
Personalized Alignment with Guarantees:
Multi-Objective Constrained DPO under
Endogenous Prompts and Fairness Caps

Liz Lemma Future Detective

January 22, 2026

Abstract
Preference optimization methods such as Direct Preference Opti-

mization (DPO) provide a simple RL-free route to aligning language
models by learning from pairwise comparisons. However, 2026-era
alignment is dominated by heterogeneous demand: different user pop-
ulations and regulatory environments impose distinct objectives (e.g.,
helpfulness vs harmlessness, adult vs minor settings, enterprise com-
pliance). Simultaneously, preference data are observational and con-
founded because users choose prompts endogenously, creating objec-
tive–prompt correlations that break naive generalization. We develop
a clean multi-objective framework for conditional alignment in which
the deployed policy is πθ(y | x, c), conditioned on an objective/type
c, and is trained from type-conditional preference data using a con-
strained DPO objective with interpretable Lagrange multipliers enforc-
ing groupwise harm caps. Building on DPO’s change-of-variables view
(policy as an implicit reward) and recent causal analyses of preference
learning (confounding and overlap), we (i) characterize the closed-form
welfare-optimal constrained policy as an exponential tilt of a type-
conditional reference model, (ii) provide identification and consistency
conditions for constraint-augmented DPO under overlap in a causal
feature space, (iii) derive generalization bounds that separate within-
type estimation error from cross-type overlap error, and (iv) propose
multihead/adversarial representation learning as a practical method to
reduce prompt-type confounding. Empirically, we outline evaluations
on HH-style helpful/harmless data and multi-domain preference logs,
including stress tests under prompt-type shifts and type misreport-
ing. The result is a principled alternative to one-size-fits-all alignment
with explicit welfare and safety guarantees relevant to regulation and
product design.

Table of Contents

1. 1. Introduction: heterogeneous demand in alignment; why pooled ob-
jectives fail; contributions and how they build on DPO and causal

1

preference learning.

2. 2. Related work: DPO/RLHF regularization; causal preference learn-
ing (confounding/overlap, latent treatments); multi-objective reward
modeling; fairness constraints in ML; personalization and hidden con-
text in RLHF.

3. 3. Setup and primitives: user types/objectives c, endogenous prompt
generation pc(x), responses, preferences via Bradley–Terry; harms and
caps; reference policies; what is observable vs latent.

4. 4. The planner’s problem: define the social objective (weighted sub-
group welfare) with KL regularization and harm caps; discuss identifi-
ability and reward equivalence classes.

5. 5. Closed-form characterization: derive π∗(y | x, c) as exponential tilt-
ing of πref with Lagrange multipliers; discuss uniqueness up to prompt-
only shifts and when numerical methods are needed.

6. 6. Constrained Multi-Objective DPO: define the empirical objective
(type-conditional DPO with constraint penalties); show equivalence to
MLE under a reparameterized Bradley–Terry model; propose group-
specific βc.

7. 7. Robustness under endogenous prompts: articulate overlap assump-
tions in a causal feature space z = g(x, y); derive generalization bounds
separating within-type estimation error and cross-type overlap error;
discuss how confounding manifests as overlap failure.

8. 8. Representation learning to mitigate prompt-type confounding: mul-
tihead architecture (shared encoder, objective heads) and adversarial
invariance to prompt-type; mapping to assumptions needed for the
theory; when guarantees become heuristic.

9. 9. Pareto + fairness results: conditions under which conditional poli-
cies Pareto-dominate pooled policies subject to harm caps; interpretabil-
ity of Lagrange multipliers as ‘group conservatism prices’.

10. 10. Extensions: partial observability of c (proxy ĉ), misreporting in-
centives and equilibrium reporting; mixture-of-experts; time-varying
objectives and online updates.

11. 11. Empirical plan: HH-style dataset with synthetic counterfactual ob-
jectives; multi-domain preference logs; stress tests (prompt-type shift,
overlap degradation, length/format artifacts, misreporting); metrics
(subgroup win rates, harm cap violations, KL drift).

2

12. 12. Discussion and policy implications: audit and logging require-
ments; when personalization is necessary; setting βc and harm caps;
limitations and open questions.

3

1 Introduction

Modern alignment practice increasingly resembles platform design: we de-
ploy a single, general-purpose language model into an environment where
many users arrive with heterogeneous objectives, and where the platform is
accountable for both usefulness and safety. Even when a model is advertised
as “general,” usage patterns quickly segment: some users seek terse factual
answers, others want brainstorming, others want code, tutoring, emotional
support, or role-play. The central difficulty is that these objectives are not
merely different loss functions evaluated on a fixed data distribution; they
shape which prompts users choose to write, which in turn shapes what the
model is trained and evaluated on. In other words, demand is heterogeneous
and endogenous, and the resulting feedback loop interacts nontrivially with
safety constraints.

A standard response in current RLHF/DPO pipelines is to pool pref-
erence data and train a single policy that performs well on average. This
pooling choice is often implicit: preferences are aggregated over annotators,
prompts, and contexts, and the objective is optimized under a global regular-
izer (typically a KL penalty to a reference policy) plus whatever safety filters
or rejection rules are applied. Pooling is attractive because it avoids person-
alization infrastructure and because it appears to reduce variance. However,
it also forces compromises whenever subpopulations disagree about which
responses are better, and it can systematically misrepresent minority objec-
tives when the training mixture reflects platform convenience rather than a
normative allocation. Moreover, because prompt distributions differ across
user groups, pooled training can inadvertently learn spurious correlations
that hold in the training mixture but fail for any particular group at deploy-
ment.

We can see this tension in mundane examples. Suppose one user type
values creative elaboration while another values brevity; a pooled policy may
respond with medium-length answers that satisfy neither. More importantly
for safety, suppose a subset of users seeks instruction-like content in high-risk
domains (e.g., chemistry, cybersecurity), while other users never touch these
domains. Pooled training data will correlate certain prompt features with
high-risk content, and naive optimization can drive the policy into regimes
where it either over-refuses benign requests for the cautious group or under-
refuses risky requests for the vulnerable group. In both cases, the failure
mode is amplified by endogenous prompt selection: users adapt their prompts
to obtain desired behavior, so the prompt distribution is itself a moving
target influenced by the policy.

Our aim in this work is to make this deployment reality explicit in the
mathematical object we optimize. We model a finite set of user types/objectives
c ∈ C, each with its own prompt distribution pc(x) and latent utility uc(x, y)
over model responses. This is deliberately a stylized representation: “type”

4

can stand in for a mixture of user intent, context, risk tolerance, and ju-
risdictional constraints. The key is that conditioning on c is not merely a
convenience; it is a mechanism for avoiding compromises that are artifacts
of pooling and for expressing normative decisions (via planner weights and
constraints) in a way that can be audited. Conceptually, we can interpret
the platform as choosing a training and deployment procedure that maps
observed information to a type-conditional policy πθ(y | x, c), potentially
routed by an observed proxy ĉ.

We then connect this deployment picture to an optimization problem that
is simultaneously familiar from RLHF and more transparent about safety
trade-offs. Starting from a reference policy πref (e.g., an SFT model), we
consider a KL-regularized welfare objective that trades off type-conditional
expected utility against deviation from πref , with type-specific conservatism
βc. Crucially, we incorporate explicit harm metrics hm(x, y) and groupwise
caps δm,c that can encode regulatory requirements, platform policy, or user-
protection standards. This yields a constrained optimization problem whose
Lagrangian reveals the operational meaning of safety constraints: each bind-
ing cap induces a multiplier λm,c that prices the corresponding harm within
the affected type, effectively subtracting a penalty from the utility signal.

This structure gives an immediate conceptual payoff: under standard
regularity conditions, the welfare-optimal feasible policy has a closed-form
“exponential tilting” solution,

π∗(y | x, c) ∝ πref(y | x, c) exp

(
uc(x, y)−

∑
m λ̃m,chm(x, y)

βc

)
,

which makes precise what practitioners often describe informally as “start
from a safe baseline and nudge toward preferred behavior.” Here, βc governs
how aggressively we move probability mass away from the baseline for type
c, while λ̃m,c governs how strongly we avoid particular harms. This view
also clarifies a common governance question: what does it mean to “tighten
a policy”? In our model it corresponds to reducing δm,c, which (when the
constraint binds) increases λm,c and thereby shifts the entire distribution
toward responses with lower expected hm.

A second payoff is methodological. Direct Preference Optimization can
be interpreted as maximum-likelihood estimation in a Bradley–Terry pref-
erence model after a change of variables that identifies the reward only up
to a function of the prompt. We leverage this interpretation to motivate
a constrained, type-conditional DPO objective: we fit πθ(· | x, c) so that
the induced log-ratio reward r̂θ,c(x, y) = βc log

πθ(y|x,c)
πref(y|x,c) matches preference

differences within each type, while adding penalties corresponding to harm
caps. Under correct specification of c (or under small proxy error), this
objective is consistent for the same family of constrained optima charac-
terized above. Intuitively, DPO learns the utility differences that explain

5

within-type comparisons; the constraint terms then shift the learned reward
by harm prices, producing precisely the exponential tilt implied by the La-
grangian.

The central obstacle in making these claims meaningful is generalization
under endogenous prompts. If type c tends to ask only a narrow slice of
prompts, the preference dataset for c will overrepresent that slice; optimiz-
ing a conditional policy can then overfit to correlates of utility that do not
hold when the prompt distribution shifts (e.g., when users learn to “prompt
around” refusals). To address this, we state an overlap/positivity condition
in a causal feature space z = g(x, y), together with a density-ratio overlap
constant κ that quantifies how different types (or training and deployment
distributions) can be over relevant features. This yields a decomposition of
regret into within-type estimation error plus a shift term amplified by κ.
Operationally, this highlights a safety-relevant failure mode: weak overlap
does not merely increase variance; it makes confounding-induced generaliza-
tion failures likely, because the model can exploit spurious prompt features
that are predictive in-sample but unstable out-of-sample. It also suggests
concrete mitigations: targeted data collection to improve overlap, represen-
tation learning that maps prompts and responses into more causally stable
z, and evaluation protocols that explicitly measure performance under dis-
tribution shift rather than only on the observed mixture.

Personalization is often criticized as incompatible with safety, because it
might allow a user to self-select into a less restricted model. Our framework
separates two questions that are frequently conflated: (i) should the platform
optimize different utility trade-offs for different objectives, and (ii) should it
permit different safety constraints for different users? We allow both to be
explicit design choices. When harm caps are fixed (possibly equal across
types), conditioning on c can be Pareto-improving in welfare relative to any
pooled policy whenever genuine preference heterogeneity exists. The reason
is simple: a pooled policy must compromise on response pairs where types
disagree, whereas a conditional policy can tilt probability mass in opposite
directions for different types without harming other groups. This observation
is not merely about “user satisfaction”; it matters for governance because it
implies that imposing a single pooled objective may be an avoidable source
of both dissatisfaction and pressure to weaken safety constraints.

Finally, we confront a practical limitation: type c may not be directly
observed. In deployment, we might only have a noisy proxy ĉ inferred
from context, user settings, or interaction history, and misrouting can cre-
ate both welfare loss and safety risk. We provide a robustness statement:
if P(ĉ ̸= c) ≤ ϵ, then welfare loss relative to the ideal type-routed policy
scales as O(ϵ) under bounded utilities and mild smoothness. This formal-
izes a common engineering intuition: imperfect personalization can still be
beneficial if misclassification is rare and if safety margins are designed to be
robust to occasional routing errors.

6

In sum, our contributions are to (a) formalize heterogeneous, endoge-
nous demand in a KL-regularized, safety-constrained alignment objective;
(b) connect constrained, type-conditional DPO to the resulting constrained
optimum via a transparent Lagrangian interpretation; and (c) articulate the
key statistical and governance conditions—overlap, proxy-type error, and
binding safety caps—under which personalization is welfare-improving rather
than merely a product feature. Throughout, the formalism is not an end in
itself: it is a way to expose the safety trade-offs we are already making im-
plicitly, and to make them legible enough to be audited, stress-tested under
shift, and adjusted when policy or regulation changes.

