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Abstract

Modern preference learning pipelines (including DPO-style opti-
mization) often fail out of distribution because the observational data
exhibits limited overlap: latent response attributes such as length, for-
mat, and safety tone are strongly correlated with other quality-relevant
factors. Building on the causal perspective on preference learning (con-
founding, overlap/positivity) and the observation that preference mod-
els only identify reward differences up to nuisance shifts, we formalize
preference data collection as an optimal experimental design problem
in a latent factor space. We introduce a clean latent-linear BTL model
where interventions act as controllable transformations of responses
that shift the distribution of latent attributes. We define an overlap
condition number via the Fisher information of the BTL likelihood and
show that (i) estimation error and downstream out-of-distribution re-
gret scale with the inverse overlap, and (ii) targeted "quadrant-filling"
intervention mixtures maximize overlap and sharply reduce required
labels relative to passive logging when latent attributes are highly cor-
related. We give closed-form characterizations in a two-factor case and
propose a practical bandit-style design algorithm that uses uncertainty
over latent factors to adaptively choose interventions under a labeling
budget. Empirically, we outline tests showing that actively decorrelat-
ing (length, quality) and (helpful, harmless) attributes improves OOD
win rates and reduces reward hacking compared to standard preference
data collection.
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1 Related work

Our formulation sits at the intersection of modern preference optimization
for language models, causal perspectives on preference data, and classical
experimental design. We emphasize these connections because they clarify
which parts of the alignment pipeline are “optimization” problems (improving
a model given data) versus “identification” problems (acquiring data that
makes the latent objective learnable in the first place), and because many
observed failure modes in practice can be reinterpreted as overlap failures
rather than optimizer failures.

DPO, RLHF, and KL-regularized preference optimization. The
dominant practical approach to aligning large language models with human
preferences is to (i) collect pairwise comparisons, (ii) fit a reward or prefer-
ence model, and (iii) optimize the generator with a regularizer that keeps
it near a reference policy. Canonical RLHF implementations use policy-
gradient methods such as PPO with an explicit KL penalty to a reference
model ?77. More recent work shows that, under a Bradley—Terry—Luce
(BTL) style likelihood and a particular parameterization of the reward in
terms of log-ratio to a reference policy, one can optimize preferences with-
out an explicit reward model via Direct Preference Optimization (DPO) ?.
Related KL-regularized objectives and implicit reward formulations appear
in a number of places, often motivated as stable alternatives to RL or as
approximations to maximum entropy RL ?77.

These methods primarily address the policy improvement step given a
fixed dataset of comparisons. Our focus is complementary: we treat the
dataset itself as an object of design, and we make explicit how the induced
distribution over latent differences Az governs the Fisher information and
thus the achievable accuracy of any downstream estimator (explicit reward
model, DPO-style implicit model, or other). From this viewpoint, KL regu-
larization controls how far the learned policy moves in model space, but it
does not by itself guarantee that the preference signal spans the relevant la-
tent directions. This distinction matters for safety: if the preference dataset
under-excites certain directions (e.g., factuality vs. style), then increasingly
powerful optimization—even if perfectly regularized—can amplify spurious
correlations because the learner is forced to extrapolate off-support. Empir-
ically observed “reward hacking” and “sycophancy” phenomena can be inter-
preted as such extrapolation errors: the optimizer reliably improves what is
identifiable from the comparisons, which may be a proxy dimension corre-

lated with true user welfare in-distribution but decoupled out-of-distribution
??

Causal views of preference data: confounding, support, and coun-
terfactuals. Preference learning is naturally causal because labels are gen-



erated after the platform chooses which model outputs to show (or which
prompts to elicit), and because the choice of what comparisons to collect can
confound the relationship between latent factors and observed preferences.
The causal inference literature emphasizes that identification of causal ef-
fects requires overlap /positivity: for each covariate configuration of interest,
all treatments must have nonzero probability 7. In our setting, the “treat-
ments” are interventions a € A that change the distribution of response-side
features zp(z,y), and the analog of positivity is the requirement that the
induced distribution of Az span all directions needed to identify w. This
perspective aligns with off-policy evaluation and counterfactual risk mini-
mization in contextual bandits, where logging policies that fail to cover rel-
evant actions yield unidentifiable counterfactual values ?7. It also resonates
with recent work emphasizing that alignment data are selected—via prompt
sourcing, filtering, or annotator instructions—and that selection can create
systematic blind spots ?77.

A related line of work studies preference elicitation under hidden con-
founders or heterogeneous annotators. Models of annotator noise, rater
bias, and context effects complicate the mapping from a latent utility to
observed pairwise labels ??. Our latent-factor decomposition z(z,y) =
(zx(x), zr(x,y)) can be viewed as a structured way to discuss such het-
erogeneity: prompt-side factors capture task mix and user population, while
response-side factors capture stylistic and substantive properties. An im-
portant limitation of our abstraction is that it keeps the label model condi-
tionally logistic given (z,7,¢’); in real deployments, annotators may strate-
gically adapt, norms evolve, and preference judgments depend on framing.
Extending experimental design objectives to these richer, potentially non-
stationary label-generating processes remains open, and is likely essential
for governance-relevant guarantees.

Active preference learning, dueling bandits, and preference-based
RL. Choosing which comparisons to label is a classical active learning prob-
lem. In the online learning literature, dueling bandits study how to identify
high-utility actions when feedback is pairwise comparisons rather than scalar
rewards 7. Preference-based reinforcement learning extends these ideas to
sequential decision-making with human comparisons ?. Bayesian approaches
treat the latent utility as a posterior over functions and adaptively query in-
formative comparisons, including in preference-based Bayesian optimization
?. Our design problem is closest in spirit to these works, but differs in two
ways that matter for language-model alignment. First, our “arms” are not
only prompts or candidate policies but also interventions that transform re-
sponses (e.g., length, tone, safety constraints, tool use), which directly mod-
ulate feature overlap rather than merely selecting among existing candidates.
Second, we explicitly incorporate per-intervention costs c(a), reflecting that



some comparisons (expert domains, adversarial prompts, red-teaming, mul-
tilingual evaluation) are more expensive, and that practical pipelines must
trade off coverage against budget.

Notably, much of the active preference learning literature optimizes in-
formation gain or regret under a fixed hypothesis class. Our E-optimal
criterion—maximize Amin(/4)—is a worst-direction notion of informativeness
that is particularly aligned with safety concerns: the system fails in the di-
rection that is least identified. This is analogous to robustness-motivated
active learning, where one seeks guarantees against adversarial shifts or rare
but high-stakes subpopulations. It also suggests a concrete failure mode: if
data collection policies greedily optimize for immediate reward improvement
(e.g., focusing on comparisons with large expected preference margins), they
may reduce o(-)(1 —o(-)) curvature and simultaneously collapse the support
of Az, yielding brittle learned objectives even if training loss decreases.

Connections to classical and modern optimal experimental design.
Our formalization is deliberately close to optimal design in generalized lin-
ear models, where Fisher information and eigenvalue criteria (A-, D-, and
E-optimality) provide principled data acquisition rules ??. The observation
that optimal designs often require only a small support (via Carathéodory-
type arguments) is standard in that literature and motivates our claim that
a small mixture over interventions can be sufficient even when A is large.
In modern machine learning, similar ideas appear in adaptive data collec-
tion, curriculum learning, and dataset distillation, though typically without
explicit overlap guarantees. There is also a close link to active sampling
for logistic regression and to experimental design for bandits, where explo-
ration policies are often justified by ensuring adequate information matrix
conditioning 7.

At the same time, language-model alignment introduces complications
absent from textbook design. The “design points” are themselves generated
by a model (- | ) and transformed by T, so the platform cannot di-
rectly set Az but only steer its distribution. This makes controllability of T,
(and its interaction with the generator) central: some interventions change
superficial style without perturbing substantive content, while others (e.g.,
tool augmentation, refusal policies, or retrieval) can move the system into
entirely different regions of the latent space. From a safety standpoint, this
highlights a governance-relevant lever: auditing and standardizing the inter-
vention set A and its costs c(a) is tantamount to auditing the experimental
design space available to the platform.

Overlap, distribution shift, and robustness in alignment. Finally,
our emphasis on overlap connects to the broader literature on distribution
shift and robustness for ML systems ??7. Alignment deployments face sys-



tematic shifts: user populations change, adversaries adapt, and the model
itself changes the prompt distribution by shaping user behavior. In such
settings, purely in-distribution objectives can be misleading, and worst-case
or minimax perspectives become natural. Our minimax design framing can
be seen as a specific instantiation: we choose ¢ to control the least-identified
directions of w under plausible shifts. This connects conceptually to robust
RLHF proposals (e.g., adversarial data collection and red-teaming) and to
evaluation methodologies that stress-test rare behaviors 7. The open chal-
lenge is to make these connections operational: specifying credible shift sets
Psnitt, measuring latent overlap in situ, and integrating the resulting design
constraints into real data pipelines without prohibitive cost.

In summary, while DPO and KL-regularized methods tell us how to up-
date a policy given preference data, the causal and experimental design liter-
atures explain when those updates are well-founded. Our contribution is to
translate those identification requirements into a tractable platform design
problem over interventions, making explicit the tradeoff between budget,
controllability, and safety-critical coverage.

2 A tractable latent BTL model with interventions

We now instantiate a minimal model in which “what we learn” (a reward
parameter) and “what we can learn” (identifiability from collected compar-
isons) are separated cleanly. The key move is to treat the preference dataset
as an endogenous object: the platform controls which kinds of model out-
puts are compared, via interventions that systematically perturb response
properties. This lets us formalize a concrete safety tradeoff. If we collect
only cheap, convenient comparisons, we may fit a very accurate preference
model on-support while leaving some latent directions essentially unobserved;
downstream optimization can then extrapolate in precisely those directions,
producing brittle objectives under distribution shift.

