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Abstract

Preference optimization methods such as Direct Preference Op-
timization (DPO) replace the RLHF pipeline with a simple classi-
fication objective derived from the Bradley–Terry model and a KL-
regularized reward maximization target. However, by 2026 most pref-
erence data is observational: users both choose prompts and provide
labels, inducing confounding through user objectives and contexts.
Building on DPO’s change-of-variables view (policy as an implicit re-
ward model) and recent causal analyses of preference learning, we for-
malize preference optimization as a causal inference problem with en-
dogenous prompt selection. We define a counterfactual welfare tar-
get corresponding to randomized (or policy-specified) prompt assign-
ment and derive an importance-weighted DPO objective that is con-
sistent for the same KL-regularized optimal policy one would obtain
under randomized data collection. We provide identification condi-
tions, M-estimation consistency, and finite-sample excess-risk bounds
that expose the economic role of overlap (support) and the regulariza-
tion parameter β. Empirically, we validate on confounded preference
benchmarks (e.g., helpful vs harmless prompt-type confounding) and
product-style telemetry simulations, showing that causal DPO corrects
systematic failures of naive preference optimization under distribution
shift. The results supply an econometric backbone for alignment train-
ing and specify what must be logged and audited for reliable general-
ization.
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1 Introduction

By 2026, most frontier language models are trained and iteratively refined on
large corpora of observational preference data: users supply prompts in the
wild, the platform samples multiple candidate completions, and a human
or model-based evaluator selects which completion is better. This data is
attractive because it is abundant, continually refreshed, and reflects real
usage. It is also structurally risky for alignment and governance, because
the data-generating process is not a randomized experiment. Users are not
passive “prompt emitters”: they choose prompts strategically as a function
of their goals, skills, risk tolerance, and prior interaction history. In short,
the platform observes preferences conditional on an endogenous slice of the
world.

This endogeneity matters because preference learning methods such as
RLHF and DPO are often deployed as if they were estimating a stable,
population-level reward signal. In practice, they estimate a reward signal
filtered through the prompt distribution induced by the current user base,
interface, and product incentives. When the same latent factor that drives
prompt choice also drives what the evaluator prefers (e.g., expertise, intent,
or safety sensitivity), the resulting learned policy can be systematically mis-
calibrated for the platform’s intended deployment regime. The central issue
is not merely “distribution shift” in the colloquial sense, but a specific kind
of confounding: user type affects both what we ask the model (the prompts
we log) and how we judge the model (the labels we collect).

We can build intuition with a simple story that recurs in real deploy-
ments. Suppose there are at least two user objectives: one group wants
high-risk capability (e.g., security research, dual-use biology, or evasion tech-
niques) and naturally writes probing prompts; another group wants benign
assistance and tends to ask for safe summaries and everyday help. If the plat-
form trains on pairwise preferences without accounting for how the prompt
mix is selected, the learned policy may overfit to the prompt distribution of
whichever group is overrepresented, more engaged, or more likely to trigger
logging. Worse, if the preference signal itself differs by type—for instance,
one group prefers direct answers while another prefers refusals or cautious
framing—then fitting to observational preferences implicitly chooses a com-
promise that is optimal for the observed mixture rather than the desired mix-
ture. The same phenomenon appears in more subtle ways: advanced users
write prompts that elicit long-chain reasoning; novices write short prompts;
enterprise deployments feature different compliance constraints than con-
sumer chat; and red-team or audit traffic is intentionally adversarial. A
naive training objective does not know which of these regimes we intend to
optimize for.

From a safety perspective, the failure mode is particularly sharp. If the
platform relies on observational preference data, it can inadvertently learn
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policies that appear aligned on the most common prompts while regress-
ing on rare but high-stakes regions. In the extreme, the model can become
well-calibrated on “easy” prompts that users willingly submit, and poorly
calibrated on prompts that users avoid because the current model already
responds badly (a form of self-selection). This creates a feedback loop: the
logged dataset reflects what the model is already good at, which can entrench
blind spots. Additionally, observational selection can obscure minority pref-
erences and governance constraints: if vulnerable populations or cautious
users disengage, their objectives disappear from the data, even if they are
central to the platform’s welfare mandate. The result is not only misop-
timization but also diminished legitimacy of the training process, because
it becomes difficult to argue that the policy is optimized for a transparent,
defensible target population.

The technical point we develop in this paper is that DPO, despite avoid-
ing explicit reward model fitting, is still a form of likelihood-based estimation
of preference probabilities. As such, it inherits the same causal identification
requirements as any estimator trained on confounded observational data.
In population terms, unweighted DPO converges to the optimizer of a wel-
fare objective under the observational joint distribution of prompts and user
types. If the platform’s target objective differs—for example, because gov-
ernance requires evaluating across a standardized prompt suite, or because
we wish to represent a different user mix than the one that happened to
generate the logs—then naive DPO can be biased relative to the desired
counterfactual optimum. Importantly, this bias persists even with infinite
data and perfect optimization: it is not an optimization bug, but an estimand
mismatch induced by endogeneity.

Our contributions are therefore as much about measurement and logging
as about optimization. First, we formalize a causal data-generating pro-
cess for preference labels in which a latent user type drives both prompt
choice and evaluative judgments, and we define a target regime that rep-
resents the platform’s intended welfare objective. Second, we show how
importance weighting—using logged propensities of the platform’s response-
pair assignment mechanism and a specified reweighting from observational to
target prompt-type distributions—restores identification of target expecta-
tions under standard unconfoundedness and overlap conditions. This yields
a weighted DPO objective whose population minimizer corresponds to the
KL-regularized optimal policy for the target regime (up to the usual reward
equivalence class). Third, we highlight the statistical costs: weak overlap
inflates importance weights, increasing variance and effective sample com-
plexity, which in turn interacts with the KL temperature parameter and
practical optimization constraints. This tradeoff is not incidental; it is the
formal expression of a safety-relevant tension between aggressive optimiza-
tion on sparse regions and conservative regularization to a trusted reference
policy.
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A key takeaway is that “DPO without a reward model” does not elim-
inate the need for causal design. If we want training to be auditable and
aligned with a declared welfare objective, we need to treat the logged pref-
erence pipeline as an experiment with documented assignment probabilities.
Concretely, platforms should (i) log the exact mechanism used to generate
response pairs (including any mixture policies, temperature settings, and
filters), (ii) preserve sufficient metadata or proxies to model how prompts
correlate with user objectives, and (iii) intentionally create overlap by in-
jecting randomized or standardized prompt traffic into the logging stream.
These practices are not merely engineering hygiene: they are prerequisites
for credible counterfactual claims about what policy would maximize wel-
fare under a specified governance regime. Without them, even an otherwise
rigorous training procedure can produce a policy that is “aligned” only with
a nontransparent, shifting observational mixture.

Finally, we emphasize limitations and open problems that motivate the
rest of the paper. The assumptions required for reweighting—notably overlap
and correct propensity specification—can fail in realistic settings where some
prompt-type combinations are rare or suppressed by safety filters. Moreover,
user types are often latent and only weakly proxied by observable metadata,
complicating estimation of target reweighting factors. These issues suggest a
governance-alignment interface: the platform can trade off product freedom
against evaluability by designing the logging policy and prompt randomiza-
tion scheme. Our aim is to make this tradeoff explicit. The formalism that
follows is not an abstraction for its own sake; it is a way to surface which
commitments (to logging, to assignment transparency, to target populations)
are required for preference-based training to support robust safety claims.

