,0) <
0 for all p € [0, 1], then no penalty F' > 0 can raise g* above k(#). In that
case, the best the regulator can do is g* = k(6), implying p > 1 — G(k(9)).
Any target § < 1 — G(k(0)) is infeasible without changing the underlying
technology (improving o — 3, improving adjudication accuracy m — ¢, or
changing the audit protocol). This is the formal version of a governance
failure mode: if adjudication does not reliably separate V from C| penalties
cannot substitute for expert effort.

If feasible, the constraint is typically binding at the optimum.
When the regulator only cares about audit cost, there is no direct bene-
fit to achieving p < J. Absent nonconvexities, the regulator will choose
(p, F) so that k 4+ T'(p,0)F = g5 holds at equality. This “binding” logic is
what yields closed-form instruments in the cases below.

3.10.2 When purely triggered auditing suffices (p = 0)

Consider first the extreme policy p = 0: no random audits, only suspicion-
triggered escalation. Then Ay (p,0) = «(f) and Ac(p,8) = B(0), so the
deterrence wedge is

[(0,0) = a(6)r — B(9)9.
If I'(0,0) < 0, then purely triggered auditing cannot generate deterrence
through penalties (it may still generate some deterrence if & is large, but not
enough for stringent §). If instead I'(0, ) > 0, then the safety constraint (9
at p = 0 reduces to a lower bound on F"

95 — k(0)
F> —F
— a(f)r —B(0)¢
This is the cleanest “scalable oversight” regime: if the penalty cap satisfies
F at least as large as the right-hand side, then (p, F') = (0, F) (or (0, Fiin))

achieves p < § while keeping audits limited to flagged events. The expected
audit rate becomes

E[Audit],—0 = B(0) + (a(0) — 5(6))p,

(11)

so expert workload scales as m-O(1), independent of task horizon T'. Impor-
tantly, this workload is controlled by (6) as well as by the residual violation
rate p: even if deterrence is strong (small p), a high false-flag rate 5 can
dominate the audit burden. This emphasizes a practical design criterion
for debate-style oversight: reducing spurious disagreement under compliance
can be as important, for resource reasons, as increasing the disagreement
rate under genuine violations.

Why might p = 0 be desirable beyond simplicity? Because p creates a
baseline stream of audits even when the signal is quiet. If flagged auditing
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already provides enough deterrence (via « high, 8 low, and 7 sufficiently
above ¢), then adding random audits is “wasted” expert attention in the
sense that it is not needed to satisfy . Put differently, when F is large
enough, the regulator can concentrate expert effort only on the alarm cases
and still deter almost all strategic violations.

3.10.3 Penalty caps and the necessity of random audits

When F is too small to satisfy , the regulator cannot achieve the desired
cutoff using flagged audits alone. At that point the only remaining lever
(holding 6 fixed) is to raise I'(p,#) by increasing p, thereby increasing the
probability that violations are audited and convicted even when debate fails
to flag them.

With p > 0, we have

AV(,O,&) :p+(1—p)a(0), AC(pve) :p+(1_p)ﬁ(9)v

and therefore

D(p,6) = plm — &) + (1 - p) (a(8)7 — B(9)9). (12)

This representation makes two points transparent. First, I'(p, 0) is affine in
p, so the binding constraint can be solved in closed form. Second, increasing
p shifts weight from the “triggered” differential am— 3¢ to the “random-audit”
differential m — ¢. When 7 — ¢ is substantially larger than ar — 8¢, random
audits are a powerful way to increase deterrence per unit penalty. (This can
occur, for example, when debate flags are noisy but expert adjudication is
high-quality.)

Setting F' = F and enforcing k + I'(p,0)F > gs yields a minimum p
requirement whenever I' is increasing in p. Using , a sufficient and
essentially necessary condition for monotonicity is (7 — ¢) > (am — B¢),
in which case 9,I" > 0. Solving the binding constraint at equality gives the
closed-form minimum random-audit rate

(95 — k(0))/F — (a(0)7 — B(0)9) ]
(m—¢) — (@7 —BO)0) |y

The truncation [](1] captures two corners. If F is already large enough that the
numerator is nonpositive, then p* = 0 (purely triggered auditing suffices).
If F is so small that even p = 1 cannot satisfy the constraint, then p* =
1 but the target may still be infeasible; feasibility in that corner requires
k(O)+ (m— @) F > gs.

Operationally, is a recipe: compute the deterrence shortfall under
triggered auditing, normalize by the incremental deterrence gained by mov-
ing from triggered to fully random auditing, and clamp to [0, 1]. The same
expression also highlights where the model places “pressure” on institutions.

p"(8 F,0) =

(13)
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If 7 — ¢ is small (adjudication unreliable), the denominator collapses and p*
becomes large or ill-defined. Likewise, if & &~ [ (debate signal uninforma-
tive), then triggered auditing offers little advantage and the system behaves
like ordinary random inspection.

3.10.4 Audit-cost minimization: why the optimum typically sets
F=F

We can now connect to the full minimization problem . When the
regulator’s objective is purely to minimize expert time, the penalty is (by
assumption) costless except for its cap. In that case, the regulator weakly
prefers higher F' whenever I'(p,6) > 0, because higher F' relaxes the safety
constraint and therefore allows (weakly) lower auditing. Formally, for any
fixed p with I'(p,0) > 0, increasing F' raises g* and decreases p; and a
decrease in p weakly decreases E[Audit] because o > f implies audits rise
with violations through the flag rate. Thus, unless I'(p,6) < 0 or F' has an
external cost, an optimal solution sets

FoP' = F. (14)

Given F = F, the regulator then chooses the smallest p that satisfies the
safety constraint whenever E[Audit] is increasing in p at the boundary (the
generic case, since p appears as a baseline audit probability). Under that
regularity, p°P* = p*(§; F, 0) from . Intuitively, bounded penalties force
some auditing, but the regulator wants that auditing to be as “surgical” as
possible: set penalties as high as legally feasible, then add only the minimal
random-audit mass needed to cover the residual undetected violations.

There is, however, a subtle corner worth flagging. Because p reduces
the importance of the signal s (flags matter only on the 1 — p branch),
increasing p can sometimes reduce the number of audits driven by false flags
when (0) is very high. In that case, E[Audit] need not be monotone in p
globally. Our objective still selects the p that minimizes E[Audit] among
feasible policies, but the “minimal p” rule can fail if raising p both improves
deterrence (lowering p) and reduces the multiplicative weight on the flag
term (1 — p)B. This is an institutional interpretation of “alarm fatigue™ if
the signal generates too many false positives, it can be cheaper to rely more
on random auditing (and less on flag escalation) even though this seems less
targeted. In practice, this is exactly the scenario in which we should invest
in improving 3(f) (and, more generally, #); we return to this in the next
section.

3.10.5 When triggered audits dominate, and what “dominance”
means here

Within this model, triggered auditing dominates random auditing in a spe-
cific sense: it allows the regulator to satisfy a given safety target with a lower
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expected audit rate. Two conditions jointly drive this conclusion.