Primitives and data-collection protocol. A prompt is denoted z € X,
drawn from a deployment-relevant distribution Px (e.g., logged traffic, a
curated mixture of tasks, or a worst-case mixture over user groups). A base
generator my(- | «) proposes candidate responses y € ). The platform has
access to a finite intervention set A; an intervention a € A is a transformation

TaZXxy%y, g:Ta(x,y)a

intended to modulate response-side properties (e.g., verbosity, tone con-
straints, tool-use, safety filters, retrieval augmentation, or domain-specific
formatting). We allow interventions to depend on both the prompt and
the base response because many realistic controls are post-processing or



decoding-time constraints that act on a candidate completion conditioned
on x.

Data collection proceeds as follows for t = 1,...,N: draw z; ~ Px;
choose interventions a¢,aj ~ q(- | ;) under a platform policy ¢; draw base
candidates y;, y; ~ mo(- | x¢); form gy = Ty, (x4, y2) and g = Ty (24, y;); then
request a preference label L; € {0, 1} indicating whether the first transformed
response is preferred. The distribution over observed tuples (x, t, 7, Lt) is
thus induced jointly by (Px, mo, q, {4 }aca); in particular, the platform does
not set comparison pairs directly, but only steers their distribution through
q and the intervention operators.

Latent-factor map and linear latent reward. We posit a (possibly
unknown) representation

2: X XY — ]Rd, z(x,y) = (Zx(x),ZT(ﬂfay))y

where zx(x) € R captures prompt-side/task-mix factors and z7(z,y) €
RIT captures response-side factors, with d = dx + dr. This factorization is
not a claim that prompts and responses are independent; rather, it enforces
a bookkeeping distinction that becomes important under shift. Changes in
user population move zx, while decoding constraints and post-processing
primarily move zp. The platform’s latent utility is assumed linear,

r(x, y) = ’IUTZ($, y)7

for an unknown w € R% We emphasize that linearity is a tractability as-
sumption: it gives a transparent connection between dataset geometry and
estimation error. In practice, one may treat z as a learned feature map
and interpret w as the last-layer weights of a preference model; our analysis
then describes which directions in feature space are weakly identified by the
collected comparisons.

BTL label model and the role of margins. Given a prompt x and two
transformed candidates 7,7, we define the latent difference

Az = Z(.ﬁU,’g) - Z(.T, Zj/)
We assume a Bradley—Terry—Luce likelihood,

1

P(L=1|z717)= a(wTAz> , o(u) = 1T

This model captures a basic but deployment-relevant phenomenon: labels
are most informative when comparisons are neither trivial nor impossible.
Indeed, the curvature term o(u)(1 — o(u)) is maximized near v = 0 and



vanishes as |u| — co. As a consequence, data-collection policies that prefer-
entially sample “obvious wins” can decrease statistical efficiency even while
increasing immediate agreement rates among annotators. For alignment,
this creates a subtle failure mode: high inter-rater reliability does not imply
that the resulting dataset identifies the underlying tradeoffs encoded in w.

Estimation objective and induced Fisher information. Let ¢(w) de-
note the negative log-likelihood over N comparisons:

N
lw) = Z < — Lilogo(w' Az) — (1— L¢)log (1 - a(wTAzt))).

t=1

The maximum-likelihood estimator w satisfies the score equation

N

Z <Lt — J(lI)TAZt))AZt = 0.

t=1
To connect data collection to achievable accuracy, we study the Fisher in-
formation under a design ¢:

I,(w)=E |:O'(’LUTAZ)(1 — a(wTAz)) AZAZT},

where the expectation is taken over the random tuple (x,Az) generated
by (Px,mo,q,T,). Under standard regularity and boundedness assumptions
(e.g., [|Az|| < R almost surely and sufficient curvature on the realized sup-
port), the asymptotic covariance of @ is I, (w,) ™ /N. This is the formal sense
in which the platform’s intervention policy shapes learnability: the spectrum
of I, is governed by which latent directions are excited by observed Az vec-
tors, and by whether preference outcomes saturate.

Positivity /overlap as an identification condition. The central iden-
tifiability requirement is an overlap (positivity) condition:

)\min(Iq(w*)) Z A > 0.

Intuitively, we need comparisons that vary the latent factors in linearly inde-
pendent ways; otherwise, some components of w are unidentifiable no matter
how large N is. When overlap fails, the problem is not that optimization
is “hard™—it is that multiple distinct w explain the observed labels equally
well because the dataset only explores a low-dimensional manifold of Az. In
alignment terms, this is precisely a blind-spot risk: the learned preference
model may be forced to extrapolate how humans trade off, say, factuality
versus style or helpfulness versus harmlessness, if the collected comparisons
never independently vary those attributes. Subsequent policy optimization
can then amplify whichever proxy direction is spuriously correlated with
label outcomes on the observed support.



Intervention costs and the design problem. We incorporate a per-
intervention cost c¢(a) (generation overhead, evaluator expertise, latency, or
operational risk). With a total labeling budget B, a natural per-sample
constraint is

Einpy, ang(loyle(@)] < B/N.

The platform’s design problem is then to choose g to make the worst-identified
directions as identifiable as possible. A tractable robust surrogate is E-
optimality:

max Amin(Ig(wy)) s.t. Ele(a)] < B/N,

q
with @ encoding feasibility (e.g., g(a | ) > 0 and ), q(a | ) = 1). The
point is not that E-optimality is the unique correct criterion, but that it op-
erationalizes a safety-relevant desideratum: we are optimizing the direction
in which the system would otherwise fail under shift. This contrasts with
designs that target average-case gains (e.g., trace or determinant criteria)
and may neglect rare, high-stakes directions.

A two-factor specialization and “quadrant filling.” To make the ge-
ometry explicit, consider a stylized case with d = 2 and a family of induced
Az distributions that are approximately elliptical, with correlation parame-
ter p(a) determined by the intervention. Passive collection (no meaningful
intervention) often yields |p| &~ 1: many properties co-vary, so comparisons
effectively lie near a one-dimensional curve. In this regime, Amin(Zy) be-
comes small, and the sample size required to estimate both components of
w grows like 1/(1 — p?). Interventions are valuable precisely insofar as they
let us change this correlation structure by perturbing response-side factors
without simultaneously moving all other factors.

In the extreme discrete analogue where Az € {—1,+1}2, identifiability
requires placing nonzero mass in each of the four quadrants; missing any
quadrant yields Ay, = 0 and hence non-identification. This motivates a
practical heuristic: construct intervention mixtures that deliberately pro-
duce “crossed” comparisons (e.g., high factuality with low polish and vice
versa), rather than only improving all dimensions simultaneously. Moreover,
because information matrices live in a low-dimensional convex cone, optimal
mixtures typically require only a small support over interventions, suggest-
ing that a limited menu of well-chosen transformations can achieve most of
the attainable overlap even when A is large.

Limitations and what must be monitored in practice. Two limita-
tions matter for deployment. First, the platform rarely observes the true
latent map z; it uses a proxy Z (learned embeddings, heuristic attributes,
or model-based scorers). Overlap must therefore be monitored in the proxy



space, and we should expect misspecification: good conditioning of an em-
pirical information matrix in Z does not guarantee conditioning in the true
latent factors. Second, label generation can be non-stationary (annotator
drift, changing norms, strategic behavior), violating the conditional logistic
assumption. These issues do not eliminate the value of the design lens, but
they shift the governance question: we should audit not only the trained
preference model, but also the intervention set A, the costing scheme c(a),
and the resulting empirical coverage diagnostics. In our view, making over-
lap a first-class metric is a concrete step toward verifiable guarantees that
alignment training is not silently under-identifying safety-critical tradeoffs.

3 Overlap metrics and why they matter

The design objective in the previous section is phrased in terms of the Fisher
information matrix I,(wy), but in deployment we need to treat “overlap” as
an operational metric: something we can estimate (even approximately) and
use to predict when preference learning will generalize versus when it will
produce brittle extrapolation. In our setting, overlap is not merely a support
condition (“every action has nonzero probability”) as in off-policy evaluation;
it is a geometric property of the induced comparison distribution over latent
differences Az. Informally, good overlap means that the dataset contains
comparisons that vary the salient latent factors in sufficiently independent
directions, and at margins where labels retain curvature.

Fisher information as a curvature-weighted coverage matrix. Re-
call that under a fixed intervention policy ¢, each labeled comparison in-
duces a random vector Az, and the BTL likelihood contributes curvature
proportional to (u)(1—o(u)) at margin v = w ' Az. The population Fisher
information is

I(w)=E |:O'(’U)TAZ)(1 - U(wTAz)) AZAZT}.

Two multiplicative effects matter. The matrix AzAz' encodes coverage
of directions: if Az is nearly always aligned with a single vector, then
E[AzAzT] is close to rank one regardless of sample size. The scalar fac-
tor o(w ' Az)(1 — o(w' Az)) encodes label informativeness: even if we cover
many directions, comparisons at extreme margins are effectively determinis-
tic and yield little curvature. Thus, overlap is inherently a joint property of
(1) which differences we observe and (ii) where those differences land relative
to the current tradeoffs w.