2 Background

We briefly review three ingredients that we will later combine: (i) the view of
Direct Preference Optimization (DPO) as maximum-likelihood estimation of
pairwise preferences, (ii) the equivalence between DPO and KL-regularized
RLHF (and the resulting closed-form optimum in the nonparametric limit),
and (iii) a causal/potential-outcomes framing for preference labels that clar-
ifies what is and is not identified from logged comparisons.

KL-regularized RLHF and the exponential-tilt optimum. A stan-
dard abstraction of RLHF is that, for each prompt x, a completion y induces
a latent reward r∗(x, y), and we seek a policy π(· | x) that maximizes ex-
pected reward while staying close to a trusted reference policy πref(· | x).
This is commonly written as a KL-regularized objective

J(π) = ExEy∼π(·|x)[r
∗(x, y)] − β ExKL(π(· | x) ∥πref(· | x)) , (1)
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where β > 0 controls the conservatism of the update. In the nonparametric
setting (i.e., optimizing over all distributions π(· | x) with support contained
in that of πref), the pointwise optimizer has a closed form:

π∗(y | x) ∝ πref(y | x) exp
(

1
β r

∗(x, y)
)
. (2)

This “exponential tilting” expression is useful for two reasons. First, it makes
explicit that the KL term is not merely a regularizer but a choice of geom-
etry that induces a softmax-like mapping from rewards to policies. Second,
it implies that any procedure that implicitly estimates the relative reward
differences r∗(x, y)−r∗(x, y′) (rather than absolute reward levels) can in prin-
ciple recover the optimal policy up to a normalizing constant. This connects
directly to pairwise preference learning.

Bradley–Terry (BTL) likelihood for pairwise preferences. DPO
and related methods are typically trained on data consisting of a prompt
x, two candidate completions (y, y′), and a binary label L ∈ {0, 1} indicat-
ing which completion is preferred. A widely used statistical model for such
comparisons is the Bradley–Terry–Luce family. In its simplest form, there
exists a latent utility (reward) function r∗ such that

P(L = 1 | x, y, y′) = σ
(
r∗(x, y)− r∗(x, y′)

)
, (3)

where σ(t) = 1/(1 + e−t) is the logistic sigmoid, and L = 1 indicates that
y is preferred to y′. The BTL model is attractive because it is (a) invariant
to adding a constant to all utilities for a fixed (x), and (b) yields a convex-
in-probabilities logistic likelihood for each comparison. Importantly, (3) is
naturally compatible with the KL-regularized optimum (2): if we can in-
fer (or fit) the reward differences that explain observed preferences, we can
recover a policy via exponential tilting relative to a reference.

Reward equivalence classes and what is identifiable. Preference data
identifies comparative judgments, not absolute levels. Concretely, under (3),
the conditional probability of a label depends on r∗(x, y)−r∗(x, y′); therefore,
for any function f(x) we have observational equivalence

r∗(x, y) ∼ r∗(x, y)+f(x) since
(
r∗(x, y)+f(x)

)
−
(
r∗(x, y′)+f(x)

)
= r∗(x, y)−r∗(x, y′).

(4)
This “reward equivalence class” is not a technical nuisance; it is precisely
what makes the KL-regularized policy characterization well-defined. In (2),
adding f(x) multiplies the unnormalized density by exp(f(x)/β), which can-
cels in the per-x normalization. Thus, both the BTL likelihood and the KL-
regularized optimum identify the policy only up to an additive baseline in
rewards, and this is the correct invariance for preference-based training.

6



DPO as a reparameterized BTL model. DPO can be understood as
directly parameterizing the (log) reward in terms of the policy πθ relative to
the reference πref . The key reparameterization is

rθ(x, y) = β log
πθ(y | x)
πref(y | x)

+ β b(x), (5)

where b(x) is an arbitrary baseline capturing the reward equivalence class.
Plugging (5) into (3), the baseline cancels and we obtain a model-implied
preference probability

Pθ(L = 1 | x, y, y′) = σ
(
β
[
log πθ(y|x)

πref(y|x) − log πθ(y
′|x)

πref(y′|x)

])
. (6)

Maximizing the corresponding conditional log-likelihood over θ yields the
familiar DPO logistic loss. From this perspective, DPO is not “reward-free”:
it simply performs implicit reward learning in the specific coordinate sys-
tem induced by the KL regularizer and the reference policy. When the
model is well-specified and data are generated from a BTL process, DPO is
a maximum-likelihood estimator for these induced preference probabilities.

Why this recovers KL-regularized RLHF. The connection to (2) is
now immediate. If the true preference process is governed by some latent r∗,
then in the nonparametric limit (allowing π to range over all distributions)
the maximum-likelihood solution corresponds to matching the BTL logits,
i.e., matching r∗(x, y) − r∗(x, y′) with β log π(y|x)

πref(y|x) − β log π(y′|x)
πref(y′|x) , which

implies

log
π(y | x)
πref(y | x)

= 1
β r

∗(x, y) + const(x), (7)

and hence recovers exactly the exponential-tilt optimum (2). In other words,
under idealized assumptions, DPO is a statistically convenient route to the
same KL-regularized welfare optimum one would obtain by explicitly fitting
a reward model and performing RL with a KL penalty.

A causal (potential-outcomes) view of preference labels. The pre-
ceding discussion is purely statistical: it posits a conditional distribution for
labels given (x, y, y′). However, our motivating concern is that preference
data are generated by a pipeline with selection effects. A clean way to ex-
press what is “fixed by nature” versus “chosen by the platform” is to introduce
potential outcomes for labels. For each user/evaluator context (including any
latent objective variables) and each triple (x, y, y′), define a potential label
L(x, y, y′) ∈ {0, 1} representing the comparison outcome that would be ob-
served if the platform presented that pair under that prompt. The BTL
assumption is then a causal statement about these potential outcomes:

P
(
L(x, y, y′) = 1

∣∣ context
)

= σ
(
r∗(x, y)− r∗(x, y′)

)
. (8)
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This framing matters because, in logged systems, we only observe L for the
particular (y, y′) that the platform chose to show. Consequently, the validity
of likelihood-based training (including DPO) depends not just on the cor-
rectness of the BTL model but also on whether the assignment of response
pairs renders the observed labels representative of the relevant potential out-
comes. Informally, we need the displayed pair to behave “as if randomized”
conditional on the variables we condition on. Later, when we specify an
observational data-generating process and a counterfactual target regime,
this potential-outcomes perspective will let us state unconfoundedness and
overlap assumptions precisely, and to distinguish an estimand mismatch (op-
timizing the wrong population/regime) from mere finite-sample noise.

In summary, DPO can be viewed as maximum-likelihood estimation for a
BTL preference model expressed in the coordinates of a KL-regularized pol-
icy improvement step. The crucial invariances (additive reward baselines)
align with the KL-optimal policy characterization, and a causal view of pref-
erence labels clarifies which parts of the pipeline must be logged or controlled
to justify counterfactual welfare claims.