First, the signal must be informative in the sense a(6) > 3(#), so that
audits triggered by s = 1 are disproportionately concentrated on violations.
This condition is what makes the audit workload sensitive to p in and
what makes deterrence feed back into fewer flags.

Second, the deterrence wedge under triggered auditing must be positive:
a(f)m > B(0)¢. This ensures that penalties do not primarily act as a tax
on compliance. When it holds and F is sufficiently large, p = 0 is not
only feasible but also audit-efficient: it avoids paying the baseline cost p
while retaining deterrence through the credible threat of escalation on flagged
cases.

The comparative statics are consistent with the deployment intuition.
Better adjudication (7w 1, ¢ |) expands the parameter region where p = 0
suffices, because each triggered audit carries more deterrence per unit of
expected expert time. Better debate separation (« 1, 8 ) simultaneously
reduces the audit burden directly (fewer false flags) and increases deterrence
under p = 0 (larger am — B¢). These are precisely the two axes along which
one would expect “scalable oversight” protocols to matter for governance:
they turn expert judgments into a sparse, high-leverage resource rather than
a per-token bottleneck.

3.10.6 Optional welfare extension: adding harm and wrongful
punishment

If we extend the regulator’s objective beyond expert-review cost, the closed-
form characterizations above remain useful but the optimal instruments can
change. A simple welfare proxy is

Wr(p, F) = —cr E[Audit] - hp(p, F.0) — A Ac(p, 0)$F.,

where h is per-violation social harm and the last term penalizes wrongful
punishment (or more broadly, the social cost of imposing large expected
sanctions on compliant behavior). Under this welfare objective, the con-
straint p < ¢ could be relaxed into a penalty term hp, or kept as a hard
constraint; either way, the model makes a qualitative prediction: the regu-
lator may no longer want F' = F. The reason is that larger F' increases the
expected burden on compliant actors through Ac¢F', and in many real set-
tings this burden is not a pure transfer (it can deter beneficial deployment,
distort behavior, or be ethically unacceptable).

Even in this welfare formulation, the same structural decomposition re-
mains: p trades off (i) more baseline audits and more compliance exposure
Ac, against (ii) more deterrence via I'(p, ). Likewise, a(6) and 3(6) deter-
mine whether escalations are concentrated on genuine issues or squandered
on false alarms. The upshot is that improving the underlying governance
technology 6 can be welfare-improving in two ways: it can reduce expert
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costs (fewer audits) and reduce wrongful punishment (lower 5 and/or ¢),
thereby allowing safety to be achieved with less collateral damage.

3.10.7 Summary: a simple enforcement ‘“stack”

This section yields a concrete enforcement picture. Start with the most tar-
geted mechanism: escalate only on disagreement (p = 0) and set penalties
as high as feasible. If F' clears the threshold in , then the desired vio-
lation bound is achievable with O(1) expert work per long-horizon task. If
not, compute the minimal random-audit rate p* in ; this is the smallest
baseline inspection layer needed to compensate for bounded penalties and
imperfect flagging.

The same derivations also indicate where the approach can break: if
I'(p, 0) is small or negative due to weak adjudication or high false positives,
then neither penalties nor targeted auditing provide reliable deterrence, and
the regulator is pushed toward either very high auditing rates or changing the
underlying oversight technology. That observation motivates the next step:
endogenizing @ as an investment (or compliance requirement) that directly
improves «(#), 3(0) and possibly (), ¢(0), thereby shifting the feasibility
and cost frontier of the mechanism itself.

3.11 Endogenizing auditability and stability: investment 6
as a governance lever

So far we treated the “governance technology” 6 as fixed. In deployment,
however, many of the quantities that make scalable oversight work—the sep-
aration a(f) — 3(0) of the suspicion signal and the accuracy gap m(0) — ¢(0)
of expert adjudication—are themselves products of engineering and process
choices. Examples include: structured logging and traceability, determinism
and reproducibility tooling, sandboxing and privilege separation, model ver-
sion pinning, data-provenance attestations, and internal “self-checks” that
make failures locally checkable. These interventions often increase opera-
tional cost (our k(f)) and/or require up-front investment. The mechanism-
design question therefore naturally becomes a joint one: how much auditabil-
ity should be required or incentivized, and how does it substitute for expert
review?

Stage-1 investment. We extend the timing by adding an investment stage
in which the developer chooses # € © C R, paying an investment cost I(6)
(e.g. engineering time, latency overhead, opportunity cost). The per-period
payoffs become

Up(C;0) = —k(0) — Ac(p,0) (0) F,  Up(V;g,0) =g — Av(p,0) 7(0) F,
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where, as before,

Av(p.0) =p+ (1 =p)a(),  Ac(p.0)=p+(1-p)B(0).
We allow 6 to affect any subset of «, 8,7, ¢, k. This matters in practice:
some interventions primarily improve a — 3 (better flagging), while others
primarily improve m — ¢ (better adjudication conditional on audit), and still
others raise k (compliance burden) without much improving detection.
Conditional on (p, F,0), the within-period equilibrium remains a cutoff
in g:

a’(g) =V < g=2g"(p,F.0) :=k(0)+L(p,0)F,  T(p,0):=Av(p,0)m(0)—Ac(p,0)¢(0).
(15)

Thus the induced violation rate remains p(p, F,6) =1 — G(g*(p, F,0)). The

novelty is that 8 is now chosen strategically anticipating how it changes both

compliance cost and enforcement pressure.

3.11.1 Developer incentives to invest in 0

Given regulator policy (p, F'), the developer chooses 6 to maximize expected
(discounted) profit. In a stationary, i.i.d. formulation, it is convenient to
work with a per-period objective that subtracts an amortized investment
cost; for example, if tasks arrive each period and the investment persists, we
can write a reduced-form per-period payoff
UD(pv F, 9) = _I(G) + EQ [UD(G*(Q); 9)] .

While the exact closed form depends on G, two qualitative forces are imme-
diate from .

First, increasing 0 can raise the deterrence wedge I'(p,6) by increasing
a and/or 7, or decreasing 8 and/or ¢. This pushes up g*, reducing the
equilibrium violation probability p. From a safety standpoint, this is good;
from the developer’s standpoint, the effect is ambiguous: fewer violations
means fewer high-g “shortcut” opportunities are taken, but it can also reduce
audit exposure and expected penalties.

Second, increasing 6 can raise the cost of compliance via k(0) and/or 1(9).
This pushes down the net payoff from choosing C' and tends to increase the
temptation to violate for marginal ¢g’s unless the enforcement improvement
dominates.