A useful approximation, when w is bounded and the induced margins
satisfy |w' Az| < M with nontrivial probability mass near 0, is that the
curvature term is bounded away from 0 on the effective support. In that

10



regime we can sandwich
a E[AzA2T] < I (w) < @E[AzAzT],

for constants 0 < a < @ < 1/4 depending on M. This makes explicit that
intervention design is, to first order, a problem of shaping the second-moment
geometry of Az, with curvature acting as a downweighting of “too-easy”
comparisons.

Overlap as a minimum-eigenvalue condition, and a condition num-
ber. We summarize overlap through the smallest eigenvalue Amin (Zg(wy)).
The identification requirement

Amin(Iq(w*» >A>0

is a quantitative positivity condition: it rules out latent directions along
which the data provide vanishing curvature. Since the direction of greatest
danger is precisely the least excited one, E-optimality targets Apin directly.

For diagnostics and comparative statics it is convenient to introduce an
“Inverse-overlap” measure (or overlap condition number)

)‘maX(Iq (w)) 1

k(q) = , and in particular Kiny(q) = —————.
Amin (Ig(w+)) Amin (1q(w+))

Large x(q) means the dataset is informative about some directions in w but
nearly silent about others. In alignment terms, this corresponds to learning
some preference tradeoffs sharply (e.g., minor stylistic choices) while leaving
safety-critical tradeoffs weakly identified (e.g., factuality versus persuasive
framing). The danger is not merely statistical inefficiency; it is that down-
stream optimization will tend to move into precisely those weakly constrained
directions because they admit the largest apparent gains under the learned
model.

From overlap to variance: why the smallest eigenvalue dominates.
Under standard M-estimation regularity (bounded ||Az||, well-specified lo-
gistic likelihood on the realized support, and strong convexity in a neighbor-
hood of w,), the MLE w0 concentrates at a rate governed by the curvature
of the population risk, i.e., by I;(wy). In particular, the asymptotic covari-
ance scales as I,(w,)~!/N, and finite-sample bounds yield the characteristic
dependence

d
. 2
E[Hw_w*HQ} S N)\min(-[q(/w*))'

This makes the safety-relevant point sharp: improving the worst-direction
curvature is multiplicatively more valuable than further improving already-
well-identified directions. A design that increases Amax Without increasing
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Amin can reduce average error metrics while leaving the most dangerous ex-
trapolation risk unchanged.

We can also see the role of margins here. Suppose interventions make re-
sponses “uniformly better” along the current reward direction so that w, Az
is typically large in magnitude. Then o(1 — o) becomes small, shrinking all
eigenvalues of I, simultaneously. This is the statistical shadow of an intu-
itive labeling phenomenon: if comparisons are consistently obvious, we may
obtain high agreement but low information about fine-grained tradeoffs. Put
differently, overlap is not just about spanning R?; it is also about keeping a
substantial fraction of comparisons in the informative margin regime.

From overlap to OOD error: why estimation geometry becomes a
deployment risk. The overlap metric matters because we rarely deploy
the preference model on the same distribution of comparisons used to train
it. In our framing, deployment changes the distribution of (x,y), hence of
z(x,y) and of the relevant differences. A simple way to connect this to
risk is to consider a downstream decision rule that compares candidates by
the learned score 7#(x,y) = @' z(x,y). When the test environment induces
differences with second moment Yiest = E[AztestAZtTgst]; a generic plug-in
bound yields

) d
Regretoop < [|Stestl| Bl — wallz < [ Stest] \/NA L)
min\+q *

The dependence on ||Xiest|| captures the scale of latent variation encountered
at deployment; the dependence on Amin(I;) captures whether the training
set actually constrained those variations. When a rare user group or a rare
task family activates a latent direction that training failed to identify, the
regret can be dominated by that single direction even if in-distribution val-
idation metrics look strong. This is the formal sense in which overlap is a
governance-relevant quantity: it connects data-collection choices to worst-
case downstream behavior under plausible shifts.

Limited latent positivity: correlation and missing quadrants. Two
stylized failure modes illustrate why overlap can collapse even with large
datasets.

First, consider a d = 2 setting where Az is approximately elliptical with
correlation p near 1 under passive collection. Then E[AzAz "] has eigenval-
ues proportional to 1 & p, and the smaller one scales like 1 — p. Since I is
approximately a curvature scalar times this second moment (when margins
do not saturate), we obtain the characteristic penalty

)\min(Ipassive(w*)) = @(1 - :02)>
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so sample complexity for fixed accuracy scales as 1/(1 — p?). This is the con-
tinuous analogue of the intuition that the dataset lives near a one-dimensional
manifold: two latent factors move together, so we cannot disentangle their
weights.

Second, in a discrete “quadrant” analogue with Az € {—1,+1}2, missing
any quadrant yields non-identification because E[AZAZT] becomes singular.
This failure mode is easy to underestimate in practice because it can occur
even when each coordinate appears to vary: if z; and zo only appear with
the same sign, then both coordinates change but never independently. Inter-
ventions that produce crossed comparisons (high-low versus low—high) are
precisely what repairs this, and E-optimality formalizes the “fill all quad-
rants” heuristic as maximizing worst-direction curvature.

Estimating overlap in practice: empirical information and proxy
features. In a real pipeline we do not observe z and do not know ws.
Nonetheless we can approximate overlap diagnostics in a proxy space using
learned embeddings or attribute estimators Z(x,y) and a current model .
A natural empirical analogue of Fisher information is

N
~ 1
IT==-> S AzAz], S =oc Az)(1-o(b'Az)),

~

and we can track Amin(I) (or a regularized version) over time, across prompt
strata, and across intervention types. Doing so turns overlap from an ab-
stract identifiability condition into a monitoring target: we can detect whether
new interventions genuinely introduce novel directions of variation or merely
rescale already-common ones, and whether our collection policy is drifting
toward saturated comparisons.

We should be explicit about limitations. Conditioning in Z does not
guarantee conditioning in the true latent factors that humans use, and T can
be overly optimistic if the proxy collapses distinct concepts. Nevertheless,
overlap monitoring remains valuable as a necessary condition for safety: if
even the proxy space is ill-conditioned, the true space is unlikely to be better,
and the resulting reward model is predictably under-identified.

Why this metric belongs in alignment and governance discussions.
Overlap metrics give a concrete language for a familiar alignment tension:
cheaper data collection tends to follow natural correlations in model out-
puts (highly correlated attributes, obvious comparisons), whereas safety de-
mands deliberate exploration of rare or uncomfortable tradeoffs. The small-
est eigenvalue Apin(/y) is a compact summary of whether we are paying
that exploration cost. Because optimal designs can often be supported on
a small mixture of interventions, the prescription is not “collect everything”
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but rather “ensure that what we collect spans the dangerous directions.”
The open problem is to make these guarantees robust to representation shift
and label non-stationarity; overlap is not the whole story, but it is one of
the few quantities that transparently connects intervention policy, statistical
identifiability, and downstream risk under shift.

4 The optimal overlap design problem

The previous section treated overlap as a diagnostic: a way to predict when
preference learning will be statistically well-posed and when it will be brittle
under shift. We now turn overlap into a decision variable. Concretely, the
platform controls a randomized intervention policy g(a | ) over a finite ac-
tion set A, subject to a labeling budget and heterogeneous per-intervention
costs. The design problem is to choose ¢ so that the induced labeled com-
parison distribution excites the latent directions that matter for safety and
generalization.

From interventions to information contributions. Fix a prompt x
and an intervention a € A. Under our data-collection protocol, we sample
v,y ~ (- | ) and transform § = T,(z,y) (and analogously for a’). Let
Az = z(z,9) — z(z,7’) denote the induced latent difference. The expected
Fisher contribution of choosing (a,a’) at prompt x is

Mg o (z;w) = E[o(wTAz)(l - O'(’LUTAZ)) AzAzT ‘ x,a,a'} ,

where the expectation is over the base generator randomness (and any stochas-
ticity in Ty). If we choose a,a’ independently from the same policy ¢(- | z),
the prompt-conditional information becomes

Iq(x;w) = Z Z q(a | I)Q(a/ | z) Ma,a’(x;w)v

acAa €A

and the population Fisher information is I;(w) = Ezpy [14(2; w)]. This de-
composition is useful because it makes clear where convexity and tractability
enter: the platform does not directly choose Az, but it does choose mixture
weights over a finite set of information-contributing matrices.

E-optimal and A-optimal objectives. We focus on objectives that di-
rectly control worst-direction uncertainty. The E-optimal criterion selects ¢
to maximize the smallest eigenvalue of the information matrix:

I;leaQX Amin (Ig(w+)) s.t. E,py {;q(a | x)c(a)} < BJ/N,
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with feasibility constraints >, ¢(a | ) = 1 and ¢(a | ) > 0 for all z. E-
optimality is the natural formalization of the safety-motivated requirement
that no latent direction remains weakly constrained.

For comparison, the A-optimal objective targets average variance (trace
of the inverse information):

miél tr(Iq(w*)_l) s.t. the same constraints.
q€

A-optimality can be statistically attractive when we care about mean-squared
error aggregated across directions, but it can underemphasize the particular
directions that are rare yet safety-relevant. In practice, one can interpolate
between these by optimizing a regularized spectral objective (e.g., maximize
Amin(I;+7I), or minimize tr((I,++vI)~!)) to trade robustness against overly
aggressive exploration.

A minimax variant for distribution shift. Because the design choice is
made at training time but evaluated at deployment, we often want robustness
to plausible shifts. One stylized formulation is to posit an uncertainty set
over environments, Pgpnirs, which may change the prompt distribution Px
and/or the generator-induced latent distribution given interventions. The
robust E-optimal design is

I;leaé{ Pénpisrhlift Amin (g, p(wy)) s.t. Ep[c(a)] < B/N,

where I, p emphasizes that the information depends on the environment
through the induced distribution of (x, Az). This objective makes the gov-
ernance interpretation explicit: we are choosing interventions to guarantee a
minimum level of identifiability for the worst plausible deployment environ-
ment, rather than optimizing for the average user.