2 Related work

Our framing sits at the intersection of RLHF-style alignment, causal pref-
erence learning under selection, and constrained optimization for safety and
fairness. We briefly situate each ingredient and highlight where our empha-
sis differs: rather than treating the training distribution as fixed, we treat
heterogeneous user demand as endogenous, and we use this to motivate type-
conditional regularization and explicit groupwise harm constraints.

RLHF, KL regularization, and “stay close to a reference.” Most
deployed alignment pipelines combine (i) supervised fine-tuning (SFT) to-
ward demonstrations, (ii) preference modeling or direct preference learning
from pairwise comparisons, and (iii) a regularized policy-improvement step
that controls deviation from a reference model ???. The KL penalty (or
equivalent trust-region constraint) plays a dual role: it stabilizes optimiza-
tion and acts as a conservatism prior that limits unanticipated capability
shifts and reward hacking ??. From a maximum-entropy control perspec-
tive, KL-regularized expected reward leads to a Gibbs / exponential-tilting
form of the optimal policy relative to the reference, a point that appears
across entropy-regularized RL and control-as-inference literatures ??. Our
contribution is not to re-derive this classical structure, but to emphasize its
type-conditional interpretation: different subpopulations may warrant dif-
ferent conservatism parameters and different harm prices, and making these
explicit renders a set of otherwise implicit product and governance decisions
auditable.

Direct Preference Optimization and likelihood-based preference
learning. DPO and related methods replace explicit reward-model train-
ing plus RL with a direct optimization of the policy using a Bradley–Terry
/ logistic likelihood on pairwise preferences ??. This line of work highlights
an important identification fact: the learned “reward” is only determined
up to an additive, prompt-dependent baseline, and it is the difference in

7

rewards that drives preference probabilities. That observation is often pre-
sented as a technical convenience (enabling stable training without a separate
reward model), but it also clarifies what aspects of feedback are and are not
recoverable from comparisons. We build on this likelihood view to moti-
vate a constrained variant in which harm penalties enter as Lagrange terms,
aligning the statistical target of DPO with the policy form implied by KL-
regularized constrained welfare maximization. Related work on IPO, KTO,
and other preference-based objectives can also be interpreted through this
lens as making different modeling choices about noise, margins, or calibra-
tions of the implicit reward ??.

Confounding, endogenous data collection, and causal preference
learning. A recurring challenge in preference learning is that labels are col-
lected under a policy and a prompt distribution that are themselves shaped
by deployment and experimentation. In interactive settings, selection ef-
fects arise because the platform chooses which outputs to show (and there-
fore which comparisons are observed), while users adapt their prompts in
response to prior outcomes ??. Even in static datasets, “prompt-type con-
founding” can occur when different user groups systematically produce dif-
ferent kinds of prompts and also have different preference functionals, so that
correlations between prompt features and preferred responses do not trans-
port across groups. Causal inference and domain adaptation literatures for-
malize these issues using overlap/positivity and density-ratio control, yield-
ing bounds where generalization degrades with weak overlap ??. Recent
work on causal representation learning and invariant prediction similarly
aims to map observations into feature spaces where relationships are more
stable across environments ??. Our use of a causal feature map z = g(x, y)
and an overlap constant κ is in this spirit: it is a compact way to express
when preference estimates within a type can be trusted to generalize under
shifts induced by adaptation, policy updates, or cross-type pooling.

Latent context, hidden treatments, and preference heterogeneity.
Several strands of work emphasize that feedback often depends on unob-
served context: user intent, expertise, risk tolerance, jurisdictional rules, or
situational constraints that are not fully captured by the prompt text. In RL
and bandits, this is modeled as partially observed state (POMDPs), latent
user embeddings, or hidden confounders affecting both action and reward
??. In RLHF specifically, annotator heterogeneity and prompt-dependent
label noise can be viewed as latent variables, and multiple works study ag-
gregation, mixture models, and disagreement-aware training ??. Our focus
is on the decision-theoretic implication: if heterogeneity is genuine (types
rank some response pairs in opposite directions), then any single pooled pol-
icy must compromise on those pairs, whereas conditioning on (observed or

8

inferred) type can avoid the compromise. This connects to classic results
in social choice and mechanism design about aggregation under conflicting
preferences, but in our setting the key additional complication is that the
distribution over prompts is endogenous and correlated with type.

Multi-objective reward modeling and constrained alignment. Align-
ment systems are routinely trained against multiple criteria: helpfulness,
harmlessness, honesty, style, and domain-specific policy compliance. Practi-
cally, this is handled via reward shaping, scalarization, rejection sampling,
and “constitution”-style rule hierarchies ??. A large literature in multi-
objective optimization studies scalarization, Pareto frontiers, and lexico-
graphic constraints; in safe RL, constrained Markov decision processes and
Lagrangian methods provide canonical tools for enforcing cost budgets ??.
Our formulation is closest in spirit to constrained optimization, but with
two distinctions motivated by deployment: (i) constraints are groupwise (in-
dexed by type), which reflects how many safety and compliance requirements
are actually written (e.g., different rules for minors vs. adults, different ju-
risdictions), and (ii) we interpret the resulting multipliers as explicit “harm
prices” that can be audited and adjusted, rather than as opaque coefficients
in a monolithic reward.

Fairness constraints, group robustness, and normative weights.
Imposing constraints or priorities that differ across groups has a long history
in fair machine learning, including demographic parity, equalized odds, and
related constraints ??. Group distributionally robust optimization (Group
DRO) similarly focuses on improving worst-group performance under mix-
ture uncertainty ?. In sequential settings, fairness constraints and safe ex-
ploration introduce additional complications because policies affect future
data ?. While our harm caps δm,c are not fairness constraints in the clas-
sical sense, they play a structurally similar role: they bound an externality
(harm) for each subgroup, and they can bind differently depending on ex-
posure and risk. Likewise, planner weights wc make explicit that training
mixtures encode normative choices; changing wc is not merely reweighting
data but changing the welfare objective. This separation between empirical
mixture and normative weighting parallels discussions in fairness about the
gap between observational prevalence and ethical priority.

Personalization, routing, and safety concerns. Finally, our type-
conditional approach relates to personalization and conditional computation
in large language models: mixture-of-experts routing, adapter selection, user
embeddings, and context-conditioned policies ??. In practice, product teams
already expose user-selectable modes (e.g., “creative” vs. “precise”), and re-
search prototypes explore preference profiles and user-specific alignment. A

9

common objection is that personalization can become a safety vulnerability
if users can self-select into a less restrictive regime. Our framework clarifies
the design degrees of freedom: one can allow type-dependent utility trade-
offs while holding harm caps fixed (or even tightened) across types, and one
can quantify the effect of imperfect routing through proxy-type error ϵ. This
connects to broader governance themes: auditing requires that the mapping
from observed signals to types, and from types to constraints, be legible; ver-
ification requires measuring harms and constraint violations per group; and
robustness requires safety margins that tolerate occasional misclassification
without catastrophic externalities.

3 Setup and primitives

We model deployment as an interaction between heterogeneous users and
a platform that trains and serves a language model under explicit safety
constraints. The goal of this section is to make the data-generating process
and the platform’s degrees of freedom concrete: what varies across users,
what the platform can condition on, what feedback is observed, and which
quantities remain latent.

User objectives and types. We posit a finite set of user objectives or
“types” C = {1, . . . ,K}. The index c ∈ C is not meant to be a demo-
graphic label per se, but a sufficient statistic for a preference functional over
responses. Concretely, a type may represent an application domain (e.g.,
tutoring vs. coding assistance), a risk tolerance (e.g., medical triage vs. gen-
eral wellness), a jurisdictional regime, or a product mode (e.g., “creative” vs.
“precise”). Each type c induces a latent utility function

uc : X × Y → R,

where x ∈ X is a natural-language prompt and y ∈ Y is a natural-language
response. We allow uc(x, y) to encode any desiderata—helpfulness, truthful-
ness, style—provided it yields a coherent ranking over candidate responses
for a fixed prompt and type.

Endogenous prompt generation. A central feature of deployment is
that prompts are not exogenous. Users adapt what they ask based on their
objectives, prior experiences, and the platform’s affordances. We capture this
by letting prompts be drawn from a type-conditional distribution x ∼ pc(x).
We emphasize that pc is an equilibrium object : it summarizes the composition
of user demand after accounting for selection into the platform, prompt-
engineering behavior, and any interface or policy changes that shape what
users choose to request. In a static analysis, we treat pc as fixed, but we
interpret it as implicitly dependent on the deployed system and surrounding

10

context. This is precisely where “prompt-type confounding” enters: if pc
differs substantially across types, then naive pooling of data can conflate
type differences in preferences with differences in the prompts those types
tend to issue.

Policies, conditioning, and responses. Given a prompt x and type
c, the deployed model samples a response from a type-conditional policy
πθ(· | x, c). The parameter vector θ stands for both model weights and
any conditional computation mechanisms (e.g., adapters, routing, system
prompts) that implement type conditioning. We also fix a type-conditional
reference policy πref(· | x, c), intended to capture baseline behavior prior to
preference optimization (for instance, an SFT model or a previous check-
point). The reference plays two roles: it defines a default distribution over
responses for each (x, c), and it anchors the notion of “distance moved” by
training.

Pairwise preference feedback and the Bradley–Terry model. Train-
ing feedback is modeled as pairwise comparisons. For a given prompt x (and,
conceptually, a type c), the platform produces two candidate responses y and
y′, and an annotator or user provides a binary label L ∈ {0, 1} indicating
which response is preferred. We use a type-conditional Bradley–Terry (lo-
gistic) model for this comparison noise:

P(L = 1 | x, y, y′, c) = σ
(
uc(x, y)− uc(x, y′)

)
,

where σ(t) = 1/(1 + e−t). This assumption is not that humans are logistic,
but that comparison probabilities depend monotonically on a latent utility
difference, with larger gaps producing more reliable labels. The key iden-
tification implication (which we leverage later) is that only differences in
uc(x, ·) are learnable from comparisons; any additive baseline fc(x) cancels
in uc(x, y)− uc(x, y′).

Harms as measurable costs and groupwise caps. Alongside user util-
ity, we introduce harm metrics that represent externalities the platform
wishes (or is required) to limit. Let hm(x, y) ≥ 0 denote harm metric m
evaluated on the prompt–response pair (x, y). Examples include a policy-
violation indicator, a toxicity score, an unsafe-instruction classifier output,
or a domain-specific compliance flag. We allow hm to be either directly
measurable (e.g., via automated detectors) or approximated (e.g., via audits
or human review), but we treat it as a function that can be aggregated in
expectation under a policy.

Crucially, we index constraints by type: for each metric m and type c,
we impose a cap δm,c on the expected harm experienced when serving that

11

type. Formally, if X ∼ pc and Y ∼ π(· | X, c), we consider constraints of the
form

E
[
hm(X,Y) | c

]
≤ δm,c.

This captures the deployment reality that safety and compliance require-
ments are often conditional (e.g., stricter rules for minors, different medical
disclaimers for health contexts, different legal regimes). It also anticipates
a governance desideratum: constraint satisfaction should be auditable per
group, not merely on average.

Conservatism and type-specific regularization. We parameterize the
platform’s reluctance to deviate from πref using a type-specific temperature
βc > 0. Intuitively, βc controls how aggressively we allow the policy to
chase estimated utility improvements for type c versus staying near a known
baseline. This accommodates heterogeneous risk: some contexts warrant
conservative updates because the cost of distribution shift is high or the
evaluation pipeline is less reliable. While βc enters the planner’s objective
in the next section, it is helpful already at the primitive level: it is a knob
the platform can set by product policy, regulatory guidance, or empirical
calibration.

Proxy types and imperfect routing. In many settings the platform
does not observe c directly. Instead, it observes a proxy ĉ inferred from
user-provided signals, account attributes, or a classifier on the prompt and
metadata. We allow for misrouting: P(ĉ ̸= c) may be nonzero, reflecting
both classification error and strategic behavior. Our analysis therefore dis-
tinguishes the latent type c that determines utility and constraints from the
observed proxy ĉ used for conditioning. This distinction matters both for
welfare (the model may optimize the wrong objective for a user) and for
safety (the wrong constraint regime may be applied). We treat misrouting
probability as a primitive error rate that can, in principle, be reduced via
better inference or mitigated via safety margins.