A useful sufficient condition under which higher 6 weakly decreases vio-
lations (holding (p, F') fixed) is

¥
dg*(p, F,0) _ k’(@) +F
00 00
This inequality exposes a design tension: if auditability improvements are
expensive (large k' or I') and have diminishing returns on T, private incen-
tives may underprovide 6 relative to what would minimize expected audits
or social harm.

ar(p,0)

Y

0. (16)
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3.11.2 Regulator instruments: requirements, subsidies, and 0-
contingent enforcement

We can treat 0 as (partly) contractible via process requirements: mandated
logging formats, reproducible builds, incident reporting, secure enclaves, or
standardized evaluation harnesses. Alternatively, § may be only imperfectly
observable, in which case the regulator uses incentives (subsidies, procure-
ment preferences, liability safe harbors) to induce investment.

(1) Hard requirements 0 > 0. If 0 is verifiable, the simplest mechanism
is a minimum standard §. The regulator then solves the earlier problem
conditional on # = 6, trading off audit cost against the strictness of the
standard. In a constraint-only framing (minimize expert-review cost subject
to p < 9), the regulator is pushed toward choosing € large enough to make
p small.

One clean target is the “purely triggered suffices” region. With F = F
and p = 0, feasibility of p < d requires

k(0) + (c(0)m () — B(O)$(0) F > gs. (17)

If the left-hand side is increasing in 6, then there exists a minimal 6y, sat-
isfying ; requiring 6 > 6y yields an O(1) expert-review regime driven
primarily by 5(fsrig). When () falls sharply with 6, this type of require-
ment can reduce audits more effectively than increasing penalties or adding
random audits.

(2) Subsidies and cost-sharing. When 6 is costly and socially valuable,
a natural instrument is a subsidy S(6) (or reimbursement for specific invest-
ments) that effectively reduces I(0) or k(#). With subsidies, the regulator’s
optimization becomes a joint choice over (p,F,S(-)) subject to incentive
compatibility:

0 e arg max {—1(0") + S(6') + E4[Up(a*(9);0")]} .

In many governance settings, the feasible S(-) is constrained: the regulator
may only be able to offer coarse tiers (e.g. certification levels) rather than a
continuous schedule. Even so, the structure above clarifies what the subsidy
is buying: it increases €, which improves o — 3 and/or m — ¢, which then
reduces the needed audit intensity p to achieve a target p.

(3) 0-contingent enforcement. A particularly practical approach is to
make penalties or audit intensity contingent on #: e.g. firms with better
auditability qualify for lower p (fewer random audits) or lower F' (lower lia-
bility exposure), while firms with poor auditability face higher p or stricter
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sanctions. Formally, set (p(0), F'(f)) at commitment time. Because 6 af-
fects T'(p, ), this can create a strong private incentive to invest: higher 6
both reduces expected audits (operationally) and reduces expected sanctions
conditional on compliance. This resembles “safe harbor” regimes in security
regulation, where process standards reduce liability.

A caution is that #-contingent policies require credible measurement of
0. If 0 is itself gameable (e.g. superficial logging that does not improve
auditability), then the enforcement stack must include spot checks on 6 or
tie 6 to outcome-based metrics (e.g. reproducibility rates, audit turnaround
success, or empirically estimated 5(6)).

3.11.3 Which parts remain closed-form?

When 0 is fixed, the earlier analysis yields closed-form policies such as
p*(6; F,0). Once 6 is endogenous, we conceptually face a bilevel problem:
the regulator selects instruments, anticipating that the developer selects 6,
anticipating within-period cutoff behavior. Closed forms survive in a few use-
ful special cases, but in general we should expect to use numerical methods
(or empirical estimation) to pick f-requirements and calibrate instruments.

Closed-form boundary conditions. Two thresholds are often analyti-
cally available.

First, the boundary where p = 0 becomes feasible is characterized by
(17). If a(f)m(0) — B(F)¢() and k(6) are simple parametric functions (e.g.
affine or logistic), we can solve for the minimal 6 achieving triggered-only
deterrence.

Second, in the penalty-cap regime where F' = F and I'(p,#) is affine in
p for each 6, the minimum random-audit rate retains the same functional
form as before:

o g KO)/F — (al0)r(0) — BO)6(6)
POE O =\ @) — o(0) — (@(@)m(8) — AO)60)) |

0

1

whenever the denominator is positive (equivalently, 9,I'(p,0) > 0). Thus,
conditional on 6, the enforcement layer remains explicit; 6 enters by shifting
the numerator (deterrence shortfall) and the denominator (marginal value
of random audits).

Where numerics enter. Even if p*(+; ) is closed-form, optimizing over 6
is typically not. The expected audit rate at the binding safety constraint is

E[Audit](p,0) = p+ (1 - p) (8(6) + (a(8) - B(8)) p(p, F.0)).

where p(p, F,0) = 1 — G(gs) = § at the binding point, but p itself depends
on @ through p*. Substituting p = p*(§; F',0) yields a generally nonlinear
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function of 6, even before adding any social cost of requiring 6 (or subsidies
needed to induce it). If the regulator uses a welfare objective that includes
developer burden or economic distortion from k(f) and I(€), the tradeoff
becomes even more context-dependent.

Moreover, if 0 affects the distribution G of temptations (e.g. better mon-
itoring reduces the benefit of cheating, shifting G left), then gs is no longer
fixed, and the convenience of a single quantile threshold disappears; at that
point, numerical calibration becomes the norm.

3.11.4 Safety implications and failure modes

Endogenizing § makes explicit a core governance risk: absent requirements
or incentives, the developer may rationally choose a low-auditability regime
precisely because it makes violations harder to detect. In our reduced form,
this appears as choosing 0 that lowers «(6) or raises 3(f), shrinking I and
thereby lowering the expected penalty differential between V' and C. This
is a “strategic opacity” failure mode. Conversely, a well-designed regime
can reward auditability by reducing random audits and lowering compliance
friction for high-6 systems, creating a positive feedback loop: better 6 =
fewer audits = lower operational burden = more willingness to invest in 6.

A second failure mode is “audit collapse” through false positives: if im-
proving 6 primarily lowers 3(6) (fewer spurious flags), it can dramatically
reduce expert workload even at fixed deterrence. This observation suggests
that 6 should not be evaluated only by how much it increases «; reducing 3
can be equally decisive for scalability.

Finally, if 6 increases m(f) and decreases ¢(6) by making audits more
legible (e.g. cleaner logs and reproducible replays), then the same expert
budget yields more deterrence and less wrongful punishment. This is one
of the most institutionally important benefits of auditability investment: it
improves both enforcement power and procedural fairness.

In the next section we operationalize these ideas by calibrating «, 8, 7, ¢
and costs to obtain quantitative audit-rate predictions, and by illustrating
how shifts in # move the implied p* and expected expert workload.