A useful special case is group robustness. If prompts are drawn from a
mixture of groups g € {1,...,G} with group-conditional distributions P¥,
we can require

i )\min Ig *) )y
e mmity Amin (15 (102)

which tends to allocate exploration mass toward groups for which passive
overlap is worst. This formalizes the intuition that minority or edge-case
usage should receive disproportionate measurement effort if it activates un-
deridentified latent directions.

Cost-aware Lagrangians and KKT structure. The budget constraint
is not cosmetic: it is the mechanism by which safety competes with opera-
tional realities. Introducing a multiplier n > 0, we can write an E-optimal
Lagrangian

L(q,n) = Amin (Ig(ws)) — 71 (E[ZQ(G | fL’)C(a)} - B/N> :

a
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At an optimum, the KKT conditions imply that interventions with positive
mass must lie on the upper envelope of the tradeoff between marginal infor-
mation gain (in the worst eigen-direction) and marginal cost. While Apin
is not differentiable everywhere, it has a well-defined subgradient: if v is a
unit eigenvector corresponding to Amin(Z4) (assume uniqueness for intuition),
then locally the sensitivity of the objective to a perturbation 61 is v’ (61)v.
Thus, the design implicitly prioritizes interventions that increase curvature
in the current worst-identified direction, not those that merely increase total
variance explained.

When does the design reduce to a small mixture? Although g(a | z)
is, in principle, a policy over prompts, in many pipelines we can profitably
study prompt-agnostic mixtures 7(a) as a baseline: choose a from 7 inde-
pendently of x. This is justified when (i) prompts are high-dimensional and
we lack reliable prompt-stratified estimates of information, or (ii) the main
driver of overlap is the intervention-induced variation in response factors
rather than prompt content. In this relaxation we solve

max )\min< Z 7(a) Ma) s.t. Z m(a)c(a) < B/N,

TeA(A) oA o

where M, is the average information contribution of intervention a (absorb-
ing the a’-sampling convention into the definition). The feasible set is a
convex polytope, and the mapping m + > 7(a)M, is linear. The conse-
quence, familiar from classical optimal design, is that optimal mixtures are
typically sparse: the optimizer can be supported on few interventions because
it is selecting an extreme point of an information cone. Operationally, this
matters because it turns an otherwise complex policy search into choosing a

small “menu” of interventions and proportions.

Closed forms in two-factor models: decorrelation and quadrant
filling. The strongest intuition emerges in d = 2, where geometry is vi-
sual. Suppose interventions primarily affect the correlation structure of
Az = (Az;,Azy) while keeping marginal scales comparable. Passive col-
lection may induce Az} ~ Azy (high p), making one eigen-direction nearly
invisible. If the platform has access to at least two interventions whose
induced correlations have opposite sign (or, more generally, span a range
containing 0), then mixing them can drive the effective second-moment cor-
relation toward 0, thereby maximizing the minimum eigenvalue of the mo-
ment matrix and, in the non-saturated regime, of I(w,) as well. In discrete
analogues, the same phenomenon appears as “quadrant filling”: the optimal
design allocates mass so that all sign combinations of (Az1, Azs) occur with
comparable probability, eliminating missing-quadrant non-identification.
The key point is not the literal two-dimensionality but the mechanism:
interventions should be selected to break natural correlations induced by the
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base generator and by prompt distributions. In alignment-relevant terms,
we should expect many harmful underidentification modes to be correlation-
driven (e.g., “helpfulness” covarying with persuasive tone, or “harmlessness”
covarying with refusal style), and therefore expect mixtures of deliberately
chosen interventions to offer superlinear improvements over passive data.

Computation and implementation: from SDP ideals to practical
heuristics. Optimizing Anin subject to linear constraints admits standard
convex-optimization reductions when the information depends linearly on
the design (as in the mixture relaxation). One can introduce an auxiliary
variable 7 and impose the semidefinite constraint

Zw(a)Ma = 71,

a

then maximize 7 subject to cost and simplex constraints. This is an SDP
and can be solved reliably at moderate |A| and d. For prompt-conditional
q(a | ) the problem becomes larger, but similar epigraph formulations apply
if we discretize prompt strata.

In practice, two complications push us toward approximations. First, w,
is unknown, so M, . (x;wy) is unavailable. Second, z is latent, so even the
moment geometry must be estimated in a proxy space. A common approach
Is sequential design: maintain a current estimate w; and proxy features Az,
periodically re-estimate empirical information contributions M,, and up-
date the intervention mixture. This is a pragmatic compromise between full
bandit-style adaptivity (which can be fragile under non-stationary labelers)
and static designs (which can be wasteful early on).

Failure modes and open problems. Optimizing overlap is not synony-
mous with optimizing alignment. If the proxy representation collapses safety-
critical distinctions, the design may confidently fill the wrong subspace. If
labelers change criteria over time, the effective w is non-stationary, and in-
formation collected for yesterday’s tradeoffs may not constrain tomorrow’s.
Moreover, robust (minimax) designs can over-allocate budget to adversari-
ally unlikely shifts, harming average performance and potentially increasing
exposure to harmful content during exploration.

These limitations point to a research agenda: coupling overlap design to
verification mechanisms (audits on targeted slices, adversarial red-teaming
as a structured intervention, and uncertainty-aware deployment constraints),
and developing representations for which overlap metrics are not merely nec-
essary but closer to sufficient. Nonetheless, treating overlap as an explicit
optimization target is a substantive step: it forces us to encode, in the data-
collection policy itself, which tradeoffs we are willing to pay to identify before
we entrust downstream optimization with real-world decisions.
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5 Closed-form results in the two-factor correlated-
(Gaussian case

To make the overlap story concrete (and to separate what is structural from
what is an artifact of high-dimensional proxies), we now analyze a two-
factor model in which the latent differences are approximately Gaussian and
interventions primarily control correlation. This is the simplest setting where
we can (i) compute Fisher-information eigenvalues in closed form up to a
scalar, (ii) exhibit an explicit “decorrelating” optimal mixture, and (iii) read
off label-complexity improvements and comparative statics in p, noise, and
budget.

Model: intervention-indexed correlated Gaussians. Fix d = 2 and
write Az = (Az1,Az). For each intervention a € A, assume the induced
latent difference is

2
S PasS1,a52,a
Az|a ~ N(0,%,), Yo = La 3 ,
PasS1,a52,a 524

with |pa| < 1. We interpret p, as a controllable “entanglement” between
the two safety-relevant factors: passive data corresponds to a single baseline
ap with p,, ~ 1, while active collection mixes interventions to reduce the
effective correlation. For clarity, we first take s14 = $24 = 1 (correlation
matrices) and later comment on unequal scales.

With the BTL/logistic label model, the Fisher information under a mix-
ture 7(a) (prompt-agnostic for exposition) can be written as

Ii(ws) = Eanr Eazon(0,50) [a(wIAz)(l - U(wIAz)) AZAZT:|.

The nonlinearity o(-)(1 — o(-)) couples w, to the design. However, in the
regime most relevant for learning (where comparisons are neither completely
saturated nor completely random), this term behaves like a bounded scalar,
letting us separate “margin/noise” effects from “overlap geometry” effects.

Decoupling geometry from the logistic curvature (a controlled ap-
proximation). Let g(t) =o(t)(1—0o(t)) € (0,1/4]. If we assume |Jwi]|2 <
W and the design keeps E||Az||3 bounded (true for Gaussians with bounded
covariance), then w, Az is sub-Gaussian and g(w, Az) is typically bounded
away from 0 on most mass. A convenient sufficient condition is to restrict
to a “non-saturated” design class where

a < E[g(wIAz) | a} < a for all a in the support of T,

for some constants 0 < a < @ < 1/4. Under this condition (or more formally,
by sandwiching ¢(-) and using rotational symmetry of Gaussians), we obtain
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the matrix inequality

a (Ew[za]) < Li(w) < @ (an[za]).

Thus, up to the scalar factor « induced by label noise and margin saturation,
optimizing Apin(Ir(wy)) reduces to optimizing Amin (Zeg) where

Yt = Egor[Zd]

In 2D with unit variances, Yqg is fully described by its effective correlation
p = Ea~rlpal:

1 » _
e = (:5 T) s )\min(zeﬁ) =1- \P’

Near |p| ~ 1, this behaves as ©(1— %) up to constants, matching the overlap
penalty in Proposition 2.

Passive label complexity blows up as |p| — 1. If we collect compar-
isons passively under a single intervention ag with correlation p = pg,, then
Yef = g, and, in the non-saturated regime,

Amin(lpassive(w*)) = 04(1 - |p|) ~ Oé(l —p2),

where a € [a,a] summarizes label noise/margins. Combining with the
generic MLE scaling (Proposition 1) specialized to d = 2 yields the pas-
sive label complexity

Npassive(€) = O(Cz(l—lpz)@)

This makes the failure mode explicit: when the base generator (and prompt
mix) entangles the two latent factors so that p ~ 1, one direction becomes
nearly unidentifiable. If 1 — p is on the order of 27° (i.e., b bits of “near-
collinearity”), then Npagsive grows on the order of 20 for fixed €, which is
the sense in which correlation can induce an exponential-in-precision data
burden.