Causal features and overlap. To reason about generalization under
shifting prompts, we will sometimes map (x, y) into a representation z =
g(x, y), interpreted as a causal feature sufficient for utility. The associ-
ated overlap/positivity requirement is that, for relevant regions of Z, each
type’s induced distribution pc(z) assigns nontrivial mass, so that within-
type learning does not extrapolate entirely out of support. We record this
here as a modeling component: the platform may choose architectures or
representation-learning procedures that encourage such invariances, but the
success of those choices is constrained by the underlying data-collection pro-
cess.

12

What the platform observes (and what it does not). The platform’s
training data consists of tuples (x, y, y′, L), together with either the true type
c (in settings where type is explicitly labeled) or the proxy ĉ. The platform
can also log model likelihoods under πref and πθ, and it can estimate harms
hm(x, y) via detectors or audits. By contrast, the true utilities uc(x, y) are
latent, as are the prompt distributions pc except through observed traffic.
This asymmetry is the core technical challenge: the platform must infer how
to improve policy from comparisons that identify only utility differences,
under a training distribution that is itself shaped by user adaptation and by
past policy choices.

Timing and the induced data-generating process. Putting the pieces
together, a stylized interaction proceeds as follows. First, the platform (and
possibly a regulator) selects the reference policy πref , the conservatism pa-
rameters {βc}, and harm caps {δm,c}. Next, a user of latent type c arrives and
generates a prompt x ∼ pc. The platform then produces candidate responses
(for instance, by sampling from current policies or via a proposal mechanism)
and obtains a comparison label L according to the Bradley–Terry model. Fi-
nally, the platform updates θ using these logged comparisons, with access to
the relevant type signal (true or proxied) and to harm measurements. De-
ployment repeats this loop, with the important caveat that policy updates
can shift user behavior and therefore shift pc over time.

This completes the primitives. In the next section we formalize the plat-
form’s objective as weighted welfare maximization with KL regularization
and explicit harm caps, and we discuss the identification consequences of
learning from comparisons in the presence of type conditioning and reward
equivalence classes.

4 The planner’s problem: welfare, regularization,
and constraints

We now make explicit the platform’s (or regulator’s) normative criterion for
choosing a deployed policy. The key modeling choice is to treat deployment
as type-conditional decision-making under two kinds of limitations: (i) the
platform does not directly observe utilities, only noisy pairwise preferences;
and (ii) the platform is not free to optimize user utility arbitrarily because it
must remain close to a vetted baseline and satisfy explicit harm caps. This
section formalizes the corresponding objective and clarifies what is and is
not identified from preference data.

Weighted subgroup welfare. For each type c ∈ C, we evaluate a type-
conditional policy π(· | x, c) by its expected utility on the induced (endoge-

13

nous) prompt distribution pc. We write the within-type welfare as

Wc(π) := Ex∼pc Ey∼π(·|x,c)
[
uc(x, y)

]
.

A global planner then aggregates subgroup welfares using nonnegative weights
wc with

∑
cwc = 1:

W (π) :=
∑
c∈C

wcWc(π).

The weights wc can be interpreted in several ways depending on the institu-
tional setting: as population shares in the platform’s user base, as contractual
priorities across product modes, or as explicit normative weights imposed by
governance. We keep wc exogenous, but it is worth flagging an operational
subtlety: because pc is endogenous, a platform policy can change who shows
up and what they ask for, thereby shifting realized welfare weights over time.
Our analysis holds pc fixed to isolate the within-period training problem; in
practice, pc should be viewed as a slowly moving equilibrium object that
motivates monitoring and periodic retuning.

KL regularization as conservatism and anchoring. Pure welfare max-
imization is ill-posed in language generation because it encourages extreme
distribution shifts whenever the estimated reward is imperfect. We capture
the platform’s desire to remain close to a reference behavior via a type-
specific KL penalty. For each type,

KLc(π∥πref) := Ex∼pc KL(π(· | x, c) ∥πref(· | x, c)) ,

and we introduce a temperature βc > 0 that scales the marginal cost of
deviating from πref for type c. The resulting regularized objective is∑

c∈C
wc

(
Wc(π) − βcKLc(π∥πref)

)
.

This term has three interpretations that will matter later. First, it is a ro-
bustness device: when preference data are noisy or sparse for a type, the
optimizer defaults back toward πref . Second, it reflects product risk tol-
erance: we can set larger βc in higher-stakes contexts to dampen reward
chasing. Third, and crucially for identification, KL regularization provides
an anchor that ties any learned “reward” to a concrete probability model via
log-likelihood ratios against πref .

Harm metrics and groupwise caps. We incorporate safety and com-
pliance by imposing type-indexed constraints on expected harms. For each
harm metric m and type c, define

Hm,c(π) := Ex∼pc Ey∼π(·|x,c)
[
hm(x, y)

]
,

14

and impose capsHm,c(π) ≤ δm,c. This formulation is deliberately “auditable”
in the sense that it is an expectation over logged traffic for a given type, and
it enables different standards across regimes (e.g., stricter caps for certain
product modes). We emphasize, however, that this is an in-distribution
constraint with respect to pc; if the prompt distribution shifts, constraint
satisfaction may not transfer unless harms are sufficiently stable functions
of the causal features. This is one place where overlap and representation
choices become safety-critical rather than merely statistical conveniences.

Putting welfare, conservatism, and safety together, the platform’s con-
strained planning problem is

max
π

∑
c∈C

wc

(
Wc(π)− βcKLc(π∥πref)

)
(1)

s.t. Hm,c(π) ≤ δm,c ∀(m, c). (2)

We interpret π as ranging over all type-conditional stochastic policies with
the appropriate measurability properties. Implicitly, feasibility requires that
for each type there exist responses in the support of πref(· | x, c) that satisfy
the caps on average; if not, the constraints specify an unattainable safety
regime and the dual variables (introduced next section) would diverge. In
practice, this is exactly why platforms often combine policy optimization
with dataset curation and pretraining/SFT adjustments: feasibility can be
a property of the baseline model, not merely of the optimizer.

The Lagrangian viewpoint and “priced” harms. Although we post-
pone the closed-form solution to the next section, it is helpful to preview the
structure of the constrained optimization. Introducing Lagrange multipliers
λm,c ≥ 0, we obtain the Lagrangian

L(π, λ) =
∑
c

wc

(
Wc(π)− βcKLc(π∥πref)

)
−
∑
m,c

λm,c
(
Hm,c(π)− δm,c

)
.

This makes the economic meaning of the harm caps explicit: at the optimum,
λm,c acts like a shadow price on harm metricm for type c. When a constraint
is slack, its multiplier is zero and that harm is effectively ignored by the
optimizer; when a constraint binds, the multiplier is positive and the policy
behaves as if it were optimizing a modified utility uc−

∑
m(λm,c/wc)hm. This

priced-harm perspective is important for governance, because it suggests a
path toward verification: one can audit not only whether caps are met, but
also whether the implied harm prices are stable and interpretable across
time.

Identifiability: utilities versus policies. The planner’s problem is writ-
ten in terms of latent utilities uc(x, y), but the platform never observes uc di-

15

rectly. Under the Bradley–Terry assumption, pairwise preference data iden-
tify only differences in utility: for fixed (x, c), adding an arbitrary prompt-
only baseline fc(x) leaves all comparison probabilities invariant because(

uc(x, y) + fc(x)
)
−
(
uc(x, y

′) + fc(x)
)

= uc(x, y)− uc(x, y′).

Thus, even with infinite data and correct type labels, uc is identifiable only
up to an equivalence class

uc(x, y) ∼ uc(x, y) + fc(x).

This is not merely a technical nuisance: it means any training objective that
treats uc as a cardinal reward is underspecified unless it is formulated to be
invariant to these shifts.

Fortunately, the planner’s optimization (1)–(2) is naturally compatible
with this invariance. In the KL-regularized setting, the optimal policy de-
pends on uc(x, ·) only through relative values across y for a given (x, c).
Adding fc(x) multiplies the exponential weights for all responses by the
same factor and is absorbed into the normalization constant. In other words,
while uc is not uniquely defined, the induced optimizer π∗(· | x, c) can still
be well-defined as a function of the equivalence class, once we fix πref and
βc.

Anchoring rewards to log-ratios. This invariance also motivates the
reward parameterization used by direct preference optimization methods.
For any candidate policy πθ, define the type-conditional implicit reward

r̂θ,c(x, y) := βc log
πθ(y | x, c)
πref(y | x, c)

.

Because πθ(· | x, c) must normalize over y, this reward is itself only identified
up to a prompt-only shift: multiplying all πθ(y | x, c) by the same factor is
impossible, and correspondingly r̂θ,c is defined only up to adding fc(x). This
is exactly the same equivalence class induced by pairwise comparisons. The
important takeaway is that the combination of (i) pairwise feedback and (ii)
KL anchoring to a reference distribution yields a coherent notion of what can
be learned: not absolute utilities, but the reward differences that determine
how probability mass should move relative to πref .

We will use these observations in the next section to characterize the
optimizer of the planner’s problem explicitly. The resulting form makes
clear when type conditioning yields Pareto improvements, how harm caps
translate into priced penalties, and why numerical training objectives like
constrained DPO can be interpreted as approximating the same underlying
regularized and constrained optimum.

16

5 Closed-form characterization: exponential tilting
of the reference

The constrained planner problem in (1)–(2) has a useful structural property:
because we regularize by KL to a fixed reference, the optimal policy can be
written in closed form as an exponential tilt of πref . This characterization
is more than algebraic convenience. It tells us (i) how preference informa-
tion should reweight probability mass relative to a baseline, (ii) how harm
caps enter as explicit “prices” on unsafe attributes, and (iii) what exactly
we should expect numerical training procedures (such as DPO variants) to
approximate.

A mild absolute-continuity requirement. KL regularization implicitly
restricts attention to policies that are absolutely continuous with respect to
the reference: if πref(y | x, c) = 0 then assigning π(y | x, c) > 0 yields
infinite KL. Operationally, this means the optimizer can only reweight be-
haviors that the baseline already assigns nonzero probability. This is both
a safety feature (we cannot “invent” entirely new modes of behavior outside
the vetted support) and a limitation (if the baseline never produces a needed
safe response, no amount of preference optimization can recover it without
changing πref or the model class).

Lagrangian decomposition and pointwise optimality. Fix multipliers
λ = {λm,c}m,c with λm,c ≥ 0. Consider the Lagrangian from the previous
section,

L(π, λ) =
∑
c

wc

(
Wc(π)− βcKLc(π∥πref)

)
−
∑
m,c

λm,c
(
Hm,c(π)− δm,c

)
.

Because both the welfare term and the harm term are expectations under
π(· | x, c), and because the KL term is an expectation of a pointwise KL,
maximizing L(π, λ) over π decomposes over (x, c): for each type and prompt,
we solve a regularized expected-reward maximization with an adjusted re-
ward

ũc,λ(x, y) := uc(x, y) −
∑
m

λ̃m,c hm(x, y), λ̃m,c :=
λm,c
wc

.

The appearance of λ̃m,c = λm,c/wc is a first indication that governance
choices (the welfare weights wc) and safety choices (the caps that determine
λm,c) interact: holding λm,c fixed, increasing wc effectively reduces the per-
type harm price and permits a more aggressive tilt toward utility for that
type.

17

For a fixed (x, c), maximizing the Lagrangian over distributions π(· |
x, c) subject to normalization yields the standard maximum-entropy/KL-
regularized solution. Introducing a prompt-specific normalization multiplier
αc(x) to enforce

∑
y π(y | x, c) = 1 and taking first-order conditions gives

π∗(y | x, c) ∝ πref(y | x, c) exp
(

1

βc
ũc,λ(x, y)

)
.