3 Model: agents, endogenous prompts, and coun-
terfactual regimes

We now specify a minimal model of the preference-data pipeline that is
rich enough to capture the confounding failure modes that arise in practice
when prompts are user-chosen rather than randomized. The core idea is to
distinguish (i) what is endogenous to the deployment environment (users se-
lecting prompts, and heterogeneous objectives) from (ii) what is controlled
by the platform (which response pairs are shown for labeling, and how train-
ing/evaluation distributions are defined). This separation will let us state
precisely which quantities are identified from logs, and which require either
experimental intervention or explicit reweighting.

Agents and latent objectives. There are three roles. Users arrive with
an objective or “type” C ∈ C, which we treat as a latent variable capturing
stable preference-relevant features (e.g., expertise, risk tolerance, domain, or
intent). In deployed systems, C is rarely observed directly; instead one may
have a proxy Ĉ (metadata, user segment, locale, or inferred intent). A plat-
form (the trainer) chooses a reference policy πref(y | x), a KL temperature
β > 0, and a mechanism for generating and logging comparison data. Fi-
nally, a labeler/evaluator produces a binary preference label L ∈ {0, 1} when
shown a prompt x and two completions (y, y′). We interpret the labeler as
implementing the Bradley–Terry choice rule at the causal level, i.e.,

P(L = 1 | x, y, y′, c) = σ
(
r∗(x, y, c)− r∗(x, y′, c)

)
, (9)
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where r∗(x, y, c) is the latent utility induced for type c by completion y
under prompt x. This formulation makes explicit that preferences are type-
conditional; aggregation across users will generally depend on the type mix.

Endogenous prompt selection as the source of confounding. We
model prompt choice as an action taken by the user (possibly adaptively
over time). In the static abstraction used for our analysis, we write

C ∼ pO(c), X ∼ pO(x | c), (10)

where pO denotes the observational distribution induced by deployment. The
key point is that pO(x | c) may be highly non-uniform: different user types
ask systematically different questions, and they do so in ways that are corre-
lated with how they would evaluate responses. This is precisely the classical
confounding structure: C affects both the “treatment assignment” (which
prompts are observed) and the outcome distribution (which completions are
preferred via r∗). In addition, pO(x | c) may itself depend on the platform’s
historical behavior (e.g., users learn which prompts elicit helpful answers),
yielding feedback loops; our static pO should be read as a snapshot of that
equilibrium. From an alignment perspective, this is not merely a statistical
nuance: it means that training on logged prompts can overweight the objec-
tives of heavy users, power users, or particular segments, even if the platform
intends to optimize welfare for a different population.

Platform-controlled assignment of response pairs. Conditional on
the observed prompt (and any conditioning variables the platform uses),
the platform selects a pair of candidate completions to be compared. We
represent this via an assignment mechanism

(Y, Y ′) ∼ gO(·, · | X,C), (11)

where gO is the observational comparison generator. In standard RLHF
pipelines, gO is induced by sampling from one or more model policies (e.g.,
current policy versus reference, or two samples from the same policy at dif-
ferent temperatures), potentially filtered by heuristics. Two aspects are
safety-critical. First, gO must be logged (or otherwise reconstructible) to
support any counterfactual claims; in particular, we need the propensity
gO(y, y

′ | x, c) or an estimator thereof. Second, gO should maintain over-
lap: if some completions are essentially never shown for certain prompts or
types, then preference information about those regions is not learnable from
the data without additional exploration, and training may silently extrapo-
late in unsafe ways.

After the pair is generated, the labeler produces

L ∼ Bernoulli
(
σ(r∗(X,Y,C)− r∗(X,Y ′, C))

)
, (12)
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and the platform logs (at minimum) (X,Y, Y ′, L) along with the propensities
of the mechanism that generated (Y, Y ′). When C is unobserved, the log
contains only a proxy Ĉ or nothing at all; we treat this as a central limitation
rather than an afterthought, because it determines whether reweighting to
a desired objective mix is feasible.

Observational versus target (counterfactual) regimes. The platform’s
ultimate goal is not necessarily to optimize average utility under pO(x, c),
but under a target regime pT (x, c) that reflects a policy choice about which
users and which prompts should matter. We consider targets that break the
X–C confounding by design, for example:

1. Randomized prompts: hold the type distribution fixed while randomiz-
ing prompts within type, e.g., pT (x, c) = pT (c)pT (x | c) where pT (x | c)
is specified by an experimental prompt set or a curriculum;

2. Reweighted telemetry: define pT by reweighting observed traffic to
match a governance-mandated mix (e.g., downweight power users, up-
weight underrepresented domains, or equalize across locales).

We also allow the target to use a different response-pair generator gT (y, y
′ |

x, c) (e.g., if evaluation compares different model snapshots than those used
during data collection), though in many deployments gT = gO.

The welfare objective we will later analyze is the KL-regularized value
under the target regime,

J(π) = E(x,c)∼pTEy∼π(·|x)[r
∗(x, y, c)] − β E(x,c)∼pTKL(π(· | x) ∥πref(· | x)) .

(13)
This makes the normative choice explicit: the platform is optimizing target-
population welfare, not necessarily the welfare of the users who happened to
generate the bulk of the logs.

Change of measure and the role of logged propensities. To con-
nect observational data to target objectives, we will use importance weights
that convert expectations under the observational regime into expectations
under the target regime. At the level of joint tuples (x, c, y, y′), the Radon–
Nikodym derivative takes the form

w(x, y, y′, c) =
pT (x, c)

pO(x, c)
· gT (y, y

′ | x, c)
gO(y, y′ | x, c)

. (14)

Equation (14) is not merely a technical artifact; it encodes a concrete op-
erational requirement. If the platform does not log (or cannot reconstruct)
the assignment probabilities gO, then it cannot, in general, certify that its
preference-training procedure is optimizing (13) rather than some uncon-
trolled mixture. This links directly to governance and verification: auditing
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training data for propensity logging and overlap is a prerequisite for making
credible statements about counterfactual alignment objectives.

Assumptions, limitations, and safety-relevant failure modes. Our
subsequent results rely on two substantive conditions. First, conditional on
(X,C), the displayed pair (Y, Y ′) must be “as-if randomized” with respect to
the labeler’s potential outcomes; otherwise, the platform can induce selection
on unobservables by preferentially showing easy-to-judge or policy-favorable
pairs. Second, there must be overlap: the weights (14) should not explode.
In practice, overlap is threatened by aggressive filtering, by highly specialized
prompts that only appear for narrow user segments, and by generator policies
that collapse onto a small set of outputs.

Two additional caveats are worth flagging. If C is latent and only weakly
proxied, then even perfect propensity logging does not identify pO(c | x),
and reweighting to a desired type mix becomes ill-posed; this is an informa-
tion problem, not a modeling bug. Moreover, users may strategically adapt
prompts to elicit certain behaviors (including unsafe ones), meaning that
shifting to a target prompt distribution can change not only what we eval-
uate but also what users learn to ask. These are precisely the situations
where “naive” preference optimization can look successful on logged data
while degrading real-world safety under deployment shifts.

4 Why naive preference optimization fails

Naive preference optimization methods (including unweighted DPO-style ob-
jectives) can look compelling because they are statistically efficient and op-
erationally simple: we collect preference comparisons on whatever prompts
users happen to generate, fit a policy to predict those preferences, and de-
ploy the resulting model. The failure mode is that the procedure is implic-
itly optimizing welfare under the observational mixture of user types and
prompts, not under the target regime the platform actually cares about (e.g.,
a governance-mandated population, a stress-test distribution, or a counter-
factual in which prompts are randomized within type). When prompt choice
is endogenous, this discrepancy is not a second-order nuisance; it can quali-
tatively change which behaviors are reinforced.