Active decorrelation: a closed-form optimal mixture. Now suppose
the platform can choose between two interventions a4 and a_ whose in-
duced correlations satisfy p; > 0 and p_ < 0, and (for now) both have unit
marginal variances. Consider a mixture my putting mass # on ay and 1 — 6
on a—. Then

O) = 0ps + (1= 0p_,  Auin(Senr(8) = 1— |5(0)].
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The E-optimal choice is immediate: pick 6 so that p(6) =0, i.e.,

o= = <(0,1),
P+ — pP—

which yields ¥eg = I and hence Apin(Xeg) = 1. In words, we mix the two
interventions just enough to cancel the correlation induced by each, “filling”
the missing eigen-direction. Under the same non-saturation condition, this
implies

~( 1
)\min(Iﬂg* (w*)) = «, Nactive(e) = O<2> .

€

The improvement factor relative to passive collection is therefore on the order

of

Npassive(e) _ Q( 1 )

Nactive(f) 1- ,02 ’
which diverges as |p| — 1. This is the simplest analytic instance of the
general “quadrant-filling” intuition: we do not need to know w, perfectly

to know that correlation collapse destroys identifiability, and that mixing
interventions that induce different correlation signs repairs it.

Quadrant filling as a sign-coverage statement. Although the Gaus-
sian model is continuous, its geometry can be understood discretely by look-
ing at signs. When p = 1, most mass lies near the diagonal Az} ~ Azs, so
the sign patterns (4, —) and (—, +) are exponentially rare in the tails, and
any estimator that needs those contrasts (to distinguish weights on factor 1
vs factor 2) is starved. Interventions with negative p rotate mass toward the
anti-diagonal, increasing the frequency of those “off-diagonal” sign patterns.
The decorrelating mixture makes these sign quadrants comparably likely,
which is precisely what is needed to keep Apin, bounded away from 0.

Comparative statics: correlation, noise/margins, and budget. The
closed forms also let us cleanly state three comparative statics that are op-
erationally important.

(1) Correlation |p|. Holding « fixed, Amin decreases as |p| increases, and
the passive sample complexity increases like 1/(1 — p?). The key point is
that variance is not enough: one can have large total second moment tr(3)
while still having Apin () = 0.

(2) Noise and saturation through o. The factor a is maximized when
comparisons are “just hard enough™ if w, Az is typically near 0, then g(-) is
near its maximum 1/4; if |w, Az| is typically large, then g(-) is near 0 and
information collapses even if overlap is good. This yields a design tension:
interventions that increase variance (e.g., by making responses more extreme)
can reduce information by pushing labels into a near-deterministic regime.
In practice, we should therefore treat overlap maximization as coupled to
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a “difficulty calibration” problem: we want to fill directions while keeping
margins in the informative band.

(8) Budgeted mizing with heterogeneous costs. Let ¢4 and c_ be the per-
sample costs of ay and a_. Under an average cost constraint fc;+(1—0)c_ <
¢, the decorrelating mixture * may be infeasible. In the unit-variance case,
the constrained optimum is to choose the feasible 6 that minimizes |p(6)|;
equivalently, “spend as much budget as possible” on whichever intervention
moves p toward 0 most efficiently per unit cost. This induces a threshold
phenomenon: once ¢ is large enough to permit 6 = 6*, additional budget
no longer improves Apyi, through correlation (though it may still help via
richer intervention sets or higher-quality labelers that increase «). Below
the threshold, Apin improves approximately linearly with budget because

|p(0)| is affine in 6.

Unequal marginal scales and three-point mixtures. If interventions
also change the marginal variances (s1q # $2.4), then YXeg depends on both
scale and correlation, and the optimal design may trade off “whitening”
against decorrelation. In 2D, a useful robust heuristic is to allow a third
intervention ag (often the cheap/passive one) and solve for a three-point
mixture that simultaneously (i) keeps « large (avoids saturation), (ii) bal-
ances effective variances to prevent one coordinate from dominating, and (iii)
drives effective correlation toward 0. This is the continuous analogue of the
discrete result that, in d = 2, a small support (often < 3 actions) suffices to
achieve the E-optimal point on the cost—information frontier.

Taken together, the two-factor Gaussian case provides a clean “mecha-
nistic” picture: passive preference data can be arbitrarily sample-inefficient
when latent factors are naturally entangled, while a cost-aware mixture of
a few targeted interventions can restore overlap, control worst-direction un-
certainty, and yield unbounded gains as |p| — 1, provided we avoid regimes
where labels saturate and Fisher curvature vanishes.

Why the two-factor Gaussian case is the right “toy” for overlap.
In many alignment-relevant datasets, what we ultimately need to learn is
not a single monolithic notion of “quality,” but relative weights on multiple
partially-confounded desiderata (e.g., truthfulness versus politeness, harm-
lessness versus helpfulness). The failure mode we worry about is not that
responses have low variance overall, but that the variance lives in (approxi-
mately) a one-dimensional manifold: the generator and prompt distribution
jointly move factors together. In that regime, pairwise comparisons are plen-
tiful yet systematically uninformative about some directions of w,. The two-
factor correlated-Gaussian model isolates exactly this geometry: correlation
plays the role of an “entanglement knob,” and E-optimal design corresponds
to actively creating comparisons that break the confounding.
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A slightly more explicit Fisher-information decomposition. While
the logistic curvature term g¢(t) = o(t)(1 — o(t)) complicates exact closed
forms, we can still make the separation between (i) geometry of Az and
(ii) saturation/noise effects more formal than a heuristic scalar bound. Let
Az ~ N(0,%) and write u = w, Az. Since (Az,u) is jointly Gaussian,
Stein identities yield that for any twice-differentiable scalar function f with
integrable derivatives,

E|f(u) AZAZT] = E[f(u)] 2 + E[f" (u)] Swew, 2. (1)

Taking f = g gives an exact representation of I(w,) (for a fixed ) as a sum
of a “baseline” term proportional to ¥ and a rank-one correction aligned
with Yw,. Two observations follow. First, regardless of w,, the smallest
eigenvalue obeys

Ain(1(.)) = Elg(u)] Amin (5), (2)

because the second term in is positive semidefinite when E[g”(u)] > 0
(and even without that sign, it is rank-one and cannot repair a singular ¥ in
directions orthogonal to Yw,). Second, the only way to make Apin(f(wy))
uniformly large over w is to keep both E[g(u)] away from 0 (avoid saturation)
and Amin (X) away from 0 (ensure overlap). This clarifies why correlation col-
lapse is structurally dangerous: no amount of label quality can compensate
for Apin(X) =~ 0.

Passive data: correlation induces an exponential-in-precision bur-
T . . 1 .
den. Specializing to unit variances, ¥ = ( 0 f) has eigenvalues 1 £ p, so

Amin(X) = 1 — |p|. Plugging into yields
Amin (Ipassive (w5)) 2 Elg(w)] (1 = ).

Thus Proposition 1 implies N (¢) scales like 1/(E[g(u)](1 — |p|)€*) up to log-
arithms and constants. The “exponential in bits of precision” interpretation
is worth stating carefully because it is the practical governance concern: if
p = 1—27" (near-collinearity at b bits), then 1 — |p| < 27° and the required
labels scale as Q(2°) for fixed target error. In other words, the data bur-
den explodes precisely when the generator makes factors move together so
reliably that users rarely elicit countervailing tradeoffs. This is a plausible
real-world scenario for safety: models may be trained to be simultaneously
“more helpful” and “more aligned” in ways that hide the boundaries where
helpfulness and harmfulness diverge, leaving the platform with little infor-
mation about how to set (or even identify) the correct tradeoff weights.

Active mixing as “effective whitening” and why two interventions
can suffice. Now consider a mixture over interventions, inducing a mixture
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over covariances. Under the same unit-variance simplification and prompt-
agnostic mixing, g = E,or[Xs] again has the form

(1 p o
Eeff - <P 1) ) P = anr[ﬂa]v

80 Amin(Ze) = 1 — |p|. The key point is that we can change p by changing
the intervention mix even if we do not directly observe Az. If we have
two controllable interventions with opposite-sign correlations, p4 > 0 and
p— < 0, then the mixture weight 0* = —p_/(p+ — p—) achieves p = 0, i.e.,
Yef = I. Combining with (2)) gives

)\min(Iactive(w*)) 2 E[g(u)] -1,

so the improvement factor in label complexity scales like (1 — |p|)~™! (or
equivalently (1 — p?)~! up to constants when |p| = 1). This is the continu-
ous analogue of “quadrant filling”: rather than hoping the passive generator
occasionally produces (4, —) and (—, +) contrasts in the tails, we proactively
choose transformations that shift mass toward those missing sign patterns.

Interpreting “quadrants” as safety-relevant counterfactuals. The
sign-quadrant picture is not merely geometric; it corresponds to counterfac-
tual evaluations that are often missing in practice. If Az} encodes a safety
attribute (e.g., harmfulness) and Azs encodes a utility attribute (e.g., help-
fulness), then p ~ 1 means we mostly see “better on both” versus “worse on
both,” which is easy for labelers but nearly useless for learning the tradeoff.
The off-diagonal quadrants correspond to precisely the difficult comparisons
we need: “more helpful but less safe” versus “less helpful but safer.” In-
terventions that create such contrasts include: adversarial prompt variants
that elicit borderline unsafe content while preserving task utility; formatting
or style constraints that preserve content but change perceived politeness
(to decouple politeness from correctness); and controlled refusals that keep
safety fixed while varying helpfulness within safe bounds. The design lens
here flags a safety failure mode: collecting only easy comparisons may sys-
tematically entrench confounding, yielding a model that appears well-aligned
on aggregate metrics while being poorly identified on the very tradeoffs that
matter under distribution shift.