3.12 Calibration and quantitative illustration

In this section we instantiate the reduced-form quantities (cg, m, a, 3,7, ¢, k, F)
with stylized but deployment-motivated numbers, and use the closed-form
expression for p*(d; F,0) to translate “signal quality + liability” into (i) an
implied random-audit rate, and (ii) an expected expert-review workload per
task. The goal is not to claim a single correct calibration—these systems
are early and institution-specific—but to make explicit which parameters
dominate scalability and where improving # buys the most leverage.
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Expert-review cost in wage-hours. We map the per-audit resource cost
cy to a simple accounting identity:

cg = m-1-w-(1l+v), (18)

where m is the number of expert judgments per audit event (oracle queries),
7 is the average time per judgment (hours), w is a fully-loaded expert hourly
cost (wage plus benefits), and v is an overhead factor capturing triage, co-
ordination, secure compute, and legal documentation. As a baseline we
take m = 4 (panel-style adjudication), 7 = 0.5 hours, w = $250/hour, and
v = 0.5, yielding cg ~ 4-0.5-250-1.5 = $750 per audit event. We will report
workloads in both dollars and expert-hours; the latter is m7 - E[Audit] hours
per task.

Temptation gains and the g5 quantile. To connect the abstract temp-
tation gain g to an empirically meaningful scale, we interpret g as the private
per-task profit advantage of cutting corners (e.g. skipping costly evaluations,
disabling throttles, omitting logging, or deploying an unreviewed model vari-
ant). For closed-form illustration we assume an exponential distribution,

g ~ Exp(mean g), Glg) =1—e79/9, gs =G Y1 —-6)=—glno.

(19)
This choice is not essential, but it makes the safety target § interpretable:
tightening ¢ increases gs only logarithmically. We take g = $250,000 as a
baseline (meaning that a typical shortcut is worth a few hundred thousand
dollars in expected value), and a compliance cost k = $200,000 per task-cycle
(engineering time, slowed deployment, compute overhead). Then 6 = 1%
implies g5 ~ 1.15M, and § = 0.1% implies g5 ~ 1.73M.

Plausible (a, ) from debate-style suspicion signals. Operationally,
a(f) and () are measurable by running the debate protocol on tasks with
known “ground truth” compliance status—either by (i) inserting synthetic
violations (e.g. planted policy breaks, hidden-privilege calls, data-provenance
corruption), or (ii) using retrospective incident reviews where investigators
can label the presence of a true violation. One should expect an ROC-like
frontier: tuning the debate to be more sensitive typically raises both o and
5. For illustration we consider two regimes consistent with informal reports
from automated oversight and red-team pipelines:

Moderate separation: (c«, ) = (0.30,0.05), High separation: («, ) = (0.60,0.01).

Intuitively, 8 is the key driver of workload under triggered auditing (flags
when the system is actually compliant), while « drives deterrence (flags when
the system truly violated). In deployments with high base rates of benign
disagreements, /3 can easily land in the 5% to 15% range unless 6 is explicitly
engineered to make correct behavior easy to verify locally.
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Plausible (7, ¢) from expert adjudication. Similarly, 7 and ¢ can be
estimated by asking experts to adjudicate flagged events with and without
planted violations. We use:

(m,¢) = (0.90,0.05) (moderate legibility), (m,¢) = (0.95,0.02) (high legibility).

These numbers implicitly assume that 6 includes reproducibility and eviden-
tiary quality improvements (clean logs, replayable traces), which reduce ¢
by preventing ambiguous cases from being mistaken as violations.

Scenario A: penalty capacity is sufficient; p = 0 is feasible. Take the
moderate-separation, moderate-legibility parameters («, 8, 7, ¢) = (0.30,0.05,0.90,0.05),
target 6 = 1%, and a liability cap F' = $5M. With p = 0, the deterrence

wedge is

I'0) = ar — B¢ =0.30-0.90 — 0.05 - 0.05 = 0.2675.

The cutoff is ¢* = k£ + I'(0)F = 0.2M + 0.2675 - 5M = 1.5375M, which
exceeds g5 ~ 1.15M, so purely triggered auditing achieves p < §. At the
binding point p = §, the expected audit rate is approximately

E[Audit] = 3+ (a — 8)5 = 0.05 + 0.25 - 0.01 = 0.0525, (20)

i.e. about 5.25% of tasks trigger an expert audit. This is the first quantitative
“scalability” punchline: once deterrence is achieved without random audits,
the expert workload is governed primarily by S, and only weakly by 0.

Converting into resources, we obtain m7-E[Audit] = 4-0.5-0.0525 ~
0.105 expert-hours per task (about 6.3 minutes), and an expected dollar cost
cy - E[Audit] ~ $750 - 0.0525 = $39.4 per task.

Scenario B: penalty caps bind; random audits become necessary
and expensive. Hold everything fixed except reduce the liability cap to
F = $2M. Then ¢g*(0) = k + T'(0)F = 0.2M + 0.2675 - 2M = 0.735M, which
is below gs =~ 1.15M, so p = 0 no longer suffices. Using the closed form,

oo [(gs = k)/F — (am — B)]"
e R e ey i B

we compute (g5 — k)/F = (1.15 — 0.2) /2 = 0.475, so

. 047502675  0.2075
P =085 - 02675  0.5825

~ 0.356.

The expected audit rate at p = § is then

E[Audit] = p* + (1 — p*) (8 + (a — §)8) = 0.356 + 0.644 - 0.0525 ~ 0.390.
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Scenario (o, B) (7, @) F p*  E[Audit] Cost/task

A (triggered feasible)  (0.30,0.05) (0.90,0.05) $5M 0 0.0525 339

B (cap binds) (0.30,0.05) (0.90,0.05) $2M  0.356  0.390 $292

C (better 6) (0.60,0.01) (0.95,0.02) $2M 0  0.0159 $12
Table 1: Stylized calibration at 6 = 1%, g = $250k (exponential), k& = $200k,

cy = $750.

Thus a relatively modest penalty cap reduction (from $5M to $2M) increases
expert audits from roughly 5% to roughly 39% of tasks. This is the second
punchline: once p > 0 is required for deterrence, expected audits can jump
discontinuously because p enters additively as a baseline.

In resource terms, 0.390 audits per task at cg = $750 is $292 per task,
and m7 - E[Audit] ~ 4 - 0.5 - 0.390 = 0.78 expert-hours per task. For many
high-throughput settings, this is not scalable, suggesting that either (i) F
must be large relative to gs — k, or (ii) # must be improved to increase T,
or (iii) the policy target § must be relaxed, or (iv) the mechanism must be
enriched (e.g. multi-tier sanctions, escrow, bonding).

Scenario C: improving 6 restores triggered auditing and reduces
B-driven workload. Now keep the tighter cap F' = $2M and the same

(g, k, ), but move to a high-auditability regime with («, 3, 7, ¢) = (0.60,0.01,0.95,0.02).

The triggered-only wedge becomes
I'0) = ar — B¢ = 0.60 - 0.95 — 0.01 - 0.02 = 0.5698,

s0 g*(0) = k+T(0)F = 0.2M + 0.5698 - 2M = 1.3396M, which again exceeds
gs ~ 1.15M. Hence p* = 0 becomes feasible despite the penalty cap, purely
by improving 6.