Confounding bias: the observational winner need not be the target
winner. The core issue is that preference data identify PO(L = 1 | x, y, y′),
which is an average over the (possibly highly skewed) type distribution
pO(c | x). But the platform’s normative objective is typically an expectation
under pT (c | x) (or pT (x, c) more generally). Unless these conditional mixes
coincide, optimizing against observational preferences can select a different
policy than the target welfare maximizer.
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A minimal example makes the point. Consider two user types c ∈
{c1, c2}, a single prompt x, and two candidate completions yA, yB. Suppose
types disagree:

r∗(x, yA, c1) > r∗(x, yB, c1), r∗(x, yA, c2) < r∗(x, yB, c2).

If the observational traffic is dominated by c1 (say pO(c1 | x) = 0.9) while
the target population is balanced (say pT (c1 | x) = 0.5), then the obser-
vational Bradley–Terry probability PO(L = 1 | x, yA, yB) can be close to 1
even though the target-averaged preference is near 1/2 or even favors yB. In
this setting, unweighted DPO is behaving exactly as designed—it is fitting
the observational preference distribution—but it is misaligned with the plat-
form’s intended welfare criterion. In safety terms, this is the mechanism by
which heavy-user segments (or high-volume domains) can dominate training,
even if the platform intends to optimize for a broader or different population.

Endogenous prompts amplify the problem by changing the com-
parison set. The previous example held x fixed. The more realistic failure
is that C changes which prompts are asked, so the platform sees different re-
gions of X for different types. Consider two prompts x1, x2 and two types
c1, c2. Suppose c1 mostly asks x1 and c2 mostly asks x2: pO(x1 | c1) ≈ 1,
pO(x2 | c2) ≈ 1. Now suppose there are two stylistic behaviors: ybold (direct,
high-capability, potentially risky) and ycaut (cautious, more refusal-prone).
Assume c1 wants boldness on x1 (e.g., technical users), while c2 wants cau-
tion on x2 (e.g., safety-sensitive users):

r∗(x1, ybold, c1) > r∗(x1, ycaut, c1), r∗(x2, ybold, c2) < r∗(x2, ycaut, c2).

If the target regime breaks the prompt–type linkage (e.g., by randomized
prompts within type, or by reweighting to equalize domains), then the policy
must trade off these behaviors under a different joint distribution over (x, c)
than the one implied by logs. Naively optimizing on observational data effec-
tively solves a different KL-regularized objective JO(π) that substitutes pO
for pT . This can induce systematic over-optimization for whichever prompt–
type pairs are overrepresented in pO, producing a model that is “aligned to
the logs” but misaligned to the counterfactual evaluation.

Selection effects in pair generation can create spurious safety. Even
holding (x, c) fixed, we must distinguish the distribution of candidate pairs
(y, y′) shown to the labeler from the distribution of outputs the deployed pol-
icy will generate. In many pipelines, gO(y, y′ | x, c) is not “two independent
samples from the current model” but a complicated product of sampling,
filtering, deduplication, and safety heuristics. This can create a subtle prob-
lem: the platform might preferentially show comparisons that are easy to
judge, or that avoid extreme failures, thereby collecting labels that make the
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system appear safe while leaving key regions unobserved. Formally, if gO
has low support on dangerous but plausible completions, then preferences
provide little information about how to rank those completions, and opti-
mization can drift there at deployment when the policy distribution changes.

Limited overlap: when weights (or uncertainty) blow up, learning
becomes extrapolation. Overlap is the condition that the observational
process provides non-negligible probability of seeing the comparisons needed
to evaluate the target objective. In our setting, overlap must hold both
for prompts/types (the support of pT (x, c) must be covered by pO(x, c))
and for pair generation (the support of gT (y, y′ | x, c) must be covered by
gO(y, y

′ | x, c)). When overlap fails, there is no amount of cleverness in the
loss function that can recover counterfactual preferences without additional
assumptions or new data.

A simple manifestation is rare-prompt fragility. Suppose a safety-critical
prompt family xrare (e.g., uncommon but high-impact biosecurity queries)
has tiny probability under pO, while the platform’s evaluation regime inten-
tionally upweights it under pT . Then the importance ratio pT (xrare,c)

pO(xrare,c)
becomes

large, and any estimator that tries to correct the mismatch inherits high vari-
ance. Practically, the learned policy will be determined by a small number of
comparisons, often dominated by idiosyncratic labels or by systematic arti-
facts of the generator policy used to produce candidates on that rare prompt
set.

How this shows up in HH-style datasets. These issues are not hypo-
thetical; they are structurally encouraged by widely used preference datasets
that mix heterogeneous sources of prompts and heterogeneous evaluation
criteria. In HH-style data collection, prompts often come from a combina-
tion of “helpfulness” prompts (benign user requests), “harmlessness” prompts
(adversarial or policy-violating queries), and occasionally synthetic or red-
team sources. The latent “type” variable in our model can be read as the
intent/domain of the prompter and the corresponding normative standard
applied by labelers (e.g., maximize helpfulness subject to a safety policy).
If harmful prompts are disproportionately generated by a red-team process
while benign prompts are generated by regular users, then C and X are
statistically entangled: the dataset effectively observes different regions of
X under different implicit objectives. Training a single policy on the pooled
dataset without explicitly representing or reweighting this structure can yield
the familiar pathologies: over-refusal on benign prompts (because the harm-
ful region is overrepresented or more strongly labeled) or under-refusal in
safety-critical corners (because the model never saw informative comparisons
there due to filtering and lack of overlap).
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Safety implications and the transition to identification. From a
safety perspective, the combination of confounding and limited overlap pro-
duces a hazardous pattern: apparent progress on in-distribution prefer-
ence metrics can coincide with degraded performance under counterfactual
regimes (new user mixes, different prompt curricula, or stress tests), and
the degradation is hard to diagnose post hoc because the logs do not iden-
tify what would have happened under alternative prompt/type mixtures.
This is why we treat propensity logging and explicit target-regime specifica-
tion as first-class requirements. In the next section, we formalize when and
how causal preference quantities are identifiable from observational logs via
propensity ratios, and what changes when the user objective C is observed
versus latent.

5 Identification: when causal preference compar-
isons are recoverable from logs

Before we choose an estimator, we need to know what the logged data can
identify about the counterfactual regime we actually care about. The key
object is not a pointwise “true reward” r∗(x, y, c) (which is only defined up
to additive f(x, c)), but rather the causal preference probabilities and the
target-regime expectations they induce.

Set-up as a change of measure. Let the observational logging process
induce a joint distribution over (X,C, Y, Y ′, L) of the form

pO(x, c, y, y
′, ℓ) = pO(x, c) gO(y, y

′ | x, c) Bernoulli
(
ℓ; σ

(
r∗(x, y, c)− r∗(x, y′, c)

))
,

and define a target regime

pT (x, c, y, y
′, ℓ) = pT (x, c) gT (y, y

′ | x, c) Bernoulli
(
ℓ; σ

(
r∗(x, y, c)− r∗(x, y′, c)

))
.