Noise, saturation, and the “difficulty calibration” constraint. The
preceding gains assume E[g(u)] does not collapse. Yet g(u) is maximized
near v = 0 and decays when |u| is large (near-deterministic preferences).
Interventions that aggressively increase the spread of Az can therefore back-
fire: they may improve Amin(Zeg) while simultaneously shrinking E[g(u)]
by pushing comparisons into a saturated regime. From , this is not a
second-order nuance; E[g(u)] scales the entire baseline term. Operationally,
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we can think of a “Goldilocks” constraint: we want Az to explore directions
broadly, but with magnitudes such that w,] Az remains in an informative
band. In deployment terms, this argues for interventions that recombine fac-
tors (change correlation) rather than simply making outputs extreme, and
for labeler protocols that encourage fine-grained judgments (to avoid near-
deterministic labels). It also motivates the algorithmic focus of the next
section: we need to estimate information online and adaptively steer toward
comparisons that are both diverse and non-saturated.

Budgeted mixing: a simple cost—overlap frontier. When interven-
tions have heterogeneous per-sample costs, the decorrelating mixture may
be infeasible. Suppose we again mix a4 and a_ with cost constraint fcy +
(1—6)c— < ¢. Since |p(0)] is convex and piecewise-linear in 6, the constrained
E-optimal solution is achieved at the feasible # closest to 0%, i.e.,

0Fua € argem[(i)nl] 0ps + (1 —=0)p_| st. fcp+(1—0)c <c.
€0,

This yields a threshold phenomenon: if ¢ is high enough to allow 8 = 8*, then
correlation-driven overlap cannot be further improved by budget (though
other benefits, like higher-quality labelers improving E[g(u)], remain). Be-
low the threshold, Apin(Xeg) = 1 — |p(0)| increases approximately linearly
with additional budget because p(6) is affine in 6. This is an experimentally
actionable prediction: small incremental spend on targeted, expensive inter-
ventions can yield disproportionate reductions in worst-direction uncertainty
when passive data are highly entangled.

Beyond unit variances: why three-point mixtures appear and what
breaks. If interventions also change marginal scales, >, is no longer deter-
mined by p, alone, and the E-optimal design seeks to “whiten” ¥.g rather
than merely set p = 0. In 2D, the cost—information optimum often lies on a
face of the convex hull of {¥,}, so a mixture supported on a small number
of actions suffices (consistent with Proposition 4). Practically, this suggests
maintaining (i) a cheap baseline action to ensure coverage and avoid brit-
tleness, plus (ii) one or two targeted actions that independently modulate
correlation and scale. There are also clear limitations of the Gaussian ab-
straction: real Az may be heavy-tailed, multimodal, and prompt-dependent,
and labelers may deviate from BTL (especially on ambiguous safety con-
tent). Nonetheless, the main takeaway is robust: identifiability is governed
by worst-direction overlap, and interventions should be evaluated by their
ability to populate missing tradeoff comparisons under realistic cost and sat-
uration constraints. This sets up the algorithmic problem we turn to next:
in general d and without direct access to X4, how do we approximate I, from
data and adaptively allocate budget across interventions to maximize Apin
subject to feasibility?
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6 Algorithms for the general case: plug-in Fisher
estimates and uncertainty-aware intervention de-
sign

In the general setting, we do not observe the latent factors z(z,y), the
intervention-to-factor map T,, or the true weight vector w,. What we do
control is the data-collection loop: for each prompt z we can choose an
action a € A (often with prompt-dependent feasibility), generate candidate
responses, apply T,, and purchase a comparison label. The algorithmic prob-
lem is therefore a coupled estimation—design task: we want to learn w, while
simultaneously steering the intervention mixture toward regions of the latent
space that make w, identifiable, under cost and safety constraints.

A feature-based proxy and a plug-in Fisher estimator. Since z is
latent, we work with a learned feature map ¢(z,y) € R? (e.g., a frozen
encoder, a reward-model penultimate layer, or a task-specific representa-
tion) and treat A¢y = ¢(xy, J) — ¢(xr, 7)) as a proxy for Az, Under the
BTL/logistic model, the (population) Fisher information for w takes the
form

I(w) = E[g (wTAz) AZAZT:| , g(u) = o(u)(1 —o(u)),
so a natural empirical plug-in estimate is

t
fi=1 Y007 86,) A6.a0T + ALy 3)
s=1
where w; is the current MLE (or regularized MLE) on the collected com-
parisons and A > 0 is a small ridge term used both for numerical stability
and to encode a prior lower bound on unmodeled overlap. This estimator is
cheap to maintain online: we can update the sum in incrementally and
recompute 1, either in batch or via stochastic Newton /gradient steps using
the score equation. The ridge term is not merely a numerical trick; it cor-
responds to an explicit stance that, when our feature proxy is misspecified,
we should avoid overconfidently declaring a direction unidentifiable.

Design as an online optimization over intervention mixtures. Given
ft, the design objective suggested by the earlier overlap analysis is to increase
)\min(ﬁ) as quickly as possible per unit cost. The simplest abstraction is
prompt-agnostic mixing: choose a distribution © € A(A) and sample a ~ 7
each round. If we had access to the per-action information contributions
M,(w) = Elg(w"Az)AzAz" | a], the E-optimal design would solve

W?Aaé‘) Amin (;ﬂ(a) Ma(w*)> s.t. Zw(a)c(a) <e.

a
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In practice M, (wy) is unknown, so we replace it with an estimate ]\/I\m con-
structed from the subset of samples collected under action a (again using
the plug-in curvature term with ;). We then repeatedly solve the surrogate
convex program

Tyl € arg Wg?&) Amin <Z 7(a) ]\Za> s.t. ZW(CL)C(G) <eg, (4)

a a

and sample the next intervention accordingly. This is a direct analogue of
classical optimal design, but with two alignment-relevant complications: (i)
the curvature term g(, A¢) couples the objective to the current estima-
tor, and (ii) feasibility and safety constraints make A effectively prompt-
dependent.

Uncertainty-aware selection: optimism, Thompson sampling, and
safe exploration. A purely greedy plug-in strategy based on can fail
early: if Mﬂ is inaccurate, the algorithm may prematurely commit to inter-
ventions that appear informative under the current (wrong) y, starving the
dataset of the counterfactual comparisons needed to correct that mistake.
We therefore treat intervention choice as a bandit-like problem where the
“reward” is information gain.

One practical approach is optimism under uncertainty. For each action
a, we maintain a confidence set Cy, for M, (e.g., via matrix concentration
applied to the empirical second moments of A¢ reweighted by g(, Ag)).
We then choose a mixture 7w that maximizes a lower confidence bound on
the smallest eigenvalue:

Maect,a

Tir1 € argmax  min - Apin (Z W(Q)Ma> s.t. cost/feasibility.
T

a

This “robust E-optimal” step explicitly allocates samples to reduce worst-
direction uncertainty in the information matrices, not just to exploit current
estimates.

A complementary alternative is Thompson sampling over designs: sample
plausible M, (or a low-dimensional parametrization of M,) from an approx-
imate posterior and solve the corresponding E-optimal design. This tends to
induce natural randomization, which is desirable for overlap/positivity. In
safety-critical settings, we can further require safe exploration constraints—
for instance, a minimum mass v > 0 on a baseline intervention that is known
to be benign and cheap, ensuring that the collection policy never collapses
to a narrow slice of behavior that might hide harmful corner cases.

Contextual feasibility: prompt-dependent action sets and control-
lable generation. Most interventions are not universally applicable. Some
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edits require that the base response contain certain structures; some adver-
sarial variants are only meaningful for particular tasks; and some safety-
sensitive transformations are disallowed for certain prompts or jurisdictions.
Formally, we can model this by an action set A(z) C A and optimize a con-
textual policy ¢(a | z). A tractable approximation is to cluster prompts into
finitely many buckets b(x) € [K] (by topic, risk level, or embedding) and
learn a separate mixture 7(8) per bucket, solving a version of with data
restricted to that bucket. This yields a design that is both implementable
and auditable: we can report, per bucket, the implied worst-direction uncer-
tainty via )\min(:ft( )).

On the generation side, interventions often correspond to controllable
decoding (length caps, style tags, refusal templates), structured edits (para-
phrases that preserve semantics), or counterfactual elicitation (asking for
alternative solutions, edge-case analyses, or safety disclaimers). The key al-
gorithmic constraint is that the effective transformation 7, is stochastic and
sometimes fails (the model refuses, ignores constraints, or drifts semanti-
cally). We therefore treat each attempted intervention as producing either
a valid transformed output or a null outcome; the design must account for
the acceptance probability a(a,z), since the true per-labeled-sample cost is
closer to ¢(a)/a(a,x). Empirically, incorporating acceptance rates prevents
the policy from over-allocating to “theoretically perfect” actions that rarely
succeed.

Difficulty calibration: avoiding saturation while increasing over-
lap. Because g(u) shrinks when comparisons become too easy (large |u|)
or too noisy (effectively random labels), we want interventions that generate
informative margins. A useful operational heuristic is to target comparisons
with predicted |, A¢| ~ 7 for a moderate 7, which can be implemented by
rejection sampling over generated candidate pairs or by generating multiple
candidates and selecting the pair with a near-threshold predicted margin.
This resembles active learning: we spend generation budget to shape the la-
beled set toward regions where the logistic model has high curvature, while
still ensuring geometric diversity in Ag.

Computational approximations for large d and large A. Directly
optimizing Ay, can be expensive when d is large. Two pragmatic relaxations
are common. First, we can replace the E-optimal objective with a smooth
surrogate such as log det(Z;) (D-optimality) or tr(ft_l) (A-optimality), which
admit stable gradients and work well with first-order methods. Second, we
can approximate Api, using a few iterations of the power method on ft_l,
enabling online selection without full eigendecomposition.