Writing the normalization constant explicitly, we obtain the partition func-
tion

Zc(x) :=
∑
y∈Y

πref(y | x, c) exp

(
1

βc

(
uc(x, y)−

∑
m

λ̃m,chm(x, y)

))
,

so the optimal policy for fixed λ is

π∗(y | x, c) = 1

Zc(x)
πref(y | x, c) exp

(
1

βc

(
uc(x, y)−

∑
m

λ̃m,chm(x, y)

))
.

(3)
This is the precise sense in which the deployed model should be “the reference
model, reweighted by (utility minus priced harm), tempered by βc.”

KKT conditions and the meaning of the multipliers. To recover the
constrained solution to (1)–(2), we must choose multipliers λ so that the
resulting π∗ satisfies the constraints and complementary slackness. Under
standard regularity (convexity in π, feasibility, and an appropriate constraint
qualification), strong duality holds and there exists λ∗ such that:

Hm,c(π
∗) ≤ δm,c, λ∗m,c ≥ 0, λ∗m,c

(
Hm,c(π

∗)− δm,c
)
= 0 ∀(m, c).

Complementary slackness makes the “price” interpretation crisp: if a harm
metric m is comfortably below its cap for type c, then λ∗m,c = 0 and the
metric exerts no force on the optimum; if it binds, λ∗m,c > 0 and the policy
behaves as though it were optimizing an augmented utility that subtracts
λ̃∗m,chm.

Two safety-relevant failure modes are also visible. First, if the constraint
set is infeasible given the support of πref , then no finite λ can satisfy the KKT
system; the formal signal is that the dual problem drives some multipliers to
+∞. Second, if harms are measured with systematic error (e.g., hm is a noisy
classifier score), the policy may satisfy the measured caps while violating the
intended underlying property; in this view, the multipliers become prices on
proxy metrics, not on true harms.

18

Uniqueness: policies are pinned down even when utilities are not.
Equation (3) also clarifies the identifiability discussion from the previous
section. Because uc(x, y) is only defined up to adding a prompt-only function
fc(x), one might worry that π∗ is not well-defined. In fact it is: adding fc(x)
to uc(x, y) multiplies the numerator in (3) by exp(fc(x)/βc) for every y,
which cancels in Zc(x). Thus, while the cardinal utility is not identified,
the induced relative reweighting of responses—and therefore the optimal
policy—is invariant to these shifts.

For fixed multipliers λ and temperatures βc, the mapping (uc, hm, πref) 7→
π∗ is pointwise unique on the support of πref . Non-uniqueness can still arise
in degenerate cases (e.g., if πref assigns zero mass to entire regions of Y or
if multiple responses are exactly tied under ũc,λ), but these are typically
knife-edge; in practice, the stochasticity of πref and the strict convexity of
KL regularization make the solution effectively unique.

When do we still need numerical methods? The closed form (3)
should be read as a characterization of the target distribution, not as an
algorithm for producing it in modern language models. There are three
distinct reasons numerical optimization remains necessary.

First, even if we could represent π∗ exactly, we generally cannot com-
pute Zc(x) by summing over Y ; Y is combinatorially large. This is the same
computational barrier that prevents exact maximum-entropy inference in se-
quence models. Training therefore proceeds by parameterizing πθ and using
stochastic gradients to move its log-probabilities in the direction suggested
by (3) without explicitly normalizing over all sequences.

Second, the multipliers λm,c are typically not known ex ante. Even with
perfect knowledge of uc, we would still need to solve for λ so that the expecta-
tion constraints Hm,c(π) ≤ δm,c hold under the induced policy and prompt
distribution. This is a dual optimization problem that is usually handled
by primal–dual methods (e.g., dual ascent on λ combined with policy up-
dates), and it inherits all the familiar practical issues: step-size sensitivity,
nonstationarity when pc drifts, and the need for safety margins when hm is
estimated.

Third, and most importantly for deployment, we rarely optimize over the
space of all stochastic policies. We optimize over a restricted family {πθ}
determined by architecture, conditioning interface, and training procedure.
If π∗ is not representable in this family (or if conditioning on c is imperfect
and we must route by ĉ), then (3) remains the normative benchmark, but the
realized optimum is only approximate and may require explicit regularizers,
constraint penalties, or data collection interventions to close the gap.

In the next section we turn this characterization into a concrete learn-
ing objective based on pairwise preferences: we show how direct preference
optimization can be interpreted as fitting precisely the log-ratio structure

19

suggested by (3), and how adding constraint penalties corresponds to learn-
ing the priced-harm version of utility implicit in the KKT system.

6 Constrained multi-objective DPO: likelihood fit-
ting with safety prices

The exponential-tilt form in (3) tells us what the target conditional pol-
icy should look like once we have an appropriate notion of adjusted util-
ity. The remaining question is how to estimate and realize that target from
the supervision we actually collect in deployment: pairwise preference labels
over model-generated responses, together with measurable (or approximable)
harm signals. In this section we formalize a constrained, type-conditional
variant of direct preference optimization (DPO) as a joint procedure for (i)
fitting the log-ratio structure implied by (3) and (ii) enforcing groupwise
harm caps via Lagrange penalties.

Preference data and the type-conditional Bradley–Terry likelihood.
For each type c ∈ C, suppose the platform collects tuples

(xi, yi,w, yi,ℓ, ci) ∼ deployment process, Li ∈ {0, 1},

where Li = 1 indicates that, conditional on (xi, ci), the labeler (or user)
prefers yi,w to yi,ℓ. Under the maintained behavioral model,

P(L = 1 | x, y, y′, c) = σ
(
uc(x, y)− uc(x, y′)

)
,

maximum likelihood estimation would, in principle, fit a family of scores
sc(x, y) whose differences match the utility differences. However, two fea-
tures of our setting make direct utility estimation both unnecessary and
potentially ill-posed. First, only differences matter, so uc is identified only
up to an additive fc(x); second, we ultimately need a policy πθ(· | x, c), not
a standalone reward model.

DPO as a reparameterized likelihood: log-ratios to a reference.
DPO resolves this by parameterizing scores via a policy ratio to a fixed
reference:

r̂θ,c(x, y) := βc log
πθ(y | x, c)
πref(y | x, c)

.

Here βc > 0 is a type-specific temperature that determines how sharply pref-
erence information should tilt us away from the reference. Substituting r̂θ,c
as the score function in a Bradley–Terry model yields the induced preference
probability

Pθ(L = 1 | x, yw, yℓ, c) = σ
(
r̂θ,c(x, yw)− r̂θ,c(x, yℓ)

)
,

20

and therefore the negative log-likelihood loss

LDPO(θ) := E(x,yw,yℓ,c)

[
− log σ

(
r̂θ,c(x, yw)− r̂θ,c(x, yℓ)

)]
. (4)

This is the central equivalence: type-conditional DPO is simply maximum
likelihood for a Bradley–Terry preference model in which the latent utility
differences are represented by log-probability differences under πθ relative to
πref . In particular, DPO does not require explicit normalization over Y (we
never compute Zc(x)), but it still learns to adjust relative log-probabilities
in the direction indicated by preferences.

The βc parameters play two roles. Statistically, they scale the logits in
(4) and therefore the effective noise level in the preference model: larger βc
makes the same log-ratio correspond to a smaller implied utility gap, which
yields more conservative updates. Normatively, βc is exactly the temperature
appearing in (3), so matching βc across the preference-fitting objective and
the planner benchmark pins down a consistent notion of how far each group
may drift from its baseline.

Adding harm penalties: learning priced utility under caps. To in-
corporate groupwise caps E[hm(X,Y) | c] ≤ δm,c, we augment the preference-
fitting loss with Lagrange penalties. Let Ĥm,c(πθ) denote an estimator of

Hm,c(πθ) = Ex∼pc Ey∼πθ(·|x,c)[hm(x, y)].

Operationally, Ĥm,c can be computed by sampling y ∼ πθ(· | x, c) on prompts
x from the logged distribution for type c, and then applying a harm classifier
or rule-based audit to obtain hm(x, y). We then define the constrained multi-
objective objective

LCDPO(θ;λ) := LDPO(θ) +
∑
m,c

λm,c

(
Ĥm,c(πθ)− δm,c

)
, λm,c ≥ 0. (5)

Minimizing (5) for fixed λ corresponds to fitting preferences while treating
each harm metric as a priced negative attribute. If, in addition, we update
multipliers by a dual method (e.g., projected gradient ascent λm,c ← [λm,c+

η(Ĥm,c − δm,c)]+), the procedure implements a stochastic approximation to
the KKT system described earlier: binding constraints push λm,c upward,
increasing pressure toward low-harm outputs, while slack constraints let λm,c
decay toward zero.

A useful way to see the conceptual alignment with (3) is to rewrite the
per-type, per-response “effective reward” that the procedure is implicitly fit-
ting. Under the dualized formulation, the priced utility has the form

ũc,λ(x, y) = uc(x, y)−
∑
m

λ̃m,chm(x, y), λ̃m,c =
λm,c
wc

,

21

so changing governance weights wc changes the conversion rate between
global multiplier λm,c and the per-type price λ̃m,c. In practice, the same
interaction appears if we implement wc by reweighting losses from different
types in the empirical objective: increasing wc increases the marginal benefit
of fitting type-c preferences relative to the marginal penalty from its harm
terms, and therefore permits a more aggressive tilt for that subgroup before
the dual updates force λm,c large.

Why type-conditional DPO is the right level of granularity. When
preferences differ across types, a pooled objective fits a single score function
that must compromise on disagreeing pairs. Conditioning on c removes this
negative transfer: we fit separate log-ratio functions r̂θ,c, each anchored to its
own πref(· | x, c) and scaled by its own βc. This matters even if the underlying
model parameters are shared, because the conditioning interface allows the
function class to represent multiple tilts simultaneously. Moreover, the harm
constraints are naturally group-indexed: what counts as unacceptable (or
what level of risk is tolerated) is often set by policy for specific deployment
contexts, and the penalty structure in (5) makes those governance choices
explicit.

Consistency as a statement about the induced policy, not the util-
ity scale. Because the Bradley–Terry likelihood only identifies reward dif-
ferences, and because r̂θ,c is defined only up to fc(x) equivalence classes, the
clean object to target is the policy πθ. Under overlap and correct condition-
ing, minimizing the population version of (5) yields a policy whose log-ratio
to the reference matches a representative of the priced utility:

βc log
πθ(y | x, c)
πref(y | x, c)

∈

[
uc(x, y)−

∑
m

λ̃m,chm(x, y)

]
+ {fc(x)}.

Combined with the normalization implied by πθ(· | x, c), this recovers ex-
actly the exponential-tilt form from (3) for some multipliers satisfying com-
plementary slackness (in the idealized limit where the constraint estimator
matches the true expectations). The key point is that DPO-style training is
not merely heuristic: it is an efficient way to fit the log-density ratios that
characterize the KL-regularized constrained optimum.

Practical failure modes and why they foreshadow the next section.
Two issues remain central in deployment. First, the constraint estimators
Ĥm,c are typically computed using proxy harm models; if these proxies are
biased or can be gamed, the learned λ̃m,c will price the proxy rather than
the intended harm. Second, and more subtly, the entire empirical objec-
tive is evaluated under the realized prompt distribution for each type. Since
prompts are endogenous and may shift as users adapt to the deployed model,

22

the data used to fit r̂θ,c can concentrate on a narrow subset of the causal
feature space. This is precisely where overlap becomes a bottleneck: with-
out adequate coverage, the fitted policy may generalize poorly even if it
attains low training loss and satisfies measured caps on logged prompts.
We therefore next formalize robustness under endogenous prompts via over-
lap assumptions in a causal feature space and derive bounds that separate
within-type estimation error from cross-type shift error.

7 Robustness under endogenous prompts: overlap
in a causal feature space

Our consistency discussion above is inherently in-distribution: it describes
what happens when the empirical objective is evaluated under the same con-
ditional prompt distribution that we care about at deployment. In practice,
that conditional distribution is neither fixed nor exogenous. Users adapt
their prompts to the deployed policy, different subpopulations probe differ-
ent capabilities, and the platform itself may change the user interface in
ways that shift what is asked. This endogeneity matters because preference
learning (including DPO-style likelihood fitting) can appear stable on logged
data while failing sharply after seemingly minor shifts in how prompts are
phrased or which response attributes are salient.