The substantive modeling assumptions live in two places: (i) the Bradley–
Terry structure for preferences given (x, c), and (ii) a conditional ignorability
statement for pair assignment (our unconfoundedness assumption), which en-
sures that the observed label L is the correct draw from the causal preference
distribution for the displayed pair (y, y′) conditional on (x, c). Under these
assumptions, the only difference between O and T is the distribution over
contexts (x, c) and the assignment mechanism over pairs g(· | x, c).

Identification with observed C: importance weights are sufficient.
When the user objective/type C is observed (or equivalently, when we have
a proxy that is sufficient for the relevant effect modification), identification
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reduces to standard importance reweighting. Define the Radon–Nikodym
derivative between regimes:

w(x, y, y′, c) :=
pT (x, c)

pO(x, c)
· gT (y, y

′ | x, c)
gO(y, y′ | x, c)

.

Under overlap (i.e., the denominator is bounded away from zero on the sup-
port of the numerator), we obtain, for any integrable measurable f ,

ET

[
f(X,C, Y, Y ′, L)

]
= EO

[
w(X,Y, Y ′, C) f(X,C, Y, Y ′, L)

]
.

This is the basic identification statement we will rely on: if we can com-
pute (or consistently estimate) w, then we can rewrite any target-regime
population objective as an observational expectation with weights.

Two special cases are worth highlighting because they correspond to com-
mon deployment choices.

Targeting only prompts/types. If the platform keeps the same pair
mechanism in training and evaluation (so gT = gO), then the weight simpli-
fies to

w(x, y, y′, c) =
pT (x, c)

pO(x, c)
.

This is the regime in which we are correcting purely for endogenous prompt
selection and type mixture shift, while treating the candidate-generation
pipeline as fixed.

Targeting a different candidate generator. If the platform intends to
evaluate welfare under a different pair mechanism (e.g., different sampling
temperature, different filtering, or a different policy used to propose candi-
dates), then gT ̸= gO and we must also reweight by gT /gO. Concretely, this is
where propensity logging becomes a hard requirement: for each logged com-
parison we need the probability with which the specific ordered pair (y, y′)
was produced under the logging mechanism. Without these propensities, the
ratio gT /gO is not identifiable, and the reweighting argument breaks.

What exactly is identified? With observed C, we can identify target
expectations of any function of (X,C, Y, Y ′, L), including:

PT (L = 1 | x, y, y′, c), ET [L | x, y, y′, c],

and, by aggregation,

PT (L = 1 | x, y, y′) =
∑
c

pT (c | x)σ
(
r∗(x, y, c)− r∗(x, y′, c)

)
.

Note the last expression is a mixture of sigmoids. This is not merely a
technicality: it means that even if we ultimately care about a single shared
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policy, the target preference distribution depends on the target conditional
mix pT (c | x) and cannot in general be represented as σ(r̄(x, y) − r̄(x, y′))
for a single scalar reward r̄ unless we introduce additional restrictions. Iden-
tification, however, is about recovering the target comparisons we need for
training and evaluation, not about recovering a globally consistent scalar
reward.

When C is not observed: what breaks, and what can still be done.
If C is latent, then the reweighting identity above cannot be applied as
written because the weight depends on c and the label mechanism depends
on c. In particular, observing only (x, y, y′, ℓ) identifies

PO(L = 1 | x, y, y′) =
∑
c

pO(c | x)σ
(
r∗(x, y, c)− r∗(x, y′, c)

)
,

but the target quantity replaces pO(c | x) with pT (c | x). Without additional
information, multiple latent decompositions can produce the same observa-
tional mixture while implying different target mixtures; this is a genuine
non-identification result driven by unobserved effect modification.

There are, however, three practically relevant paths to recover identifi-
cation.

(1) Measure a sufficient proxy Ĉ (or richer metadata Z). If we
can log user metadata Z such that the heterogeneity relevant to preferences
is captured by Z, then we can replace C by Z in the weighting scheme.
Formally, we need a condition of the form

P(L = 1 | x, y, y′, c) = P(L = 1 | x, y, y′, z) whenever z is generated from c,

or, more weakly, that the conditional distribution of potential outcomes is
independent of the assignment given (X,Z) and that Z suffices for trans-
porting preferences from O to T . This is the deployment-motivated reason
to treat segmentation variables (locale, product surface, account age, safety
setting, domain tags, etc.) as first-class citizens in the training logs: they
are not only useful features, but also identification variables.

(2) Impose a “no effect modification” restriction. If we are willing
to assume that type only affects prompt frequency but not the preference
comparison itself, i.e.

r∗(x, y, c)− r∗(x, y′, c) = ∆r∗(x; y, y′) for all c,

then C drops out of the Bradley–Terry probability and identification be-
comes possible without observing C. This assumption is often false in the
motivating safety cases (different user objectives genuinely disagree), but it
can be a reasonable approximation within carefully controlled slices (e.g.,
within a single product surface with stable norms).
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(3) Model C and accept stronger assumptions (and correspond-
ing fragility). One can posit a parametric latent-variable model for p(c |
x) and r∗(x, y, c), estimate it from observational data (possibly using re-
peated measurements, instruments, or multi-environment variation), and
then transport to pT . This can work, but it moves the burden from propen-
sity logging to model identifiability, and it introduces a new failure mode: if
the latent model is misspecified, the transported preferences can be system-
atically wrong in precisely the regions we most care about (rare, high-stakes
prompts).

Safety and governance interpretation. Identification clarifies what the
platform must commit to before optimization. If we want counterfactual
guarantees about welfare under a specified pT and gT , then (i) pT must be
explicitly defined, (ii) overlap must be engineered via data collection (often
via randomization or deliberate coverage), and (iii) propensities and suffi-
cient heterogeneity variables must be logged. Otherwise, training reduces to
extrapolation: we may still produce a model, but we cannot defend claims
about its behavior under the target regime using the logs alone.

6 Estimation: a causal DPO objective from logged
comparisons

Given the change-of-measure identity in Section 5, the estimator design prob-
lem becomes concrete: we want an empirical objective whose population
minimizer coincides with the target-regime KL-regularized optimum, while
remaining implementable with logged comparisons.

From pairwise labels to DPO training tuples. Each logged example
consists of (xi, ci, yi, y′i, ℓi), where ℓi ∈ {0, 1} indicates whether the labeler
preferred yi to y′i. We rewrite this as a winner/loser pair (yw,i, yℓ,i) by setting

(yw,i, yℓ,i) :=

{
(yi, y

′
i) if ℓi = 1,

(y′i, yi) if ℓi = 0.

This bookkeeping step matters operationally because most DPO implemen-
tations assume an ordered (preferred, dispreferred) pair and optimize a single
logistic term per comparison.

Importance-weighted DPO loss. Fix a reference policy πref (as in stan-
dard DPO) and choose a temperature/regularization parameter β > 0. For
a candidate policy πθ, define the usual DPO logit difference

∆θ(x; yw, yℓ) := log
πθ(yw | x)
πref(yw | x)

− log
πθ(yℓ | x)
πref(yℓ | x)

.
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The causal modification is to weight each comparison by the importance
ratio mapping the observational regime to the target regime. Concretely, for
observed c (or a sufficient proxy), we use

w(x, c, yw, yℓ) :=
pT (x, c)

pO(x, c)
· gT (yw, yℓ | x, c)
gO(yw, yℓ | x, c)

.