Under p = 0, the expected audit rate collapses to

E[Audit] ~ 8 + (a — 8)3 = 0.01 +0.59 - 0.01 = 0.0159,

about 1.6% of tasks, corresponding to $11.9 per task at cy = $750, and
m7 - E[Audit] ~ 1.9 expert-minutes per task. This highlights a practical
prioritization: in regimes where deterrence can be achieved without random
audits, pushing 5 down (fewer false flags) is often the most direct route to
lower expert workload.

Sensitivity analysis: what matters most? Three comparative-statics
patterns are robust across calibrations.
First, in the triggered-only regime (p = 0), workload is essentially pinned
by 6:
E[Audit] = 8 + O(9),
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so tightening § has little operational effect unless it forces a transition into
p > 0. This means that measurement and improvement of 5(#) can be at
least as important as improving a(#) for scalability.

Second, near the boundary where p* becomes positive, small changes in
F, k, or T'(0) = am — B¢ can have outsized effects because p* is (piecewise)
affine in the deterrence shortfall. In particular, when interior,

ap* ap* op*
= 7% Bar - po)

ok
Thus, a governance regime that inadvertently increases compliance burden
k (e.g. paperwork-heavy requirements) without improving «, 8,7, ¢ can in-
crease p* and thereby explode expert workload.

Third, improving m and lowering ¢ are doubly valuable: they increase de-
terrence (reducing p*) and reduce wrongful punishment (important under a
welfare objective). In practice, interventions that make audits more legible—
deterministic replay, provenance checks, standardized logging schemas—should
be understood as improving both enforcement power and procedural fairness.

< 0.

OF

Incident-cost proxies and choosing 4. So far § has been treated as an
externally mandated safety target. In practice, organizations often back into
a target via incident-cost proxies. If the expected social harm per viola-
tion is h dollars (including downstream damages, externalities, and tail-risk
weighting), then the expected harm per task is h - p. A crude “break-even”
condition comparing expected harm to expected audit cost is

h-p < cg - E[Audit], (21)

which can be used to sanity-check whether an enforcement regime is plausibly
cost-justified, even before specifying a full welfare function. Notably, (21
can recommend either tighter targets (if h is enormous, as in catastrophic
misuse) or greater investment in 6 (if auditing is too expensive at the required
p*). The model thus clarifies a common governance dynamic: when harms
are high and penalties are capped, the system is pushed toward engineering
auditability rather than scaling human review linearly.

How to estimate «, 3,7, ¢ in practice (and why uncertainty mat-
ters). A practical calibration pipeline is: (i) define a library of violation
types and severities; (ii) generate matched compliant /violating task instances
(via red teaming, synthetic planting, or historical incidents); (iii) run the
debate protocol to estimate @, B; (iv) condition on audits and have an ex-
pert panel adjudicate to estimate 7,¢. Because p* can be sensitive near
the boundary where it becomes positive, uncertainty in am — 8¢ should be
treated conservatively (e.g. lower confidence bounds). One can also use se-
quential estimation: begin with a higher p, estimate «, 8 online, and then

35



ratchet p down as confidence improves. This suggests a governance interpre-
tation of early deployments: high audit rates may be unavoidable not only
for deterrence, but also to learn the signal parameters well enough to safely
reduce audits later.

Overall, the quantitative lesson from Table [1|is that “O(1) oversight per
long task” is compatible with meaningful deterrence, but only in parameter
regimes where (a) penalty capacity is large relative to the upper-tail temp-
tation gs — k, or (b) € is strong enough to yield large am — S¢ and small 3,
thereby avoiding the need for large p.

4 Discussion: enforcement economics, institutional
design, and robustness

Our reduced-form analysis is deliberately minimal—a single binary suspi-
cion signal from debate, a stochastic audit rule, and bounded penalties—
but it already mirrors several canonical themes in the economics of enforce-
ment. In particular, the mechanism operates by trading off severity (the
penalty F') against certainty (the audit probability), while using the debate-
generated signal s to concentrate scarce expert attention where it has the
highest marginal deterrence. This is the same basic logic behind risk-based
inspections in tax enforcement, environmental regulation, and financial com-
pliance: if one can cheaply generate a correlated “risk score” (here, a dis-
agreement /abort), then one can often keep expected expert effort roughly
constant even as task horizons T' grow.

4.1 Links to the economics of deterrence and inspection

In Becker-style deterrence models, the regulator prefers large penalties with
low inspection rates when penalties are costless transfers and can be set ar-
bitrarily high. Our setting departs from that idealization in two practically
important ways. First, penalties are bounded (F < F), which forces the
regulator to increase audit probability p when the “expected-penalty wedge”
I['(p,0) = Aym — Ac¢ cannot be made large enough. Second, audits are not
purely random: they are partially triggered by an endogenous signal pro-
duced by an adversarial interaction between systems. Formally, our audit
policy p, interpolates between two extremes that are both common in real
governance: (i) complaint- or flag-driven enforcement (p = 0), and (ii) base-
line inspections (p > 0) meant to deter violations that escape detection or
are never flagged.

One useful interpretation is that the debate protocol is playing the role of
a low-cost, high-throughput “monitor” that converts a long-horizon episode
into an audit-eligible event with probability «(#) under violation and 3(6)
under compliance. Under this lens, the key economic quantity is not any
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single parameter, but the incremental audit probability induced by violation,
(1 = p)(a— B), and how it interacts with adjudication accuracy (m, ¢). The
constraint p < § essentially demands that the expected marginal punishment
for violating exceeds the compliance burden plus the upper-tail temptation
gs. When F is small relative to that tail, we are pushed into a “certainty”
regime with larger p, and expected expert load rises rapidly because p adds
a baseline audit rate even when no signal is raised.

This framing also clarifies why improving 6 is enforcement-relevant rather
than merely “engineering hygiene.” In standard inspection models, the reg-
ulator chooses an inspection technology; here, much of the inspection tech-
nology (logging quality, replayability, locality of checks) is produced by the
developer. That endogenizes the informativeness of flags and the fairness of
adjudication. Put differently, 6 is akin to a verifiability investment that con-
verts otherwise uninspectable behavior into something closer to contractible
evidence, thereby expanding the set of feasible (p, F') pairs that achieve a
target ¢ at acceptable human workload.

4.2 Independence, collusion, and “market design” for audit-
ing

The model treats the suspicion signal («, 8) and the adjudication accuracies
(m,¢) as exogenous. Institutionally, however, these are equilibrium objects
shaped by incentives and by the degree of independence among the partici-
pants producing them. There are at least three distinct collusion surfaces.

First, the two debaters (or prover and auditor-prover) may not be inde-
pendent. If system A and system B are trained on the same data, share
weights, share hidden state, or are deployed under the same organizational
control, then the protocol may fail to generate meaningful disagreement. In
reduced form this shows up as a degradation in separation, a(f) | and/or
B(0) 1, potentially collapsing the advantage of triggered auditing. A gover-
nance lesson is that “two models” is not the same as “two incentives.” One
may need structural independence: separate training runs, different archi-
tectures, different fine-tuning data, or even different vendors.