To state a robustness claim that is not merely a rephrasing of i.i.d. gen-
eralization, we need to separate two questions: (i) how well we estimate
preferences within the support of the type-c data we actually see, and (ii)
how fragile the learned mapping is when the relevant support changes. The
standard device is to reason in a causal feature space rather than in raw
prompts.

A causal feature map and induced distributions. Let z = g(x, y) ∈ Z
denote a representation intended to capture the causally relevant aspects of
the interaction between the prompt and the response (e.g., task category,
requested action, presence of sensitive content, degree of refusal, etc.). For
each type c, the deployment process induces a distribution over these fea-
tures,

pc(z) := P
(
g(X,Y) = z

∣∣ C = c
)
,

where X ∼ pc and Y ∼ π(· | X, c) for the current policy π. The dependence
of pc(z) on π is exactly where endogeneity enters: changing the policy can
change which y are sampled (and thus which z are observed), and user adap-
tation can change which x are produced (and thus which z become likely).
This is the selection channel by which a model can “learn the wrong lesson”
from preference data: it only sees preference labels on the slice of Z that the
current interaction loop reveals.

23

To make progress, we adopt the structural restriction that utilities de-
pend on (x, y) only through z and c:

uc(x, y) = ūc
(
g(x, y)

)
= ūc(z).

This is not a claim that g is known or perfect; rather, it is the idealization
that lets us cleanly state what kind of coverage is needed for robust learning.
When g is misspecified, our guarantees become approximate in exactly the
ways discussed in the next section.

Overlap (positivity) as the anti-confounding condition. We say that
type-conditional overlap holds if the relevant parts of Z have positive prob-
ability under each type:

pc(z) > 0 for all c ∈ C and all z ∈ Zrel,

where Zrel denotes the feature region on which we want the learned policy
to behave well (e.g., the region encountered after users adapt, or the region
defined by a safety evaluation suite). A more quantitative version is to bound
density ratios by an overlap constant

κ := max
c,c′′

sup
z∈Zrel

pc(z)

pc′′(z)
∈ [1,∞].

Small κ means that feature coverage is similar across types and prompt
regimes; large κmeans that some features are almost never observed for some
types (or under some policies), so generalization requires extrapolation.

This overlap condition is the precise way in which “confounding manifests
as overlap failure” in our setting. If type c tends to ask a narrow family of
prompts, then many features z become type-predictive even when they are
not utility-relevant. A flexible policy or score model can then use those
type-predictive artifacts as shortcuts for predicting preferences. Under a
shift in pc(z)—for example, users learn to elicit different styles of answers or
start probing boundaries—those shortcuts break, and the learned policy can
degrade while still looking calibrated on the historical slice of Z.

From preference learning to a risk decomposition. To connect over-
lap to a generalization bound, it is convenient to view preference learning as
a classification problem in feature space. Consider a pairwise example with
(zw, zℓ) = (g(x, yw), g(x, yℓ)) and label L ∈ {0, 1}. Under the Bradley–Terry
model and the restriction uc = ūc ◦ g, we have

P(L = 1 | zw, zℓ, c) = σ
(
ūc(zw)− ūc(zℓ)

)
.

Let r̂θ,c(x, y) be the DPO score and define the induced feature score ϕθ,c(z)
via ϕθ,c(g(x, y)) = r̂θ,c(x, y) (this is exact if r̂θ,c factors through g, and ap-
proximate otherwise). The population DPO objective is then a logistic risk

24

over pairs:

Rc(θ) := E
[
ℓ
(
ϕθ,c(Zw)− ϕθ,c(Zℓ), L

) ∣∣ C = c
]
,

for the log-loss ℓ(t, L) = −L log σ(t)− (1− L) log(1− σ(t)). Standard argu-
ments (uniform convergence, stability, or algorithm-dependent bounds) yield
a within-type estimation guarantee of the form

Rc(θ̂)− inf
θ∈Θ
Rc(θ) ≤ EstErrc(nc,Θ, δ),

where nc is the number of type-c examples and δ is a confidence parameter.
This is the part we can buy with more labels for type c.

The harder part is that our eventual welfare is evaluated under a poten-
tially different distribution over Z (because prompts and sampled responses
change). Let qc(z) denote a target feature distribution (e.g., induced by
the eventual deployed policy and adapted prompts). Then the gap between
performance measured under pc and performance under qc is governed by
density ratios:

Ez∼qc [f(z)]− Ez∼pc [f(z)] = Ez∼pc
[(

qc(z)

pc(z)
− 1

)
f(z)

]
,

so any bound requires controlling qc(z)
pc(z)

on Zrel. If we take qc to be another
type’s feature distribution (or a mixture over types), then κ provides exactly
this control.

A stylized regret bound and its interpretation. Translating logistic
risk into welfare regret requires additional regularity, because welfare de-
pends on the policy induced by the learned scores rather than on the scores
themselves. Under bounded utilities and a smooth mapping from scores to
πθ (as in the softmax/exponential-tilt form), one obtains a decomposition of
the schematic form

Regretc ≲ EstErrc︸ ︷︷ ︸
finite-sample within type

+ (κ− 1) ShiftErrc︸ ︷︷ ︸
overlap / confounding amplification

, (6)

where ShiftErrc captures how much the learned rule relies on features whose
frequencies differ across regimes (or across types), and the (κ − 1) factor
captures the fact that even small reliance on such features can be magnified
when density ratios are large.

The safety-relevant reading of (6) is that “more data” is not a universal
remedy: if endogenous interaction produces a narrow pc(z), then nc → ∞
can drive EstErrc to zero while leaving the second term large, because the
model is never forced to learn behavior on regions of Zrel it does not see.
This is the formal sense in which confounding is a coverage problem, not
merely a noise problem.

25

How overlap failure looks operationally. Overlap failure in this setting
often presents as one of the following patterns:

• Prompt-channel shortcuts. Certain surface forms of prompts be-
come predictive of preference labels in the logged data (because they
correlate with the user type or with which candidate responses were
sampled), even though they are not the causal drivers of utility. The
learned policy then overreacts to phrasing changes.

• Policy-induced missingness. If the current policy refuses broadly
for a type, then we may never observe z corresponding to borderline-
but-allowable assistance for that type. Preference learning cannot “pull
back” toward the feasible frontier because the relevant comparisons are
absent.

• Constraint masking. Harm estimators Ĥm,c computed on logged
prompts can look compliant while violations occur on rare z that were
not sampled historically. In dual terms, λm,c is tuned to the observed
slice of pc(z) rather than to Zrel.

All three are confounding-by-selection: the training distribution depends on
user behavior and on the policy, so spurious correlates are easy to learn and
hard to detect without deliberate exploration or targeted evaluation.

Implications for data collection and governance. The immediate im-
plication is that overlap is not just a statistical assumption; it is a deploy-
ment design choice. Interfaces, sampling schemes for candidate responses,
and evaluation policies determine which parts of Z are observed. From a
governance standpoint, the harm caps δm,c and their enforcement should
therefore be tied to a specified evaluation distribution (or a worst-case en-
velope over plausible qc), rather than to whatever distribution happened to
be induced during training. Otherwise, the platform can satisfy the letter of
the caps while violating their intent under adaptation.

These observations motivate the next step: if overlap in the causal feature
space is the bottleneck, then representation learning should aim to (i) con-
struct a g that removes type-predictive but utility-irrelevant artifacts, and
(ii) encourage invariances that make pc(z) more comparable across types
and prompt regimes. This is where architectural choices (shared encoders
with type-conditional heads) and adversarial objectives enter, and where
our formal guarantees begin to depend on how well learned representations
approximate the causal g postulated here.

26

8 Representation learning to mitigate prompt-type
confounding

The preceding section isolates overlap in a causal feature space as the key
quantity controlling robustness under endogenous prompts. In practice,
however, we do not get to directly observe the “right” g(x, y) for which
uc(x, y) = ūc(g(x, y)) holds. The platform instead learns internal represen-
tations whose inductive biases are shaped by the training loop—including
precisely the selection effects that generate prompt-type confounding. This
creates a tension: our theory wants a representation that discards type-
predictive artifacts of the interaction while preserving the semantics that
actually drive preferences and harms. In this section we describe a concrete
training template (multihead architectures plus adversarial invariance) that
aims to approximate the structural assumptions behind our guarantees, and
we flag where the mapping becomes heuristic.

A multihead parameterization of type-conditional scoring and pol-
icy. A convenient way to “factor” the learning problem is to separate (i) a
shared feature extractor from (ii) type-specific decision rules. Let eψ be a
shared encoder that maps an interaction to a feature vector,

z = eψ(x, y) ∈ Rd,

and let {sη,c}c∈C be type-specific score heads producing a scalar preference
score (a proxy for r̂θ,c),

ϕθ,c(x, y) := sη,c
(
eψ(x, y)

)
, θ = (ψ, η).

We then train using the same pairwise logistic form as in DPO, but with ϕθ,c
as the parametrization of the score difference. This architecture is aligned
with the conceptual decomposition uc(x, y) = ūc(z): the shared encoder ap-
proximates g, while the heads approximate the family {ūc} (up to the usual
equivalence class induced by pairwise comparisons). Operationally, multi-
head sharing improves sample efficiency for rare types, while still permitting
genuine heterogeneity (different heads can disagree on the same z).

Why sharing helps and why it can fail. Sharing the encoder is not
merely a computational convenience; it is an implicit claim that there exists a
representation in which the types differ primarily in how they value responses
rather than in what responses are. This is exactly the situation in which type-
conditioning yields Pareto gains: there are common capabilities and common
harm dimensions, but heterogeneous tradeoffs. The failure mode is negative
transfer: if types occupy disjoint regions of interaction space, a single encoder
can learn shortcuts that are predictive in the logged mixture (e.g., prompt

27

style) but non-causal for any fixed type. In terms of the overlap constant,
encoder sharing can either reduce κ (by expressing different prompt regimes
in a common semantic basis) or effectively increase it (by collapsing distinct
regions and inducing spurious correlations inside z). This is why we need an
explicit mechanism that penalizes type-predictive artifacts inside the shared
representation.

Adversarial invariance as a proxy for “removing confounding.” A
standard device from domain adaptation is to train the representation to be
approximately invariant to a nuisance variable—here, the user type (or its
proxy) as it is expressed through prompt surface form and sampling artifacts.
Concretely, introduce a discriminator dω that tries to predict c (or ĉ) from
z:

dω : Rd → ∆(C), p̂ω(c | z) = dω(z).

We then jointly optimize (i) the preference loss for the heads and (ii) an
adversarial loss that makes z uninformative about c:

min
ψ,η

max
ω

{∑
c

E
[
ℓ(sη,c(Zw)− sη,c(Zℓ), L)

∣∣ C = c
]
− α E[log dω(C | eψ(X,Y))]

}
,

(7)
where α > 0 tunes the strength of invariance (implemented via gradient
reversal in practice). Intuitively, this discourages the encoder from repre-
senting prompt style cues that are predictive of type in the logged data,
forcing the type-specific heads to rely on features that transfer across types.

How this connects to overlap and the constant κ. The adversarial
term in (7) can be read as an attempt to make the representation-level dis-
tributions {pc(z)} more similar. In idealized settings, bounding the discrim-
inator’s advantage implies bounds on an integral probability metric between
pc(z) and pc′(z), and hence reduces worst-case density ratios on regions where
the encoder is smooth and non-degenerate. While this is not the same as
directly controlling κ, it targets the same pathology: if type can be reliably
predicted from z, then z is likely to contain selection-induced correlates of
the preference label that will not be stable under shifts in prompting. Mak-
ing z less type-informative is a pragmatic way to shrink the confounding
amplification term in decompositions like (6).