The empirical objective is then

L̂wDPO(θ) =
1

n

n∑
i=1

ŵi·
(
−log σ

(
β∆θ(xi; yw,i, yℓ,i)

))
, ŵi ≈ w(xi, ci, yw,i, yℓ,i).

Operationally, this is a minimal change to existing DPO code: we multiply
each per-example loss by ŵi (or equivalently, resample examples proportional
to ŵi). The conceptual change is larger: without ŵi, we fit the observational
preference distribution; with ŵi, we fit the target preference distribution
implied by the counterfactual deployment regime.

Practical estimation and stabilization of weights. In the cleanest
deployments, w is known by design: the platform randomizes prompts or
reweights traffic, and the pair assignment mechanism gO is instrumented to
return exact propensities. In most realistic settings, parts of w must be
estimated, and this introduces two familiar failure modes: (i) variance blow-
up from heavy-tailed weights (weak overlap), and (ii) bias from misspecified
propensity models.

We therefore treat weight stabilization as part of the estimator specifica-
tion. Common choices include:

• Normalization: use self-normalized weights w̃i = ŵi/
(
1
n

∑
j ŵj

)
, which

preserves the target objective asymptotically but can reduce numerical
scale issues.

• Clipping/truncation: replace ŵi by min{ŵi,Wmax} for a chosen cap
Wmax. This introduces bias but can be an explicit safety–robustness
trade: we refuse to let rare, poorly-supported regions dominate gradi-
ents.

• Stratification: define pT and the weighting scheme at the level of
slices (product surface, locale, safety setting, etc.) rather than at the
granularity of individual prompts, thereby trading correction fidelity
for overlap.

From a safety perspective, it is often preferable to make these compromises
explicit (and auditable) rather than implicitly relying on whatever prompt
mix happened to be logged.
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Optional doubly-robust (DR) augmentation. Importance weighting
is unbiased under correct propensities, but it can be statistically brittle when
E[w2] is large or when gO is only approximately known. A standard remedy
in causal policy learning is to combine weights with an outcome model,
yielding a doubly-robust objective: consistency holds if either the propensity
model or the outcome model is correct.

In our setting, the “outcome” is the pairwise preference probability. Let

q∗(x, c, y, y′) := P(L = 1 | x, c, y, y′)

and fit a model q̂(x, c, y, y′) (e.g., a calibrated classifier over concatenated
(x, y, y′), or a smaller preference model trained with cross-fitting). A DR-
style causal DPO objective can be written schematically as

L̂DR(θ) =
1

n

n∑
i=1

[
ŵi · ℓDPO(θ;xi, yw,i, yℓ,i) +

(
κ̂i
)
· ϕ
(
q̂, θ;xi, ci, yi, y

′
i

)]
,

where ℓDPO(·) = − log σ(β∆θ(·)), ϕ is an influence-function-like correction
term, and κ̂i is constructed so that the second term has mean zero when ŵ
is correct and cancels first-order errors when it is not. We do not need the
exact algebra of ϕ to implement the core idea: we are adding a correction
that uses q̂ to reduce sensitivity to propensity error and to reduce variance
in high-weight regions. In practice, DR objectives typically require careful
cross-fitting (separate folds for fitting ŵ, q̂ versus optimizing θ) to avoid
overfitting-induced bias.

What must be logged (non-negotiables). The estimator is only as
credible as the logging. To make the weighting argument operational, we
need logs that allow us to reconstruct (or consistently estimate) every factor
in w on the support of pT . At minimum, we need:

• The comparison itself: x, both full responses y, y′, and the prefer-
ence label L (plus tie/abstain metadata if applicable).

• Heterogeneity variables: the user type c when available, or a proxy/metadata
vector z that we are willing to treat as sufficient for transporting pref-
erences (and that is available both in training logs and in the target
definition).

• Pair assignment propensities: the probability under the logging
mechanism of producing the ordered pair (y, y′) given (x, c) (or (x, z)).
This generally requires instrumenting the candidate generation pipeline,
including any mixture over proposal policies, any filtering, and any
stochastic decoding parameters.
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• Target-definition bookkeeping: enough information to compute
pT (x, c)/pO(x, c) for the target regime we claim to optimize for (e.g.,
randomization probabilities, slice weights, or an explicit reweighting
plan).

A recurring deployment pitfall is to log only which policy generated a re-
sponse (or only the decoding parameters) without logging the resulting prob-
ability of the realized sequence. If we cannot compute (or bound) gO(y, y

′ |
x, c), then the causal correction becomes an untestable modeling assumption
rather than an identified estimator.

Implementation notes for modern training stacks. Weighted DPO
integrates cleanly with minibatch SGD: each example carries a scalar mul-
tiplier ŵi, and gradients scale linearly. Two additional engineering details
matter in practice. First, we must ensure πref(y | x) > 0 for all realized
sequences, which is typically satisfied by using a dense neural LM with the
same tokenizer/vocabulary and avoiding hard truncation rules that can as-
sign exactly zero probability. Second, for numerical stability, we typically
compute log πθ(y | x) as the sum of token log-probabilities under teacher
forcing, matching standard DPO implementations.

Finally, we emphasize a governance-relevant point: the target regime
(pT , gT ) is part of the training specification, not an afterthought. Once
weights are introduced, changing the target definition changes the estimator.
This is precisely the intended behavior—it forces us to make explicit which
counterfactual population and which generation mechanism our optimization
is claiming to serve.

7 Theory: optimality, consistency, and finite-sample
behavior

This section states the main theoretical guarantees that justify the esti-
mator in Section 6. The through-line is that DPO is best understood as
(regularized) maximum likelihood for a Bradley–Terry–Luce (BTL) compar-
ison model after a particular reparameterization; once we explicitly change
measure from the observational regime to the target regime, the familiar
optimality and learning-theoretic conclusions go through, with the expected
importance-weight penalties.

(i) Population optimality and the exponential-tilt form. Recall the
target welfare objective

J(π) = E(x,c)∼pTEy∼π(·|x)[r
∗(x, y, c)]− β E(x,c)∼pTKL

(
π(· | x) ∥πref(· | x)

)
.
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Under mild regularity (measurability and πref(y | x) > 0 on the relevant sup-
port), the pointwise optimization over π(· | x) yields the standard Gibbs/exponential-
tilting characterization: for pT -almost every x,

π∗(y | x) ∝ πref(y | x) exp
(

1
β r̄∗(x, y)

)
, r̄∗(x, y) := Ec∼pT (c|x)[r

∗(x, y, c)].

Two details matter for interpretation. First, only the type-averaged reward r̄∗

appears when deploying a single shared policy: the platform cannot condition
on c at generation time unless it explicitly builds a conditional policy π(y |
x, c). Second, β is not merely an optimization temperature; it is the explicit
knob controlling how strongly we are willing to deviate from πref in pursuit of
higher reward, and thus how much we are willing to amplify any estimation
error in r̄∗. From a safety standpoint, this is the core tradeoff revealed by the
formalism: larger β is a commitment to conservatism, which can be desirable
under distribution shift, logging gaps, or preference-model misspecification.

DPO as likelihood matching under the target regime. The BTL
assumption posits

PT (L = 1 | x, c, y, y′) = σ
(
r∗(x, y, c)− r∗(x, y′, c)

)
.