Second, even if A and B are technically distinct, they can be econom-
ically aligned. If the same firm controls both, or if auditors are paid by
the auditee in a way that rewards smooth delivery, the system can drift
toward tacit non-adversarial behavior. This resembles classic auditor cap-
ture. The market-design response is to treat auditing capacity as a regulated
service: accreditation standards, auditor rotation, separation-of-duty rules,
and penalties for auditor negligence. In our notation, such measures are best
thought of as interventions that increase m and decrease ¢ for a fixed budget
m, while also stabilizing («, 3) by making “raising a flag” institutionally safe.

Third, experts themselves can be a collusion point. Our analysis assumes
that conditional on an audit, experts produce a conviction signal with error
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rates (m, ¢) and a per-audit cost m. In practice, expert panels can face cor-
related blind spots, social pressure, or adversarial manipulation of evidence.
Moreover, the developer may be able to shape what evidence is presented.
This suggests designing the audit pipeline as an adversarially robust process:
cryptographic logging, immutable provenance, standardized evidence pack-
ages, and random assignment of cases to reviewers to reduce selection effects.
Economically, these measures again map to increasing m and reducing ¢, but
they also reduce the variance of these quantities across cases, which matters
for worst-case safety.

These issues motivate thinking of oversight as a mechanism rather than
a single algorithm. The debate protocol, the audit trigger, the adjudica-
tion procedure, and the institutional rules for independence form a joint
system. From a market-design perspective, an appealing direction is to cre-
ate a competitive ecosystem of auditor-provers whose business model de-
pends on catching real violations (raising «/) while maintaining low false flag
rates (keeping 5 manageable). Procurement can then specify performance
thresholds in terms of measurable («, 3) under agreed-upon test suites, while
reserving the ability to raise p when performance degrades.

4.3 Limits of suspicion signals and the meaning of “O(1) over-
sight”

A core promise of doubly-efficient debate is that the number of expert judg-
ments per long task can be kept O(1) in 7. Our model reflects that promise
by placing all dependence on T into the quality of the signal s, while hold-
ing the per-audit expert effort m constant. This is conceptually clean, but it
hides several failure modes that become more salient as tasks become longer,
more open-ended, or more strategic.

First, the binary signal s € {0,1} is an extreme compression. In prac-
tice, oversight systems emit richer telemetry: confidence scores, disagreement
types, clusters of anomalous steps, and provenance alerts. Compressing this
into a single bit is without loss for our cutoff equilibrium, but it can be lossy
for implementation because it forces a single operating point on an ROC
frontier. A more realistic mechanism would allow the regulator to choose
multiple audit tiers (e.g. light review versus full panel) as a function of a
continuous suspicion score, which can reduce expected cost for a fixed deter-
rence level.

Second, «(f) > (B(0) can fail in adversarial regimes. A strategically
sophisticated developer may be able to cause disagreement precisely when
compliant (inflating ) while suppressing disagreement when violating (de-
flating a). This is analogous to “alarm fatigue” and to adversarial examples
for anomaly detectors. Technically, this suggests that the debate protocol
should be designed so that producing spurious disagreement is itself costly
or detectable (e.g. via consistency checks, commitment schemes, or by pe-
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nalizing incoherent challenges). Institutionally, it suggests that repeated
false flags should trigger investigation into the auditor-prover, not only the
developer.

Third, the mechanism relies on the idea that violations are locally wit-
nessable: there exists some succinct evidence that a human panel can verify
with m = O(1) queries. Some classes of failures may be inherently global
(e.g. slowly accumulating distributional harms, diffuse privacy leaks, or long-
run deceptive alignment) and therefore hard to adjudicate from a small snip-
pet. In such cases, either m must grow with task complexity, or the task
must be instrumented so that violations generate localized forensic artifacts
(an argument for investing in #). Put bluntly, the “O(1) oversight” claim is
only as strong as the claim that violations have short certificates.

4.4 Distribution shift and robust enforcement

We have treated (o, §, 7, ¢) as stable parameters. Real deployments face dis-
tribution shift across time, across products, and across adversaries. Under
shift, a regulator that sets (p, F') based on yesterday’s a, B may be under-
enforcing today. This is especially concerning near the boundary where trig-
gered auditing ceases to be sufficient and p* becomes positive: small degra-
dations in I'(0) = am — f¢ can imply large increases in the required baseline
audit rate.

There are two complementary responses. The first is statistical conser-
vatism: choose (p, F') using lower confidence bounds on « and 7 and upper
confidence bounds on 8 and ¢. This directly reduces the probability of in-
advertently violating the target p <, at the cost of higher expected audits.
The second is adaptive enforcement: treat p as a control variable that can
be increased when observed flags, incident reports, or audit outcomes sug-
gest that parameters have shifted. Importantly, because audits are also the
way we learn (m,¢) and can help re-estimate («, ), a higher p can have
informational value early in deployment even if it is not strictly required for
deterrence under the best current estimate.

This perspective aligns with how regulators often operate in practice:
initial “ramp-up” phases with intensive oversight, followed by relaxation as
the regulated process stabilizes, and renewed tightening after incidents. Our
framework provides a compact language for that dynamic: early phases are
characterized by uncertainty about #-dependent signal quality, which ratio-
nalizes higher p as both deterrence and measurement.

4.5 Policy implications: procurement, liability, and audit
standards

The model suggests several concrete governance levers.
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Procurement and contracting for 6. If § reduces 5 and increases «
and/or improves adjudication (7 1, ¢ |), then it has first-order value in low-
ering oversight cost while maintaining a safety target. This supports writing
procurement requirements in terms of auditability deliverables: immutable
logs, deterministic replay, standardized interfaces for extracting evidence,
and well-defined “violation types” with test harnesses. In contract language,
0 is a performance characteristic that should be verified at acceptance time,
not retrofitted after incidents.

Liability and bonding. Bounded liability F is a central driver of whether
random audits are needed. When F is low relative to upper-tail temptations,
purely triggered auditing can become infeasible, pushing the system into
high baseline audits. One policy response is to increase effective penalties
via bonding or escrow: require the developer to post a bond that can be
forfeited upon conviction, effectively raising the collectible F' without relying
on ex post damages. Another is to use non-monetary sanctions that behave
like higher F' in expected-utility terms (e.g. license suspension, procurement
bans), though these raise separate fairness and proportionality concerns.

Audit standards and measurement regimes. Because (a, 3,7, @) are
measurable, regulators can standardize how they are estimated: shared li-
braries of planted violations, reporting requirements for false-flag rates, and
minimum adjudication procedures. A particularly important standard is how
to operationalize “ground truth” for estimating o and 3; without well-defined
violation taxonomies, these rates become contestable. Standardization also
improves cross-firm comparability, which can prevent races to the bottom
where firms claim low § by narrowing the definition of a flag.