When A is large or continuous (e.g., prompt perturbation strength, de-
coding temperature), we can parameterize ggp(a | x) and perform stochastic
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gradient ascent on a differentiable surrogate of the design objective, using
implicit differentiation through the estimator w; only approximately (e.g.,
treating w; as fixed for several steps). While this breaks the clean separa-
tion between estimation and design, it is often the only scalable route.

What can go wrong and what we can still certify. All of the above
relies on a proxy ¢ and on approximate adherence to a BTL-like label model.
Misspecification can induce “illusory overlap” E looks well-conditioned in
feature space while the true latent tradeoff remains under-identified. To
mitigate this, we can (i) track multiple feature maps (ensemble encoders)
and optimize for worst-case conditioning across them, (ii) periodically run
targeted audits that directly test missing-quadrant comparisons, and (iii)
enforce minimum exploration across a diverse action set as a governance
constraint rather than an optimization outcome.

These algorithmic components—plug-in information estimation, uncertainty-
aware intervention allocation, and feasibility-aware controllable generation—
define an implementable pipeline for actively creating the comparisons that
reveal safety—utility tradeoffs. The remaining question is empirical: how do
these strategies behave under controlled correlation stress tests, and do they
translate into better downstream policies under distribution shift? We turn
next to a concrete blueprint for answering that question.

7 Empirical blueprint: stress tests, controlled edits,
and downstream robustness

Our theoretical claims ultimately live or die on an empirical question: can
an intervention policy reliably create the missing counterfactual compar-
isons that determine safety—utility tradeoffs, without quietly trading away
robustness through proxy misspecification or feasibility failures? We there-
fore recommend a three-part evaluation program that escalates from fully
controlled synthetic environments (where ground truth overlap is measur-
able) to real preference data with controlled interventions (where overlap
must be tracked in proxy space) and finally to downstream policy optimiza-
tion under distribution shift (where the costs of non-identification become
operational).

7.1 (i) Synthetic latent-factor stress tests: correlation sweeps
and “correlation flips”

Goal. We want a testbed in which the latent representation z(z,y) is
known, the true reward weights w, are known, and the platform can choose
from a finite intervention set A that induces tunable correlations among
the components of Az. This lets us verify, without ambiguity, whether the
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active design pipeline increases Amin(I;) and achieves the predicted sample-
complexity gains as correlations approach p — 1.

A minimal generative model. A convenient construction is:

1. Sample a prompt type  ~ Px (optionally a mixture over clusters to
mimic heterogeneous traffic).

2. Sample a base response y ~ m(- | ) by generating a latent feature
vector z(x,y) € R? and then (optionally) a surface form. For stress
tests we can skip surface forms entirely and treat z as observed by the
simulator but not by the platform.

3. For each intervention a € A, define a stochastic map on features, e.g.
ZT(:U,?]) :AaZT(livy)‘FbaWLgv SNN(O,Ea)a

so that each a yields a different second-moment structure for Az and,
in d = 2, a different effective correlation p(a).

4. Generate labels from the BTL model:

P(L=1]2,5.7) = o(w[Az),  Az=z(,§) - 2(z.7).

The key controllability knob is that some actions should increase correlation
(collapsing support) while others should decorrelate factors (filling quad-
rants), but at higher cost or lower feasibility.

Correlation sweeps. For d = 2, we recommend an explicit sweep over
p € {0,0.5,0.8,0.9,0.95,0.99} for the passive design, and a parallel suite in
which the platform can mix actions with different p(a). For each setting,

report: N R
MSE(N) = Elliy — woll3,  AN) = Auin(In),

as functions of IV, and verify whether the passive curve exhibits the predicted
blow-up as p — 1 while the intervention-mixture curve remains stable (up
to cost constraints). A useful diagnostic is to plot the empirical distribution
of Az and explicitly quantify “quadrant mass” in d = 2:

N
N 1 : .
Pst = Z 1{sign(Az, 1) = s, sign(Az,2) = t}, s, t € {—1,+1},

n=1

since nontrivial mass in all four quadrants is the simplest witness of identi-
fiability in the discrete-factors intuition.
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Correlation flips as an OOD stressor. A particularly alignment-relevant
failure mode is that training data induces one correlation structure while de-
ployment induces another. We can model this by training under Az ~ Dypain
with correlation pirain and evaluating under Diest With correlation piegt (in-
cluding sign flips). The empirical question is whether an intervention policy
that maximizes Apin under training prompts also produces a w that transfers
when Yieqr changes. Concretely, we measure an OOD ranking loss or regret
proxy such as

Erriest = Pz, A2)~Diest sign(wTAz) #+ sign(wIAz) ,

and relate it to X(N ) to test whether “more overlap during collection” actually
predicts “less brittleness under shift.”

Algorithmic ablations. Synthetic environments also let us separate con-
ceptual mechanisms: (i) plug-in E-optimal vs random mixing; (ii) uncertainty-
aware vs greedy plug-in; (iii) margin targeting (keeping g(w " Az) away from
saturation) vs no targeting; (iv) cost-aware vs cost-ignorant. The point is
not to win a benchmark but to confirm which components are necessary
to prevent early lock-in to a misleading design—a concrete safety concern
when the system prematurely concludes that a delicate tradeoff is “already
learned.”

7.2 (ii) Real preference datasets with controlled edits: length/format /safety
as manipulable factors

Goal. In real data we cannot observe z, and interventions T, can fail or
drift semantically. The objective therefore shifts: we want to show that con-
trolled edits create measurable increases in proxy overlap and yield down-
stream gains without introducing confounds that invalidate labels.

Dataset construction around explicit intervention families. We rec-
ommend starting from prompts drawn from multiple risk regimes (benign as-
sistance, policy-sensitive questions, and adversarial/jailbreak-style prompts)
and generating base candidates from a fixed generator (or a small set of gen-
erators to increase diversity). Then define a small, auditable action set .4
whose transformations target interpretable factors:

e Length / verbosity: shorten vs expand while preserving core answer.
e Format: free-form vs structured (bullets, step-by-step plan, citations).

e Safety posture: add/remove a cautionary disclaimer; add policy-
compliant refusal framing; add benign-alternative suggestions.
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e Uncertainty calibration: confident vs hedged; include/exclude ex-
plicit assumptions.

Each T}, should come with an automatic validation check (e.g., constraint sat-
isfaction, refusal template presence, toxicity filter thresholds) and a manual
audit rate, since a frequent empirical pitfall is that the intervention intended
to isolate one factor silently changes another.

Measuring overlap in proxy space. With a fixed feature map ¢, we
can track overlap and missing-direction risk via bucketed Fisher surrogates.
For prompt buckets b(z) € [K], report:

O = (1), T = 5 3 ’ Z 0] Ady) ApuAG] + Ay,

where Sy are samples in bucket k. The empirical claim we want is not merely
that A increases, but that it increases uniformly across buckets, because
safety failures often concentrate in underrepresented regions.

Audits for ‘“illusory overlap.” Proxy-based overlap can be misleading.
We therefore propose targeted audits that are explicitly designed to falsify
the “we covered the space” story: (i) sample pairs from directions corre-

sponding to the smallest eigenvector of ft(k) and have expert labelers judge
whether the comparison is meaningful and on-policy; (ii) hand-construct
“quadrant checks” for key factor pairs (e.g., long & safe vs short & unsafe,
long & unsafe vs short & safe) and verify that the collected data contains all
combinations at nontrivial rates; (iii) estimate intervention acceptance rates
a(a,z) and report effective costs c(a)/a(a,x), since a design that relies on
rarely-successful edits can look good on paper while failing operationally.

7.3 (iii) Downstream policy learning under OOD: DPO with
stress-tested evaluation suites

Goal. Ultimately we care about the policies trained from these compar-
isons, not just about w or 7. The core hypothesis is that improving overlap
during collection yields downstream policies that are less sensitive to distri-
bution shift and do not overfit to spurious correlations between, say, verbosity
and perceived helpfulness or between refusal templates and perceived safety.

Training protocol. Using matched budgets, we train DPO-style policies
on (a) passively collected comparisons and (b) actively designed comparisons
(including controlled edits). We recommend holding constant: the base gen-
erator class, total labeled comparisons, and the labeler pool, so that differ-
ences can be attributed to the collection design rather than hidden capacity
or annotation effects.
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OOD evaluation axes. OOD should be multi-dimensional:

e Prompt shift: new domains, new jurisdictions/policies, different lan-
guages, and higher-adversariality prompts.

e Factor shift: systematic changes in correlations (e.g., deployment
prompts where safe answers are necessarily longer, versus training
prompts where length is cosmetic).

e Evaluator shift: alternative labelers or rubric changes, reflecting gov-
ernance realities where standards evolve.

We then report both preference metrics (win rate under held-out compar-
isons, calibrated reward-model scores) and safety metrics (policy-violation
rate, jailbreak success rate, harmful instruction compliance). The safety-
relevant evaluation question is whether the active design reduces tail failure
rates, not just average wins.

Linking overlap metrics to downstream outcomes. To make the re-
sults actionable, we should empirically connect overlap proxies to deploy-
ment behavior: regress OOD failure probability on bucket-level AF) (and
on acceptance-adjusted action diversity) to test whether low-overlap buck-
ets predict where the policy breaks. If such a link holds even weakly, it
motivates a governance-friendly operational rule: specify minimum overlap
targets per risk bucket as a precondition for deployment, rather than treating
data collection as an unstructured scaling exercise.