DPO replaces the unknown reward difference with a log-density ratio param-
eterization relative to πref , effectively fitting a logistic model whose “score”
is β∆θ(x; yw, yℓ). In population, minimizing the (target) logistic loss cor-
responds to matching the target comparison probabilities, and the induced
optimal policy coincides (up to the standard additive-in-x, c reward equiva-
lence class) with the maximizer of J(π). The importance-weighted objective
from Section 6 is exactly the device that converts an observational likelihood
into a target likelihood.

(ii) Consistency of weighted DPO as an M-estimator. Let LwDPO(θ)
denote the population weighted loss under the observational sampling mea-
sure,

LwDPO(θ) = EO

[
w(X,C, Yw, Yℓ) ·

(
− log σ(β∆θ(X;Yw, Yℓ))

)]
.

By the change-of-measure identity, LwDPO(θ) can be rewritten as an ex-
pectation under the target joint distribution over (X,C, Yw, Yℓ) induced by
(pT , gT ). Consequently, if the model class is well specified (there exists θ∗

such that πθ∗ = π∗ almost everywhere) and standard empirical-process con-
ditions hold, then the empirical minimizer θ̂ ∈ argminθ L̂wDPO(θ) is a con-
sistent M-estimator:

πθ̂
P−−−→

n→∞
π∗,
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with convergence understood in the usual sense induced by the loss (e.g.,
convergence of ∆θ̂ in L2(pT ), which is sufficient to identify the policy up to
null sets).

The assumptions doing real work are exactly the causal ones we would
expect: (a) overlap controls the weight magnitude; (b) correct propensities
ensure the weights implement the intended target regime; and (c) sufficient
heterogeneity features (true c or a valid proxy z) ensure that transporting
from pO to pT does not silently change the label distribution in ways not
accounted for by w. When these assumptions fail, the objective can still be
optimized, but it no longer has a causal interpretation.

Consistency under optional doubly-robust augmentation. Weighted
objectives are statistically fragile when E[w2] is large or when propensities
are estimated with error. A doubly-robust (DR) construction adds an ex-
plicit model q̂(x, c, y, y′) ≈ P(L = 1 | x, c, y, y′) and a correction term chosen
to yield Neyman-orthogonality: first-order errors in ŵ do not translate into
first-order bias in the estimating equation. Under cross-fitting and mild reg-
ularity, DR consistency holds if either (i) the propensity model is consistent
or (ii) the outcome model is consistent. This is not a free lunch—DR can
raise implementation complexity and introduce its own failure modes (cali-
bration errors in q̂, leakage without proper sample splitting)—but it offers a
principled “second chance” when exact logging is infeasible.

(iii) Finite-sample excess-risk and the role of overlap and β. In
finite samples, the object we can control is the excess weighted logistic risk
relative to the best-in-class parameter:

LwDPO(πθ̂)− LwDPO(π
∗).

Under bounded weights w ≤ W (or after explicit clipping) and a standard
complexity control on the score class {log πθ(· | x)} (e.g., via Rademacher
complexity Rn), one obtains high-probability bounds of the form

LwDPO(πθ̂)− LwDPO(π
∗) ≲ W Rn +W

√
log(1/δ)

n .

The dependence on overlap enters through W : if gO or pO(c | x) can be
arbitrarily small on the target support, then w becomes heavy-tailed and no
meaningful finite-sample guarantee is available without clipping. This is not
an artifact of the analysis; it is the classical statistical price of counterfactual
evaluation and off-policy learning.

The parameter β enters in two coupled ways. First, it changes the sen-
sitivity of the loss: the logistic term − log σ(β∆) becomes steeper as β in-
creases in the logit scale, affecting Lipschitz constants and thus the pre-
factors in generalization bounds. Second (and more importantly for deploy-
ment), β governs the curvature of the welfare objective: smaller β permits
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sharper tilting away from πref , which can convert modest estimation error in
∆θ or in w into large changes in the learned policy. In regimes with weak
overlap or noisy propensities, larger β can therefore be interpreted as a ro-
bustness parameter: we accept slower improvement in J(π) in exchange for
reduced amplification of statistical and causal uncertainty.

Limitations and open problems. These guarantees are conditional on
the causal transport assumptions: if c is latent and the proxy z is insufficient,
then even perfectly computed weights need not identify the target prefer-
ence distribution. Moreover, the analysis treats pT as fixed and exogenous,
while real platforms may induce feedback between deployed policies, prompt
choice, and user composition. Extending causal DPO to such strategic or
dynamical regimes (while keeping logging requirements auditable) remains
an open and governance-relevant problem: without this, “optimizing for the
target” may itself change the target.

8 Empirics: controlled confounding and telemetry-
style simulation

We empirically stress-test the causal claims in two complementary regimes.
First, we construct a controlled confounding benchmark on top of publicly-
available helpful/harmless (HH) preference data, where we can dial the
strength of X–C dependence and still retain a notion of ground-truth tar-
get welfare. Second, we run a product-telemetry simulation meant to mirror
what a platform can realistically do with logged propensities: evaluate and
train under one logging regime while caring about a counterfactual target
regime that reweights the user/prompt mix and (optionally) the response-
pair assignment.

Controlled confounding via HH augmentation. The key difficulty in
evaluating causal DPO methods is that in real datasets the user type C is
rarely observed and the latent reward r∗ is unknown. To isolate the causal
mechanism without losing contact with realistic language-model artifacts,
we start from a dataset of prompts x paired with two candidate responses
(y, y′) and a preference label ℓ. We then introduce a synthetic type c ∈ {0, 1}
and a type-conditioned reward r∗(x, y, c) by augmenting the base signal with
a type-specific component derived from HH attributes. Concretely, we build
two scalar scores for each completion, one intended to proxy “helpfulness”
and another intended to proxy “harmlessness” (e.g., via an auxiliary classifier
or rubric-based model). We define

r∗(x, y, c) = sbase(x, y) + αc sHH(x, y),
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where sHH emphasizes helpfulness for c = 0 and harmlessness for c = 1, and
αc controls how strongly types disagree. Labels are then (re)sampled from
the BTL model ℓ ∼ Bernoulli(σ(r∗(x, y, c) − r∗(x, y′, c))). This construc-
tion gives us a known, controllable data-generating process while preserving
realistic response distributions and prompt content.

To create confounding, we do endogenous prompt selection: prompts are
partitioned into coarse categories (e.g., “benign assistance,” “policy-sensitive,”
“self-harm,” “medical”) and we sample x ∼ pO(x | c) with type-specific mix-
tures. By increasing the separation between pO(x | c = 0) and pO(x | c = 1)
we increase confounding strength (e.g., measured by I(C;X)). The target
regime pT (x, c) then either (i) randomizes prompts within type, or (ii) en-
forces a product distribution pT (c)pT (x) meant to represent a fairness or
coverage desideratum. Because r∗ is known in this benchmark, we can eval-
uate the learned policy under the true target welfare

J(π) = E(x,c)∼pTEy∼π(·|x)[r
∗(x, y, c)]− β E(x,c)∼pTKL(π∥πref),

using Monte Carlo rollouts from π(· | x) together with the synthetic reward.
Across confounding strengths, we compare (a) naive/unweighted DPO fit

on (x, y, y′, ℓ), (b) importance-weighted DPO using the true w(x, y, y′, c), and
(c) optional doubly-robust variants when we intentionally corrupt propensi-
ties (described below). The qualitative pattern is stable: naive DPO reliably
tracks the observational objective and can systematically mis-rank responses
under the target mixture when type disagreement is strong; weighted DPO
largely eliminates this bias when overlap holds, recovering policies whose
target welfare is close to the oracle optimum within function-class limits.
As expected from the theory, the welfare gap between naive and weighted
methods grows with both I(C;X) and the magnitude of αc, i.e., when (i)
prompts are more type-segregated and (ii) types disagree more about what
constitutes a “good” completion.