A key subtlety: we want invariance to artifacts, not invariance
to semantics. There is an obvious objection: if types genuinely ask dif-
ferent tasks, then making z independent of c seems to throw away useful
information. The resolution is that we do not actually want to erase all
type information; we want to erase the information pathways by which the

28

model can use spurious type-predictive features as shortcuts. Two common
refinements are therefore important in deployment:

• Conditional invariance. If we have (even noisy) side-information
about task category or safety-relevant context, say t = t(x), we can
train a discriminator for C conditioned on t, or equivalently feed t to
the discriminator so that the encoder is only penalized for encoding
type beyond what is explained by t.

• Factorized representations. We can explicitly split z into (zsem, zsty)
and only adversarially debias one component, while allowing the other
to capture the parts of the prompt that legitimately differ across types.
This makes the intended inductive bias auditable: invariance is applied
where we believe confounding lives.

Either way, the conceptual target remains the same: approximate a causal
g that is stable under prompt adaptation, while allowing type-specific heads
to express heterogeneous values.

Integrating harm estimation and constraint enforcement into the
representation. Because our platform objective includes harm caps, it
is not enough for z to support preference prediction; it must also support
reliable approximation of hm(x, y) on the relevant slice of interaction space.
A simple approach is to add shared harm heads {aν,m}m predicting ĥm
from the same z and to include their losses (or Lagrangian penalties) during
training:

min
ψ,η,ν

{
PreferenceLoss(ψ, η) +

∑
m,c

λm,c Ĥm,c(πθ) + γ HarmPredLoss(ψ, ν)

}
.

This encourages eψ to retain safety-relevant features even if they are weakly
predictive of preference labels in the logged data. It also mitigates a common
failure mode of adversarial invariance: if harmful content is correlated with
type, a naive discriminator can incentivize the encoder to hide precisely the
information that a harm classifier needs. Adding explicit harm supervision
(or worst-case safety evaluation) counterbalances that pressure.

When the theoretical guarantees are closest to literal. Under strong
idealizations, the architecture above can be mapped back to our assump-
tions. If (i) there exists a representation g such that uc(x, y) = ūc(g(x, y))
and hm(x, y) = h̄m(g(x, y)), (ii) the shared encoder class contains a close
approximation to g, and (iii) the heads contain close approximations to {ūc}
and {h̄m}, then constrained DPO with multihead scoring is a statistically
plausible route to recovering the exponential-tilt policy form type-by-type.
Moreover, if the adversarial objective succeeds in making pc(z) comparable

29

across types (reducing representation-level shift), then the overlap constant
relevant for generalization in z-space can be materially smaller than the over-
lap constant in raw prompt space, strengthening the practical meaning of
the decomposition in (6).

When the mapping becomes heuristic (and what can go wrong).
In realistic deployments, each link in the mapping can break. First, uc
may not factor through any low-dimensional, type-stable z; in that case,
no representation learning objective can make the problem “causal” without
sacrificing accuracy. Second, adversarial invariance can trade robustness for
capability: if type correlates with legitimate task content, the encoder may
erase distinctions that are needed for good responses, pushing the burden
onto the heads and potentially inflating sample complexity. Third, when c is
replaced by a proxy ĉ, invariance objectives can become miscalibrated: the
discriminator learns to predict the proxy (which may encode demographic or
interface artifacts), and the encoder learns to hide proxy-predictive informa-
tion in ways that are orthogonal to actual preference stability. Finally, none
of these methods create support where none exists: if a type never produces
prompts that lead to certain safety-critical z, then representation alignment
cannot substitute for targeted data collection or deliberate exploration; it
can only smooth over differences within the observed envelope.

Practical governance implication: representation learning is part
of the safety case, not a purely “performance” choice. Because the
representation mediates both preference generalization and harm measure-
ment, architectural choices (shared encoder vs. per-type encoders, strength
of invariance, whether harm heads are shared) should be treated as safety-
relevant parameters. In particular, one can audit the learned z by checking
(i) how well type can be predicted from z under matched task conditions, (ii)
whether harm predictors remain calibrated on stress tests that deliberately
shift prompt phrasing, and (iii) whether the induced pc(z) exhibits improved
overlap on a pre-specified evaluation suite. These checks do not prove that z
is truly causal, but they can detect the most operationally dangerous forms
of prompt-type confounding.

With this machinery in place—type-specific heads expressing heteroge-
neous values, a shared representation aimed at stability under shifts, and
explicit harm-sensitive training—we can now return to the welfare question:
when, and in what sense, do type-conditional policies dominate pooled ones
once we price harm and conservatism through the multipliers and tempera-
tures?

30

9 Pareto improvements and fairness under harm
caps

We now make precise a central welfare point that is easy to miss when fo-
cusing only on optimization mechanics: once we admit genuine preference
heterogeneity across user types, a pooled deployment policy π(y | x) is typ-
ically forced into avoidable compromises. In contrast, a type-conditional
policy π(y | x, c) can shift probability mass in different directions for dif-
ferent groups, and can do so while respecting the same safety requirements
expressed as groupwise harm caps. This is the sense in which personalization
is not merely a product feature; it is a structural route to Pareto improve-
ments (subject to feasibility) in the presence of heterogeneous objectives.

Pooled versus conditional feasibility. Recall that the harm constraints
we study are type-indexed expectations,

Hm,c(π) = Ex∼pc Ey∼π(·|x,c)[hm(x, y)] ≤ δm,c.

If we instead deploy a pooled policy π(· | x), the constraint becomes

Hm,c(π) = Ex∼pc Ey∼π(·|x)[hm(x, y)] ≤ δm,c ∀c,

so a single mapping x 7→ π(· | x) must satisfy all groupwise bounds, de-
spite the fact that the evaluation measure over prompts differs across types
through pc. This creates a characteristic “worst-case across types” pressure:
even if type c rarely visits a risky region of prompt space, the pooled policy
must behave conservatively there if some other type c′ visits it often and
faces a tight cap. Conditioning relaxes this coupling by allowing the plat-
form to satisfy each set of constraints on the distribution where it is actually
evaluated.

A local Pareto-improvement argument. The core Pareto claim can
be seen through a local deviation. Fix a prompt x that is in the support of
(at least) two types, and suppose there exist responses y+ and y− such that
types disagree:

uc(x, y
+)− uc(x, y−) > 0, uc′(x, y

+)− uc′(x, y−) < 0.

Consider any pooled policy π(· | x) that assigns positive probability to both
y+ and y−. For a small ε > 0, define a type-conditional perturbation that
shifts ε mass from y− to y+ for type c, and shifts ε mass from y+ to y− for
type c′, leaving all other types unchanged. The first-order welfare changes
satisfy

∆Wc ≈ ε·
(
uc(x, y

+)−uc(x, y−)
)
> 0, ∆Wc′ ≈ ε·

(
uc′(x, y

−)−uc′(x, y+)
)
> 0,

31

and ∆Wc′′ = 0 for c′′ /∈ {c, c′}, up to the weighting of how often x occurs
under pc. In words: if the groups disagree on a pair, the pooled policy must
place shared probability on a compromise mixture, but a conditional policy
can move each group along its own gradient without creating an inter-group
tradeoff on that same pair.

Accounting for harm caps. The same perturbation can be chosen to
preserve (or improve) harm constraints. If, for a particular harm metric m,
the swap increases harm for type c (i.e., hm(x, y+) > hm(x, y

−)), we can
either (i) take ε sufficiently small so that constraints remain satisfied when
slack exists, or (ii) choose a disagreement pair (y+, y−) that is approximately
harm-neutral for binding metrics. More generally, because the constraints
are linear in the policy, we can construct a feasible improving direction by
projecting the welfare-improving direction onto the tangent cone of the fea-
sible set at π; feasibility is guaranteed whenever (a) each type’s feasible set
is nonempty and (b) there is at least one direction of improvement that does
not increase all binding harms simultaneously. This is the operational con-
tent of our earlier feasibility assumption: constraints must not be so tight
that any welfare-improving change necessarily violates safety.

Why KL regularization does not destroy the Pareto logic. KL reg-
ularization changes the geometry but not the underlying compromise story.
Under the KL-regularized objective, the relevant first-order change is in

Wc(π) − βcKLc(π∥πref),

so moving probability mass away from πref incurs a cost. However, the
KL term is also type-indexed through pc and βc, and hence can be paid
independently by each type under conditioning. A pooled policy must pay
KL costs to accommodate the most demanding combination of groups; a
conditional policy can “spend” KL budget where it yields the most within-
type welfare. This is precisely what the exponential-tilt optimum encodes:
for each type, we tilt away from πref in proportion to a priced utility,

uc(x, y) −
∑
m

λ̃m,c hm(x, y), λ̃m,c := λm,c/wc,

with βc scaling how sharply the policy concentrates on high-priced-utility
responses.

Fairness as explicit constraint choices, not an implicit byproduct.
The preceding Pareto improvement is compatible with many fairness con-
cepts, but it does not by itself pick one. In our framework, fairness enters
through what is constrained and how welfare is aggregated. Groupwise harm
caps δm,c can be read as a form of safety parity constraint: each group is

32

entitled to an upper bound on expected exposure to harm metric m under its
endogenous prompt distribution. Separately, the planner weights wc encode
distributive priorities over welfare (e.g., population share, a Rawlsian tilt, or
a regulator-mandated priority weight). Importantly, these are design param-
eters that can be deliberated and audited, rather than emergent artifacts of
model training.

Lagrange multipliers as “group conservatism prices.” At an opti-
mum, the multipliers λm,c (equivalently λ̃m,c) admit a standard shadow-price
interpretation:

λm,c =
∂

∂δm,c

(
max
π

∑
c′

wc′
(
Wc′(π)−βc′KLc′(π∥πref)

)
s.t.Hm,c′(π) ≤ δm,c′

)
,

whenever differentiability holds. Thus λm,c measures the platform’s marginal
value of relaxing the m-harm cap for type c; if the cap is slack, complemen-
tary slackness forces λm,c = 0. From a safety perspective, the more relevant
object is often λ̃m,c, which is the per-unit welfare weight price that actually
enters the exponential tilt. When λ̃m,c is large, the optimal policy behaves
more conservatively for that group along metric m: the model requires a
larger utility gain to justify even a small increase in hm.

This connects directly to interpretability in deployment. If we can esti-
mate hm and the induced policy shift, we can treat λ̃m,c as a legible knob
summarizing a complex tradeoff: it tells us how the system is pricing a partic-
ular harm for a particular group. Moreover, because λ̃m,c = λm,c/wc, changes
in planner weights wc mechanically change the effective conservatism price
even if the regulator’s cap δm,c is unchanged. This is a governance-relevant
nonlinearity: prioritizing a group in welfare aggregation implicitly reduces
the relative penalty of binding constraints for that group, which can be de-
sirable (e.g., to ensure accessibility) or undesirable (e.g., if it increases safety
risk). Making this dependence explicit helps avoid accidental policy choices.

Failure modes and audit questions. Two practical failure modes de-
serve emphasis. First, if harms are systematically mismeasured for some
type—for example because hm is calibrated on one prompt regime but eval-
uated on another—then the inferred λ̃m,c may look “reasonable” while the
realized Hm,c violates the intended cap. Second, if the type label is itself
socially sensitive, then using per-type multipliers can create disparate model
behavior even when caps are identical, because different groups may face dif-
ferent baseline feasibility regions under pc. This is not automatically unfair,
but it is exactly the kind of differential treatment that demands explicit justi-
fication and monitoring. In both cases, the multiplier view suggests concrete
checks: measure which constraints are empirically binding, estimate slack-

33

ness, and stress-test whether the policy response to tightening δm,c matches
the predicted marginal effect.

Where we go next. So far we have assumed that type-conditioning is
available and correctly specified, so that the Pareto logic is not confounded by
routing errors or strategic behavior. In deployment, however, c is often only
partially observed (via a proxy ĉ), and users may have incentives to misreport
if different types induce different levels of conservatism. These considerations
motivate the next set of extensions: proxy routing robustness, equilibrium
reporting, mixture-of-experts implementations, and online adaptation when
objectives drift over time.