Limitations and open empirical risks. Even a clean win on these ex-
periments would not imply that A, is the only relevant design criterion:
real labelers are nonstationary, preferences can be context-dependent, and
high-overlap data can still encode the wrong objective if the action set sys-
tematically excludes morally salient counterfactuals. Conversely, a failure
to see gains may reflect representation misspecification in ¢ rather than a
flaw in overlap-driven design. This is precisely why we advocate the staged
blueprint above: it separates “the principle is wrong” from “the proxy is
wrong” and makes the remaining gaps explicit enough to govern.

8 Discussion and 2026 implications: governance,
benchmarks, audits, and operational overlap tar-
gets

The empirical blueprint above treats overlap as a measurable bottleneck for

identifying safety—utility tradeoffs. The 2026-relevant question is how to
translate that observation into institutional and operational practice: what
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should be logged, what should be audited, what should be guaranteed be-
fore deployment, and what should be benchmarked so that “we collected
more preference data” does not become a substitute for demonstrating iden-
tifiability and robustness.

Data governance as experimental-design governance

Preference datasets are increasingly regulated and internally controlled not
only as privacy-sensitive artifacts but as decision-critical evidence about nor-
mative objectives. From that perspective, the platform is not merely sam-
pling i.i.d. comparisons; it is running a controlled experiment whose design
determines which value-laden tradeoffs are learnable. This framing suggests
two concrete governance upgrades.

First, we should treat the intervention policy g(a | x) as a governed
object, akin to a training-time “policy lever” that requires review. In 2026
deployments, it is common to iterate on prompts, rubrics, and model policies
weekly; without explicit control, these iterations can silently change the in-
duced Az distribution and invalidate prior conclusions about identifiability.
A minimal governance artifact is an intervention registry that records, for
each action family: (i) its semantic intent (which factor it is supposed to
vary), (ii) its known confounds, (iii) its acceptance rate a(a,x) and failure
modes, and (iv) its cost model ¢(a) including expert-labeler requirements.
This is not busywork: if we cannot say which interventions are responsible
for filling which missing directions, we cannot later attribute robustness (or
failures) to controllable causes.

Second, we should make overlap a first-class dataset contract. Today,
dataset documentation often lists domains, languages, and toxicity preva-
lence. For preference learning, we additionally want a statement of identifia-
bility coverage: in each risk-relevant bucket (e.g. benign assistance, self-harm,
bio, cyber, jailbreak), what is the minimum overlap achieved, operational-
ized as a proxy for Amin(Iy) (or a conservative surrogate) and tracked over
time? In other words, we want dataset “nutrition labels” that include not
only what content exists but which tradeoffs are learnable from it.

Benchmarks that punish non-identification, not only low av-
erages

A benchmark that only reports average win rates can be satisfied by collect-
ing comparisons along a narrow manifold (highly correlated factors) and then
fitting a reward model that performs well on that manifold while failing under
modest correlation shifts. If we accept the premise that non-identification is
an alignment risk, then benchmarks should be designed to detect it.

One practical direction is to incorporate counterfactual edit suites as
benchmark primitives. Rather than only testing on naturally sampled model
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outputs, the benchmark itself can include standardized controlled edits (length,
format, refusal framing, uncertainty calibration) that intentionally gener-
ate “quadrant” comparisons. A system that genuinely learned the intended
tradeoff should behave consistently across these edits; a system that relied
on spurious correlations should fail systematically (e.g. overvaluing verbosity,
overvaluing template-like refusals, or penalizing calibrated uncertainty).

A second direction is to formalize correlation-shift evaluation as a require-
ment. Benchmarks can include paired test distributions whose marginal task
content is similar but whose factor correlations differ (including sign flips).
Passing then requires not only high average preference on the in-distribution
split but bounded degradation under the shifted split. This makes explicit
what is otherwise an informal fear: that the learned objective is “right” only
under a particular training-time entanglement of factors.

Finally, we should expect benchmark designers to publish coverage di-
agnostics alongside scores, in the same way robustness benchmarks publish
per-slice results. For preference benchmarks, that means reporting proxy
overlap metrics (e.g. eigenvalues of second-moment matrices in representa-
tion space) and ensuring that benchmark construction does not itself collapse
to a single style axis.

Audit requirements: from “label quality” to “design adequacy”

Current audits focus on labeler agreement, policy compliance, and demo-
graphic harms. Those remain necessary, but they do not address the design-
level failure mode emphasized here: collecting many labels that are uninfor-
mative about key directions in w,. We therefore see a need for a new audit
category: design adequacy audits.

A design adequacy audit answers questions of the form: “Could we have
learned the tradeoff we claim to have learned, given the comparisons we
collected?” Concretely, an audit can (i) compute bucket-level overlap sur-
rogates, (ii) identify the minimum-eigenvector directions (the “missing” di-
rections), and (iii) sample or construct comparisons that are intended to
load on those directions. Expert evaluators can then judge whether those
comparisons are meaningful and whether the platform has a feasible path
to collecting them at scale. Importantly, these audits are not purely statis-
tical: they test whether interventions preserve semantics sufficiently that a
factor-isolating comparison is actually interpretable by labelers.

We also expect audits to incorporate effective-cost accounting. In pro-
duction, what matters is not nominal ¢(a) but ¢(a)/a(a, z) and the induced
latency and operational complexity. A design that achieves excellent overlap
only by relying on interventions that fail 70% of the time (or require scarce
expert review) is fragile in the same way that a security control is fragile if
it is too expensive to use consistently. Reporting acceptance-adjusted costs,
per bucket, makes this fragility legible to governance stakeholders.
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Operationalizing overlap targets as production SLOs

To make overlap actionable, we need an operational analogue of “maintain
Amin(Zg) > A” that fits modern ML production: online monitoring, alerting,
and rollbacks. We propose treating overlap as a service-level objective (SLO)
with three layers.

(1) Pre-deployment gating. Before training a new reward model or pref-
erence policy on a dataset slice, require that each risk bucket meets a min-
imum overlap threshold in proxy space, e.g. A®¥) > 7. where 7, is stricter
for high-stakes buckets. This is an explicit commitment to “no training on
non-identifying data” for safety-critical domains. Where thresholds cannot
be met due to feasibility, the system should document the missing directions
and avoid claims of robustness that depend on them.

(2) Online drift monitoring. After deployment, monitor proxies for cor-
relation drift: changes in second moments of A¢ and in the distribution of
margins 1 ' A¢ (to detect saturation). When drift is detected, trigger tar-
geted recollection using interventions that are known to fill the relevant direc-
tions. This turns what is often a reactive incident response into a controlled
maintenance loop.

(3) Budget allocation as a control problem. If we accept that over-
lap is costly, then the core operational question becomes allocation: where
should we spend the next unit of labeling budget? A governance-friendly im-
plementation is a “knapsack with coverage” planner that prioritizes buckets
whose overlap proxy is lowest relative to threshold, adjusted by estimated
harm. This is a natural place to embed cost-aware E-optimal design ideas
without forcing every product team to reason about Fisher information di-
rectly.

Limitations and extensions

Several limitations are important for correct interpretation and for setting
2026 research priorities.

Proxy misspecification remains the central risk. All practical over-
lap metrics rely on a representation ¢ (or an approximate Z). If ¢ omits
morally salient factors, then maximizing proxy overlap can create a false
sense of security. The right response is not to abandon overlap metrics, but
to treat them as auditable hypotheses: we should regularly probe whether
the “missing directions” in proxy space correspond to genuine semantic trade-
offs, and we should diversify ¢ (e.g. multiple encoders, evaluator models, and
rule-based features) to reduce single-point failure.
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Nonlinear and nonstationary preferences. Linear reward models are
useful because they make identifiability and information geometry explicit.
Real labelers exhibit context dependence, nonstationarity, and occasionally
strategic or policy-conditioned behavior. Extending the design logic to gen-
eralized linear or nonparametric reward models is conceptually straightfor-
ward but operationally harder: overlap must then be defined relative to local
curvature or to function-class complexity, not just Ay of a fixed matrix. A
promising intermediate step is to adopt local linearization (piecewise models)
with bucket-level overlap targets.

Safety constraints can conflict with quadrant filling. Some “quad-
rants” correspond to content we do not want to generate or show to labelers
(e.g. unsafe long-form instructions). This creates a real tension: identifica-
tion may demand counterfactuals that are themselves hazardous. In 2026
governance regimes, we expect this to be handled by constrained design:
only fill quadrants within an approved action set, and treat the remaining
missing directions as an explicit uncertainty that must be compensated by
other controls (policy rules, refusal enforcement, or expert-only red team-
ing). Put differently, overlap is not a license to collect anything; it is a way
to precisely state what we cannot learn under safety constraints.

From single w to heterogeneous objectives. Different user groups, ju-
risdictions, and policy regimes imply different effective w’s. The minimax
framing suggests overlap targets should be met for the worst-off group, but
this can be expensive. A practical extension is to treat group membership
(or jurisdiction) as part of x and impose per-group overlap SLOs, with ex-
plicit budget tradeoffs and escalation paths when a group cannot be covered
sufficiently.

Overall, the key 2026 implication is that preference-data collection should
be governed like an experiment whose design determines what is learnable.
Overlap metrics provide a concrete bridge between abstract identifiability
and the day-to-day realities of intervention engineering, labeling budgets,
and deployment audits. If we make that bridge explicit—in benchmarks,
in monitoring, and in governance artifacts—we reduce the probability that
“more RLHF” becomes an unexamined substitute for demonstrating robust-
ness where it matters.
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