Transparency about operating points. Finally, because 8 largely de-
termines workload in the triggered regime, stakeholders should be explicit
about the chosen operating point on the ROC frontier. A system tuned to
be highly sensitive may generate unscalable 3, while a system tuned to be
quiet may drive a too low for deterrence. Publishing operating character-
istics (perhaps with appropriate confidentiality protections) can make these
tradeoffs legible and can create incentives to improve 6 rather than merely
shifting thresholds.

Overall, our view is that the main value of the formalism is not the spe-
cific functional form of p*, but the clarity it provides about which improve-
ments buy scalability. If we want long-horizon systems to be governable with
roughly constant expert effort, we should treat debate-style oversight as one
component in a broader enforcement mechanism: one that engineers for ver-
ifiability, designs for independence, and plans for distribution shift rather
than assuming it away.
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4.6 Conclusion and open problems

We can summarize the main message of the paper as follows: if long-horizon
Al tasks admit a debate-style protocol that surfaces a low-bandwidth suspi-
cion signal whose separation «(f) > £(0) remains stable as horizons grow,
then it becomes possible—at least in principle—to enforce a small violation
rate p < § while keeping human oversight O(1) per task. The economic con-
tent of the claim is not that audits disappear, but that auditing effort can be
concentrated: expected expert work is governed by the flag rate under com-
pliance 3(0), the incremental flag probability under violation a(6) — 3(6),
and the effective expected-penalty wedge I'(p,0) = Aym — Acd. This per-
spective turns a vague aspiration (“scalable oversight”) into an engineering-
and-governance target: design systems and institutions so that 5 stays low,
« stays high, and adjudication is accurate enough that @ — ¢ is meaningfully
positive.

That said, several assumptions doing work in the model are precisely the
ones that are most brittle in real deployments. We close by highlighting
open problems that seem both technically deep and institutionally central:
correlated expert errors, collusion among debaters, multi-task reputations
and long-run incentives, learning (o, 3) and (m, ¢) online under shift, and
integration with automated proxy signals such as reward models.

Correlated expert errors and common-mode failures. Our adjudi-
cation layer is summarized by two scalars (m, ¢), implicitly assuming that (i)
experts are conditionally i.i.d. given the true action a, and (ii) aggregation
across m = O(1) judgments yields stable error rates. The worry is common-
mode failure: experts may share the same blind spots, be misled by the same
adversarial presentation, or face the same ambiguity in the specification of
“violation.” In that case, increasing the panel size m does not reduce error
in the way a Chernoff bound would suggest; instead, one might have m(m)
saturate and ¢(m) remain bounded away from zero.

A simple way to formalize this is to introduce a latent “case difficulty”
variable z so that 7 = E[r(z)] and ¢ = E[¢(z)], where hard cases generate
both low true-positive rates and high false-positive rates. Another is a mix-
ture model with probability 1 of a common-mode error event (e.g. an exploit
that fools most reviewers), so that even with many reviewers the effective er-
ror floor is . Under either formalization, the enforcement lever that matters
is not merely increasing m, but increasing the diversity and independence of
evidence sources and reviewer viewpoints. This suggests a concrete research
agenda: identify what forms of independence can be made operational (e.g.
reviewer pools separated by organization, geography, or training), and quan-
tify how much they improve the effective (7, ¢) per unit cost.

A related issue is adversarial “evidence shaping.” Our reduced form as-
sumes that, conditional on audit, the expert sees whatever is needed to judge
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the claim. In practice, what the expert sees is mediated by tools, logs, sum-
maries, and potentially by the developer. An open problem is to design audit
interfaces and evidence packages that are themselves robust: for example,
minimizing the degrees of freedom the auditee has in curating the narrative,
while preserving privacy and trade secrets. Cryptographic commitments
and provenance systems are promising here, but the interaction with human
comprehensibility is unresolved: we need evidence that is simultaneously
tamper-resistant and cognitively parsable.

Collusion and strategic behavior within debate. We have treated
the debate layer as a generator of a suspicion signal with fixed «(f) and
B(0). Yet if both debaters are ultimately optimized by the same entity, or
if either side can coordinate out of band, then the protocol may degenerate.
More subtly, even without explicit collusion, strong shared training data
and architectures can create correlated failures: both agents miss the same
flaw, or both converge to the same deceptive equilibrium. In reduced form,
this appears as «(0) falling toward ((6), which eliminates the advantage of
triggered auditing and forces the regulator into baseline inspection (p > 0)
to maintain deterrence.

Two open directions look particularly important. First is mechanism de-
sign for adversariality: how do we specify training objectives, constraints,
and participation rules such that the auditor-prover has an intrinsic incentive
to surface problems, and the prover cannot cheaply “sandbag” by making the
auditor look incompetent? In other words, we want an equilibrium where
raising a flag is neither systematically punished (which would suppress «a)
nor systematically rewarded regardless of truth (which would inflate 3). Sec-
ond is structural independence: what concrete independence requirements
(separate weights, separate data, separate fine-tuning, separate deployment
infrastructure) measurably improve the separation o — 87 Independence is
costly, and without quantification it is difficult to justify institutionally; our
framework suggests measuring its value in the currency of reduced required
p* and hence reduced human workload.

A deeper collusion surface arises when the developer can influence 6 in
ways that make oversight look strong while weakening it. For example,
logging might be comprehensive but selectively omitted around high-risk ac-
tions; or the system might be instrumented to generate high disagreement
on innocuous issues (raising ) while being tightly aligned to avoid disagree-
ment on critical failures (lowering «). Detecting such “oversight gaming”
likely requires meta-audits of the auditing pipeline itself, and perhaps ex-
plicit penalties tied to measured o and 8 on challenge sets. Designing those
challenge sets without making them leakable or gameable is an open problem
that resembles robust benchmarking in ML, but with an adversary who is
economically motivated.
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Multi-task reputations and repeated-game incentives beyond one-
period deterrence. The stationary cutoff analysis is a useful baseline, but
real developers face multi-period incentives: maintaining a license, access
to compute, procurement eligibility, reputation with customers, and so on.
These channels effectively create dynamic penalties that are not bounded in
the same way as per-incident fines. In our notation, one could model this as a
continuation value loss L following conviction or following repeated flags, so
that the effective penalty becomes Fog = F'+ L. This can dramatically reduce
the need for p even when F is small, but it introduces new complications:
dynamic punishments raise due process and error concerns, and they can
create perverse incentives to conceal evidence or to contest every adverse
finding.

An open theoretical problem is to characterize optimal enforcement when
the regulator can condition future audit intensity and licensing on observed
histories h; of flags and convictions. One can imagine “responsive regula-
tion” policies where p; increases after suspicious events and relaxes after
long clean streaks. Such policies are attractive operationally, but they cre-
ate strategic responses: developers may invest in risk smoothing (avoiding
detectable spikes) rather than reducing mean risk, or may front-load compli-
ance to build reputation then exploit slack. Understanding these dynamics
likely requires moving from a one-shot cutoff to a repeated-game equilib-
rium with imperfect public monitoring, where flags serve as public signals
and audits as costly verification actions. The design question then becomes:
what combination of escalation rules and evidentiary thresholds yields strong
long-run compliance while limiting the impact of false positives?