10 Extensions: partial observability, strategic re-
porting, modular policies, and nonstationarity

Our preceding analysis treated the type label c as if it were cleanly available
for both training and deployment. In practice, the platform typically sees
only a proxy ĉ (e.g., coarse user setting, locale, subscription tier, classroom
mode), and even when a self-declared label is available it may be strate-
gically chosen. Moreover, the engineering implementation of πθ(· | x, c) is
often a modular mixture rather than a monolithic conditional network, and
both objectives and prompt distributions drift over time. We sketch how
the framework extends in these directions, and where the clean Pareto and
consistency conclusions become contingent on additional assumptions.

Partial observability and proxy routing. Suppose deployment routes
on ĉ and executes πθ(· | x, ĉ), while true welfare and constraints are evaluated
under c. A convenient abstraction is a (possibly x-dependent) confusion
matrix Q(ĉ | c, x) and the induced deployed mixture

πdepθ (y | x, c) :=
∑
ĉ∈C

Q(ĉ | c, x)πθ(y | x, ĉ).

Even if each per-proxy policy πθ(· | x, ĉ) is feasible for the corresponding
subgroup, feasibility for the true subgroup c is not automatic because (i) the
prompt law is pc and (ii) the deployed policy is a mixture over ĉ. A sufficient
condition is to treat routing uncertainty as part of the constraint set and
enforce robust caps of the form

sup
Q∈Q

Ex∼pc Ey∼∑
ĉQ(ĉ|c,x)πθ(·|x,ĉ)[hm(x, y)] ≤ δm,c,

for an uncertainty class Q (e.g., all Q within total variation ϵ of a nomi-
nal router). This converts proxy error into a safety margin problem: one

34

can tighten δm,c during training to compensate for a bounded misrouting
rate, or equivalently add an additional penalty term that upper-bounds the
harm inflation due to routing noise. The welfare side behaves similarly: the
realized welfare is that of a convex combination of near-correct policies, so
bounds of the form O(ϵ) follow under bounded utilities, but only if the map
ĉ 7→ πθ(· | x, ĉ) is not too discontinuous (a point we revisit under mixture-
of-experts).

Identification under proxy labels. When training data is labeled by
ĉ rather than c, we face a mixture identification problem. The preference
model becomes

P(L = 1 | x, y, y′, ĉ) =
∑
c∈C

P(c | x, ĉ)σ
(
uc(x, y)− uc(x, y′)

)
,

so the naive within-ĉ Bradley–Terry fit targets a mixture of utilities rather
than any single uc. If P(c | x, ĉ) varies with x (as is typical), this can intro-
duce precisely the kind of prompt–type confounding that type-conditioning
was meant to reduce. Two mitigation routes fit our formalism: (i) explicitly
model c as latent and perform EM-style learning of P(c | x, ĉ) jointly with
per-type reward surrogates; or (ii) learn a representation z = g(x, y) that
reduces dependence on x-specific artifacts, thereby improving overlap in the
causal feature space and making mixture deconvolution less brittle. Both
routes shift the burden to assumptions about identifiability and coverage:
without some form of overlap across types in z (or anchor points where ĉ
is informative), there is no guarantee that per-type utilities are recoverable
from proxy-labeled comparisons.

Strategic misreporting and equilibrium routing. If users can influ-
ence ĉ through self-report c̃, then routing becomes a game: the platform
commits to a menu {πθ(· | x, c̃)}c̃ and users select c̃ to maximize their own
welfare (possibly trading off safety restrictions). A minimal model is

c̃(x) ∈ argmax
c̃∈C

Ey∼πθ(·|x,c̃)[uc(x, y)],

with realized harms evaluated under the true type c. This immediately cre-
ates a failure mode: if some route has looser effective conservatism (lower
λ̃m,c̃ or larger δm,c̃), then users with sufficiently aligned objectives may pool
into that route, invalidating both welfare accounting and constraint guar-
antees. In equilibrium, the relevant prompt distribution for route c̃ is en-
dogenously selected, which can destroy overlap and change which constraints
bind.

Designing for incentive compatibility (or at least bounded dam-
age). There are two broad governance-compatible responses. The first

35

is mechanism-design flavored: make reporting less payoff-relevant by con-
straining policies to be “approximately monotone” in safety with respect to
observable risk factors, or by limiting cross-route divergence via shared KL
budgets, so that no route is an obvious “escape hatch.” Formally, we can
impose coupling constraints such as

KL
(
πθ(· | x, c̃) ∥πθ(· | x, c̃′)

)
≤ ρ ∀x, c̃, c̃′,

which caps the utility gain from misreporting at the cost of reducing person-
alization benefits. The second response is robust accounting: treat c̃ as cheap
talk, infer a posterior over c from behavioral signals, and enforce constraints
against the induced mixture (worst-case or Bayesian). Either way, the key
extension is that pc is no longer exogenous: equilibrium reporting changes
the distribution on which harms are realized, so feasibility must be stated
with respect to the induced equilibrium prompt-and-route distribution, not
the nominal pc.

Mixture-of-experts as an implementation of type-conditioning. A
practical architecture for πθ(· | x, c) is a mixture-of-experts (MoE): experts
{πθk(· | x)}Kk=1 paired with a gating model qϕ(k | x, ĉ), yielding the composite
policy

πθ,ϕ(y | x, ĉ) :=

K∑
k=1

qϕ(k | x, ĉ)πθk(y | x).

This view unifies clean type-conditioning (hard routing where qϕ is a delta
at k = ĉ) with soft routing that can hedge when ĉ is noisy. It also clarifies
a subtlety: even if each expert is trained to satisfy harm caps under some
distribution, the mixture can violate caps if the gate concentrates experts on
regions of x that were underrepresented during their constraint calibration.
Thus constraint enforcement should be done on the end-to-end mixture under
the realized gating distribution, i.e.,

Ex∼pc Ey∼∑
k qϕ(k|x,ĉ)πθk (·|x)

[hm(x, y)] ≤ δm,c,

with ĉ itself drawn from the router. Operationally, this argues for logging
and auditing at the post-gate level: the safety object is not the expert in
isolation but the routed composition.

Training dynamics with MoE gates. From an optimization perspec-
tive, the Lagrangian picture survives but with new degrees of freedom. The
platform can spend capacity either by sharpening experts (improving within-
expert utility at fixed harms) or by improving the gate (routing each context
to an expert with better priced utility). This creates a new failure mode:
the gate can become a high-leverage classifier that exploits spurious corre-
lates of c in x, making performance fragile under prompt shift. In terms of

36

our overlap constant κ, MoE systems can inadvertently increase effective κ
by specializing experts too narrowly. A conservative remedy is to regularize
the gate (entropy floors, Lipschitz constraints, or explicit domain-invariance
penalties on g(x, y)), trading some personalization for better worst-case be-
havior under routing error and distribution shift.

Time-varying objectives and online updates. Finally, both pc and uc
may drift with time: norms change, user populations shift, and products
add new affordances. Indexing time by t, we may face pc,t and uc,t and
thus a moving target π∗t . Static optimality statements then become track-
ing statements. A natural extension is an online, constrained mirror-descent
interpretation of DPO: at each epoch t, update θ to improve a preference
likelihood term while penalizing KL drift from a stable reference and enforc-
ing (or penalizing) empirical harms. One desideratum is a dynamic regret
guarantee,

T∑
t=1

(
Wc,t(π

∗
t)−Wc,t(πθt)

)
≤ poly(complexity) + VarT (π

∗),

where VarT (π
∗) measures how fast the optimum moves. Safety complicates

this: constraint violations are not symmetric losses, and online learning un-
der delayed or noisy harm signals can accumulate unacceptable debt. This
motivates conservative update rules (small effective step sizes via larger βc),
explicit safety buffers (train to δm,c − η), and change-detection triggers that
freeze learning when harm metrics become unreliable under shift.

Open problems at the interface of alignment and governance. These
extensions highlight a common theme: once types are noisy, strategic, or non-
stationary, the main object of concern is not just maximizing a regularized
welfare functional but controlling the end-to-end socio-technical feedback
loop that determines which prompts are asked, which routes are selected,
and which harms are realized. Formally, we move from optimization with
fixed pc to equilibrium selection with endogenous data, and from static fea-
sibility to safety under distribution shift. Bridging this gap likely requires
combining (i) causal identification tools for uc and hm under selection, (ii)
mechanism constraints that limit incentives to route-shop, and (iii) verifi-
able monitoring that can certify, from logs, whether the deployed mixture
respects the intended caps over time.

Empirical plan: datasets, synthetic counterfactual types, and stress
tests. To make the preceding framework operational, we want an empirical
protocol that (i) induces controlled preference heterogeneity across types, (ii)
exposes the learner to realistic prompt distributions with type–prompt cor-
relations, and (iii) measures both welfare improvements and safety failures

37

under the kinds of shifts that arise from proxy routing, modular policies,
and endogenous user behavior. Concretely, we propose a suite of bench-
marks built around an HH-style comparison dataset, augmented with syn-
thetic counterfactual objectives and multi-domain preference logs, and eval-
uated under targeted stress tests designed to probe overlap, confounding,
and strategic selection.

Base data: HH-style comparisons with typed prompts. We start
from a standard “helpful–harmless” (HH) pairwise preference corpus: each
instance consists of a prompt x, two candidate responses (yw, yℓ), and a label
L indicating the preferred response. We then attach a type label c ∈ C to
each instance by either (a) collecting preferences from distinct rater pools
with different instructions (e.g., “optimize terseness,” “optimize pedagogy,”
“optimize creativity,” “optimize compliance within policy”), or (b) simulat-
ing such pools using counterfactual relabeling rules defined below. The key
requirement is that pc(x) differs meaningfully across c (endogenous prompt
choice), so we stratify prompts into domains (e.g., programming, education,
health, relationship advice, creative writing) and sample type-conditional
mixtures over domains to create realistic prompt–type correlations.

Synthetic counterfactual objectives to induce ground-truth het-
erogeneity. To test identification and Pareto claims in a setting where we
can compute “true” utilities, we construct synthetic objectives by defining a
latent score

uc(x, y) := α⊤
c φ(x, y) −

∑
m

γm,c hm(x, y),

where φ(x, y) are precomputed features (e.g., task success, factuality proxy,
verbosity, politeness, refusal style, citation presence) and hm(x, y) are harm
detectors aligned with our deployed metrics. We then sample αc, γm,c so
that there exist response pairs with genuine sign disagreements across types
(realizing the heterogeneous-preference condition underlying our Pareto sep-
aration). This construction yields two complementary datasets:

1. Observed-preference dataset: we retain human labels L and treat uc
as latent, using the synthetic objective only for evaluation (a realism-
oriented regime).

2. Counterfactual-label dataset: we resample L from the Bradley–Terry
model P(L = 1 | x, y, y′, c) = σ(uc(x, y) − uc(x, y′)) (a ground-truth
regime).

The counterfactual regime is particularly useful for stress-testing overlap and
proxy routing, because we can hold uc fixed while perturbing pc or the proxy
channel Q(ĉ | c, x).

38

Multi-domain preference logs and endogenous prompt choice. To
emulate deployment, we extend beyond static datasets and create multi-
domain preference logs with two feedback channels: (i) pairwise comparisons
on model-sampled candidates (the standard DPO interface), and (ii) implicit
engagement signals that correlate with uc but also with spurious prompt
features (a source of confounding). We operationalize endogenous pc in two
ways. First, we build domain-conditioned prompt pools and let each type
draw prompts from a type-specific mixture, pc =

∑
d ηc,d pd, where pd is a

domain distribution and ηc,d controls specialization. Second, in an interactive
setting, we allow the next prompt to depend on the previous response via a
simple user simulator (e.g., if the response is too verbose, the user asks for a
shorter version; if the response is unhelpful, the user re-prompts with more
detail). This endogenizes data in the minimal sense needed to observe how
policies can induce distribution shift through their own outputs.

Training protocols and baselines. We compare (a) pooled DPO (single
πθ(y | x)), (b) type-conditional DPO (πθ(y | x, c) with observed c), (c)
proxy-routed conditional DPO (πθ(y | x, ĉ)), and (d) MoE implementations
πθ,ϕ(y | x, ĉ) =

∑
k qϕ(k | x, ĉ)πθk(y | x) with both hard and soft gates.

Across all conditions we fix a common reference πref and sweep βc (either
shared or type-specific) to trace the helpfulness–robustness frontier. For
constraints, we implement harm caps either via explicit Lagrange multiplier
updates (dual ascent with clipping) or via penalty surrogates calibrated to
match target caps on a held-out audit set. Crucially, feasibility is evaluated
on deployed mixtures when routing is noisy, i.e., under πdepθ (y | x, c) =∑

ĉQ(ĉ | c, x)πθ(y | x, ĉ).

Stress tests: prompt–type shift, overlap degradation, and artifacts.
We then evaluate under targeted distribution shifts designed to isolate the
failure modes suggested by our formalism.

1. Prompt–type shift: hold uc fixed but change pc at test time (e.g., rotate
the domain mixture weights ηc,d, or introduce novel prompt templates).
This probes whether the learned policy relies on spurious correlates of
type that do not transport across prompts.

2. Overlap degradation: explicitly reduce support overlap in a causal fea-
ture space z = g(x, y) by filtering training examples so that some
regions of z are absent for some types, while remaining present at test
time. We can parameterize severity by an empirical density-ratio es-
timate of κ ≈ maxc,c′ supz p̂c(z)/p̂c′(z), and sweep κ to test whether
regret grows in the predicted manner.

3. Length/format artifacts: inject confounders that labelers systemati-
cally prefer (e.g., longer answers, more hedging, bullet lists) while hold-

39

ing task success constant, and then flip these correlations at test time.
This checks whether KL-regularization and representation choices ac-
tually suppress artifact exploitation.

4. Proxy noise and misrouting: vary a controlled confusion channel Q(ĉ |
c, x), including both x-independent noise (simple ϵ-misclassification)
and x-dependent noise (hard cases concentrated in particular domains).
This tests the continuity requirement implicit in O(ϵ) welfare degrada-
tion claims.

5. Strategic misreporting: simulate a reporting game where users select c̃
based on observed policy behavior. Empirically, we implement this by
allowing a user simulator to query multiple routes on the same x and
pick the route with higher realized utility. We then re-estimate harms
under the induced equilibrium route distribution, measuring whether
any route becomes an “escape hatch” that breaks subgroup caps.

Metrics: welfare, constraints, and conservatism. Our primary out-
come is subgroup win rate: for each c, we compare πθ(· | x, route) against a
baseline policy (pooled or πref) using held-out pairwise tests drawn from pc,
reporting P(win | c). When synthetic uc is available, we also report estimated
welfare Wc(π) and welfare regret relative to an oracle computed by sampling
from the closed-form tilt with known uc and hm. Safety is measured by
empirical harm cap violations: for each (m, c) we estimate

Ĥm,c(π) := Ex∼p̂c Ey∼π(·|x,dep(c))[hm(x, y)],

and report both absolute violation max{0, Ĥm,c(π) − δm,c} and tail risk
(e.g., conditional-on-high-risk prompts). Finally, we track KL drift per type,
KLc(πθ∥πref), as a diagnostic for over-optimization and as a common cur-
rency for comparing personalization gains across architectures.

What we learn from the suite. This empirical plan is designed to sepa-
rate three questions that are often conflated in practice: (i) does conditioning
(or modularization) increase subgroup welfare on in-distribution prompts;
(ii) does it remain robust under prompt shift and reduced overlap; and (iii)
do proxy routing and strategic behavior convert nominally safe per-route
policies into unsafe deployed mixtures. By sweeping βc, caps δm,c, overlap
severity κ, and proxy error ϵ, we can map where the clean comparative stat-
ics survive and where they fail, thereby informing the discussion section’s
governance-relevant claims about auditing, logging, and the circumstances
under which personalization is worth its added surface area.

40

Discussion and policy implications. Our formalism makes a simple
but operational point: once we allow user objectives to differ, the platform
is no longer choosing a single helpfulness policy, but rather a bundle of
type-conditional policies plus a routing mechanism. This bundle can strictly
improve welfare relative to pooling when genuine preference heterogeneity
is present, but it also enlarges the safety and governance surface area. The
correct policy question is therefore not “personalize or not,” but “under what
evidentiary and monitoring requirements does personalization remain both
welfare-improving and constraint-feasible under deployment-realistic routing
and distribution shift?”

Audit and logging as first-class safety requirements. Personalization
breaks many common evaluation shortcuts because the deployed behavior
depends on the joint distribution of prompts, routes, and outputs. As a
result, the minimal audit trail must include, for each interaction, the prompt
x, the chosen route (observed c or proxy ĉ), the model output y, and enough
auxiliary metadata to re-estimate harms and KL drift over time. In our
notation, the relevant safety object is not Hm,c(πθ(· | x, ĉ)) evaluated route-
by-route in isolation, but the deployed mixture induced by the proxy channel,

πdepθ (y | x, c) :=
∑
ĉ

Q(ĉ | c, x)πθ(y | x, ĉ),

and audits should target Hm,c(π
dep
θ) rather than the easier per-route quan-

tities. Concretely, this implies logging the proxy model version (to track
changes in Q), the gate confidence (to detect “hard cases” where Q is brit-
tle), and periodic replay or counterfactual evaluation on a fixed audit set to
isolate policy drift from user-population drift. If regulators impose caps δm,c,
then regulators (or independent auditors) need sufficient access to estimate
Ĥm,c with confidence intervals, including tail-risk slices (e.g., conditional on
high-risk prompt templates) rather than only unconditional averages.

Overlap and confounding require representation-aware audits. Be-
cause our generalization claims hinge on overlap in a causal feature space
z = g(x, y), logging requirements should anticipate the need to diagnose
overlap degradation. In practice, we rarely know the true causal g, but
we can approximate it via model-based embeddings or task-relevant feature
extractors and track empirical density ratios across types. A governance-
relevant implication is that “we satisfied the cap last quarter” is not itself
stable evidence of future feasibility: if the support of z shifts for a subgroup
(e.g., new prompt genres appear), then the effective overlap constant κ can
worsen, and the same policy can become both less useful and less safe. We
therefore view overlap monitoring—density-ratio alarms, coverage tests on
z, and periodic targeted data collection for under-covered regions—as analo-
gous to distribution-shift monitoring in other safety-critical ML deployments,

41

but with higher stakes because failures are type-correlated and can look like
disparate impact.

When is personalization necessary (or justified)? Personalization is
most justified when three conditions jointly hold. First, there is evidence of
genuine preference heterogeneity: not merely different prompt frequencies,
but sign-disagreements on response pairs after controlling for harms. Second,
routing is sufficiently reliable (small effective ϵ) or the policy family is smooth
enough in c that misrouting costs are bounded. Third, the type-conditional
prompt distributions have adequate overlap in the relevant feature regions,
so that learning does not devolve into fitting spurious prompt–type corre-
lates. When these conditions fail, pooling (or weaker forms of adaptation,
such as soft style knobs that do not alter high-risk behavior) may dominate
on robustness grounds even if it leaves welfare on the table. A pragmatic
decision rule is to treat personalization as an intervention that must earn
its keep: we should require that, at a fixed conservatism budget (e.g., a KL
cap relative to πref), personalization yields a clear subgroup welfare gain and
does not increase the worst-case harm risk under plausible routing noise and
prompt shifts.

Avoiding “escape hatches” and route-induced safety regressions.
A recurring failure mode in personalized systems is the emergence of a route
that becomes an implicit jailbreak: users (or user simulators) learn that se-
lecting a particular ĉ yields more permissive behavior, even if that route
was intended for benign preferences. Our framework makes this legible: if
constraints are enforced only conditionally on reported type, then strate-
gic selection can change the effective distribution over routes and break the
intended subgroup caps. One policy implication is that cap enforcement
should include mixture-robust constraints (audited under the empirically ob-
served routing equilibrium), and in high-risk domains may need cross-type
or global caps that cannot be circumvented by misreporting. Where misre-
porting is plausible, platforms should treat the routing interface itself as a
safety-critical component: rate limits on route switching, friction for high-
privilege routes, and anomaly detection for unusual route/query patterns
become part of the safety case rather than mere product concerns.

Setting βc: conservatism as an auditable control knob. The tem-
perature βc plays two roles that matter for governance. Statistically, larger
βc reduces over-optimization on noisy or confounded preferences by keeping
πθ closer to πref ; operationally, it provides a common currency for comparing
personalization variants under a shared “amount of change.” We therefore
recommend treating βc not as a fixed hyperparameter chosen once, but as
an audited control knob with a documented rationale. In deployments where

42

type labels are noisy or overlap is poor, raising βc for the affected routes is
a principled way to bound regret and contain tail risks, albeit at a welfare
cost. Conversely, when a route is well-instrumented and well-covered, low-
ering βc can be justified if accompanied by stronger monitoring and tighter
harm multipliers. A practical governance artifact is a per-route “KL bud-
get” (or upper confidence bound on KLc(πθ∥πref)) that triggers review when
exceeded.

Setting harm caps δm,c and interpreting Lagrange multipliers. Caps
δm,c are ultimately normative choices, but our Lagrangian perspective helps
interpret what the system is doing when caps bind: the multipliers λm,c be-
come implicit harm prices that trade off utility against safety. This suggests
two implementation-facing recommendations. First, cap-setting should be
accompanied by multiplier monitoring : sudden growth in λm,c often indi-
cates either an infeasible cap given the current model class and data, or a
shift in prompts such that previously rare high-harm regions are now com-
mon. Second, when routing is imperfect, caps should be tightened to preserve
feasibility under misclassification, effectively budgeting for the O(ϵ) leakage
of unsafe behavior into subgroups where it is unacceptable. More broadly,
we should distinguish between measured harms (those captured by hm) and
unmeasured hazards (specification gaps); tighter caps can only compensate
for the former, while the latter require red-teaming, policy updates, and
sometimes restricting personalization entirely in certain domains.

Limitations: what the model abstracts away. Several assumptions
are doing real work. The Bradley–Terry preference model is convenient, but
real labelers exhibit context effects, rater drift, and multi-attribute trade-
offs that violate the logistic difference structure. The feature-space overlap
condition is both critical and hard to verify: without a defensible g(x, y),
we can at best approximate overlap and hope it correlates with true trans-
portability. Endogenous prompt choice is only partially modeled; in reality,
users adapt strategically to the system over long horizons, and the platform’s
policy updates feed back into pc. Finally, groupwise caps presuppose that
harms are measurable and that subgroup definitions are stable; both can
fail in practice (e.g., latent vulnerable populations, or harms that manifest
downstream rather than in single-turn outputs).

Open questions for alignment and governance. Three research di-
rections appear especially urgent. (i) Dynamic equilibrium: we need models
where pc evolves with πθ, so that “safe at time t” does not imply safe af-
ter users learn the system. (ii) Incentive-compatible routing : rather than
assuming an exogenous proxy ĉ, we need mechanisms that elicit types (or
preferences) while limiting the gains from misreporting and preserving pri-

43

vacy. (iii) Robust constraint satisfaction: enforcing Hm,c(π
dep) ≤ δm,c un-

der distribution shift, imperfect detectors, and adaptive adversaries likely
requires worst-case or distributionally robust formulations, and may force
more conservative choices of βc than those suggested by in-sample evalua-
tions. Addressing these questions would turn our present “static” safety case
into one that better matches the realities of deployment.

Bottom line. Personalization can be a Pareto improvement in welfare
terms, but only when supported by strong instrumentation: mixture-aware
audits, overlap monitoring, and explicit controls for conservatism and con-
straint enforcement under routing noise. From a policy perspective, the key
shift is to regulate and evaluate systems (policy plus router plus monitoring)
rather than single models, because the relevant safety object is the deployed
mixture interacting with endogenous users.

44

	Introduction
	Related work
	Setup and primitives
	The planner's problem: welfare, regularization, and constraints
	Closed-form characterization: exponential tilting of the reference
	Constrained multi-objective DPO: likelihood fitting with safety prices
	Robustness under endogenous prompts: overlap in a causal feature space
	Representation learning to mitigate prompt-type confounding
	Pareto improvements and fairness under harm caps
	Extensions: partial observability, strategic reporting, modular policies, and nonstationarity