A closely related institutional issue is cross-task externalities. If the same
developer deploys many models or runs many products, then enforcement
on one task can discipline behavior elsewhere, creating economies of scale in
oversight. Conversely, a developer may “shuffle” risky behavior across tasks
to stay below detection thresholds. A mechanism that sets p independently
per task may be suboptimal; one might instead allocate a fixed audit budget
across tasks using a portfolio rule that responds to aggregate signals. For-
malizing this requires extending the model to multi-armed settings where
each arm has its own (a, ) and harm profile, and where the developer’s
temptation distribution G may depend on the portfolio of opportunities.

Dynamic learning of («, ) and (m,¢) under shift. In deployments,
regulators do not know «(#), 5(0), m, or ¢ with certainty, and these param-
eters can drift. Learning is complicated by selective labels: convictions are
observed only upon audit, and audit is correlated with flags. This creates an
identification challenge: naive estimators of m and ¢ are biased by the fact
that audited cases are not representative.

One open problem is to design audit policies that simultaneously deter
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and identify. In bandit language, p is not only an enforcement instrument
but also an exploration rate that ensures the regulator occasionally audits
unflagged cases, enabling estimation of what is missed by s. This suggests
a principled role for p > 0 even when penalties are large: maintaining a
“measurement floor” that prevents blind spots from growing unnoticed. A
natural research direction is to derive finite-sample guarantees of the form:
choose p; and F' such that with high probability (i) p; < § for all ¢, and (ii)
confidence intervals on «, 8, 7, ¢ shrink at a rate sufficient to reduce p; over
time when the system is stable. Technically, this becomes a robust control
problem with partial observability and adversarial drift.

A second open problem is to incorporate @ into learning. If developers
can change logging and instrumentation, then the mapping from behavior
to flags is itself endogenous. Auditing outcomes can then be used not only
to punish, but to validate auditability claims: does the deployed system
actually produce the promised forensic artifacts? Formal methods may help
here, but the key is to connect them to measurable performance, e.g. lower
confidence bounds on «(€) on standardized challenge tasks. A practical goal
would be a “regulatory ROC report” that is robust to selection bias and
resistant to manipulation.

Integrating reward-model proxies and other automated signals.
Finally, real oversight stacks rarely rely on a single bit s. They include
automated detectors, policy classifiers, red-team systems, and reward mod-
els that score outputs for compliance. These signals are cheap and can be
run at scale, but they are also vulnerable to Goodharting and adversarial
adaptation. The open question is how to integrate such proxies into an
enforcement mechanism without letting them become the target.

One natural extension of our model is a multi-signal audit trigger: let
x € [0,1] be a continuous suspicion score produced by automated monitors
(including reward models), and let debate produce an auxiliary signal s. The
regulator then chooses an audit rule A(z, s), potentially with multiple tiers
of review. The challenge is to define equilibrium behavior when the devel-
oper can influence both x (by optimizing to the proxy) and the true violation
process. In such settings, improving proxy performance can perversely re-
duce safety if it shifts effort from true compliance to proxy compliance. The
economic question is which signals should be “in the loop” for enforcement
(affecting audits and penalties) versus “out of the loop” for internal monitor-
ing, and how to rotate or randomize proxies to reduce gaming.

A promising direction is to treat debate as an adversarial check on proxy
gaming: if the developer is optimizing against a reward model, the auditor-
prover can be trained to find counterexamples where the proxy approves
but a human would not. In reduced form, this aims to keep « high even
when the system is optimized to suppress obvious alarms. But making this
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robust requires careful protocol design: auditor objectives must be aligned
with uncovering genuine proxy failures, and training must avoid overfitting
to known failure modes.

What would count as success? From a safety standpoint, the core em-
pirical milestones suggested by this framework are measurable: stable sep-
aration o — 8 on relevant distributions; adjudication accuracy (m,¢) that
does not collapse under adversarial pressure; and evidence that increasing
task horizon T does not force [ upward or require m to grow. From a
governance standpoint, the milestone is institutional: credible independence
between prover and auditor, auditable #-deliverables, and adaptive policies
that respond to drift without becoming arbitrary.

We view these as complementary. The formalism is intentionally spare,
but it helps keep attention on the quantities that must be made robust if
“O(1) oversight” is to be more than a slogan. The open problems above are
not merely technical details; they are the points where scalable oversight can
fail silently. Progress likely requires joint work across learning theory (robust
monitoring and gaming-resistant proxies), mechanism design (incentives for
auditors and developers), and systems security (tamper-evident logging and
evidence integrity).

45



	Introduction: from doubly-efficient debate to compliance institutions
	Background and mapping: from doubly-efficient debate to a compliance-relevant signal
	What we use from doubly-efficient debate: constant-query escalation
	From debate transcripts to an operational binary signal
	Auditability and stability as a governance-relevant technology parameter
	What is exogenous vs. endogenous in the economic model
	Why this abstraction is appropriate (and what it leaves out)

	Baseline model: per-task enforcement with suspicion-triggered auditing
	Agents, timing, and policy instruments
	Suspicion as a reduced-form output of scalable oversight
	Audit policy: combining targeted escalation and background checks
	Conviction accuracy and the cost of expert review
	Developer payoffs and the interpretation of compliance versus violation
	The developer’s per-instance decision problem
	Regulatory objective: scarce expert attention and a safety target
	Assumptions, limitations, and extensions we have in mind
	Stationary equilibrium characterization: cutoff rule, violation rate, and audit workload
	Cutoff behavior
	Equilibrium violation probability
	Expected audit rate and expected expert workload
	Existence, uniqueness, and corner cases

	Mechanism design: minimizing expert-review cost subject to a safety target
	The regulator’s constrained problem and the ``deterrence wedge''
	When purely triggered auditing suffices (rho=0)
	Penalty caps and the necessity of random audits
	Audit-cost minimization: why the optimum typically sets F=barF
	When triggered audits dominate, and what ``dominance'' means here
	Optional welfare extension: adding harm and wrongful punishment
	Summary: a simple enforcement ``stack''

	Endogenizing auditability and stability: investment theta as a governance lever
	Developer incentives to invest in theta
	Regulator instruments: requirements, subsidies, and theta-contingent enforcement
	Which parts remain closed-form?
	Safety implications and failure modes

	Calibration and quantitative illustration

	Discussion: enforcement economics, institutional design, and robustness
	Links to the economics of deterrence and inspection
	Independence, collusion, and ``market design'' for auditing
	Limits of suspicion signals and the meaning of ``O(1) oversight''
	Distribution shift and robust enforcement
	Policy implications: procurement, liability, and audit standards
	Conclusion and open problems