Telemetry-style simulation with logged propensities. To mirror de-
ployment, we next consider a setting where prompts and metadata arrive
from a logging system, and the platform controls (and logs) the response-pair
assignment mechanism gO(y, y

′ | x, ĉ). We simulate a production workflow
in which the logged dataset is collected under one prompt composition and
one pairing strategy, while the platform wishes to optimize under a different
target regime (e.g., reweighting toward safety-critical prompts, or represent-
ing an anticipated user-mix shift). In this simulation, C may be partially
observed (metadata ĉ) and used for weighting, but the policy itself remains
unconditional at generation time.

Operationally, we implement target reweighting by specifying pT (x, ĉ)
(often via stratified resampling or post-stratification on metadata buckets)
and optionally specifying a counterfactual gT that differs from gO (e.g., if
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the evaluation regime compares πθ to a different baseline than the logging
regime did). We then train with weights

w(x, y, y′, ĉ) =
pT (x, ĉ)

pO(x, ĉ)
· gT (y, y

′ | x, ĉ)
gO(y, y′ | x, ĉ)

,

using the logged propensities for gO. Because true r∗ is not available in this
telemetry simulation, we evaluate with a held-out preference model (or a
held-out set of human labels where available), reporting both target-weighted
preference accuracy and proxy welfare estimates. The main empirical ques-
tion here is not whether we can perfectly recover a true reward, but whether
causal reweighting prevents systematic errors that arise from training on the
wrong mixture.

Ablations: overlap and effective sample size. We explicitly ablate
overlap by modifying gO and/or pO(x, ĉ) so that some regions of the tar-
get support are rarely logged. Practically, we do this by (i) narrowing the
response-pair generator so that certain styles or lengths are under-sampled,
and (ii) increasing the mismatch between pO and pT so that some (x, ĉ) cells
receive little mass under logging. We track not only raw weight maxima
but also the effective sample size neff = (

∑
iwi)

2/(
∑

iw
2
i ), which is a simple

diagnostic for how brittle importance weighting becomes. The results match
the predicted failure mode: as overlap weakens, variance dominates, neff

collapses, and performance becomes sensitive to clipping. Weight clipping
improves stability but introduces bias, yielding the expected bias–variance
frontier rather than a dominated solution. This is also the regime where
larger β empirically behaves as a robustness knob: policies remain closer to
πref and degrade more gracefully when weights are heavy-tailed.

Ablations: propensity misspecification. We next study misspecified
propensities by perturbing gO or pO before computing weights, e.g., multi-
plicative noise on w, mis-bucketing metadata, or omitting relevant covariates
from the propensity model. As soon as the weight model fails to condition on
variables that jointly affect (X, Ĉ) and the label distribution, the weighted
estimator inherits bias that can be comparable to (or worse than) naive DPO,
especially when the perturbations are systematic rather than mean-zero. In
these cases, DR-style augmentation partially mitigates error when the out-
come model is reasonably calibrated, but the gains are not automatic: poor
calibration in q̂(x, ĉ, y, y′) can introduce its own bias, emphasizing the need
for careful validation and cross-fitting when DR is used.

Ablations: proxy quality for latent type. Finally, we test how sensi-
tive causal transport is to the quality of the type proxy. Starting from a “best
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available” metadata proxy ĉ, we progressively coarsen it (merge buckets), in-
ject noise, or drop it entirely. Predictably, when ĉ becomes uninformative,
weighting reduces to reweighting on x alone and cannot correct type-driven
preference shifts; the learned policy then reverts toward the observational
optimum in exactly those slices where types disagree. This ablation is the
sharpest empirical reminder of the core identification constraint: if the rele-
vant drivers of preference heterogeneity are latent and not captured by logged
covariates, no amount of reweighting can recover the target label distribu-
tion, and “causal DPO” becomes an aspirational interpretation rather than
a guarantee.

Taken together, these empirical exercises aim less at producing a sin-
gle headline number and more at mapping the operational boundary of
the theory: causal DPO works well when the platform can (i) log or es-
timate propensities accurately, (ii) maintain overlap with the intended tar-
get support, and (iii) measure the preference-relevant heterogeneity needed
for transport. When any of these pillars fails, the method still trains a
model—but it ceases to be a credible answer to the counterfactual question
the platform actually cares about.

9 Policy and practice implications: from causal DPO
to deployable procedures

Our formalism is deliberately “training-loop native”: it says that if we want
welfare under a counterfactual prompt–type regime pT (x, c) (and possibly
a counterfactual pairing regime gT ), then we should treat propensities and
overlap as first-class objects rather than as incidental logging details. The
practical implication is that a platform cannot credibly claim “we optimized
for safety/helpfulness under population T ” unless it can (i) specify T con-
cretely, and (ii) show that the collected data supports transport from the
observational regime O to T without uncontrolled variance or hidden hetero-
geneity. Below we translate this into audit checklists, sensitivity analyses,
and governance hooks that deployment teams and regulators can actually
operationalize.

Audit checklist for data collection and logging. Causal DPO is only
as good as the platform’s ability to compute (or approximate) the Radon–
Nikodym derivative w. This induces a minimal “data-sheet” for preference
logs that goes beyond storing (x, y, y′, ℓ). At a minimum, we want:

• Propensities for response-pair assignment. Log gO(y, y
′ | x, ĉ)

(or a sufficient description to reconstruct it exactly) for each tuple,
including any temperature, rejection sampling, filters, or mixture com-
ponents used in pair generation. If the system used multiple generators,
log the mixture identity and mixture probability per sample.
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• Prompt selection provenance. Record enough metadata to esti-
mate pO(x, ĉ) and justify a transport map to pT (x, ĉ). In product
systems this typically means: surface/channel (search, chat, agent), lo-
cale, policy-mode flags, and safety-routing decisions that affect which
prompts enter labeling.

• Type-relevant covariates. Since true C is usually latent, we need
a proxy ĉ that captures preference-relevant heterogeneity (e.g., user
intent class, risk tier, domain bucket). The audit question is not “is ĉ
predictive of C?” but “does conditioning on (x, ĉ) plausibly block the
major pathways by which preferences vary?”

• Support and overlap diagnostics at collection time. Ensure
that for every (x, ĉ) cell in the intended target support, the logging
pipeline produces non-negligible mass. Concretely, we recommend
tracking per-cell counts and an online estimate of effective sample size
neff = (

∑
iwi)

2/(
∑

iw
2
i ) under the current candidate target weights.

These requirements are not merely bureaucratic. They correspond exactly to
the assumptions used to justify reweighting: without logged propensities, the
estimator is not identifiable; without type-relevant covariates, the transport
claim is not even well-posed.

Design guidance: prefer “cheap randomization” to heroic reweight-
ing. When teams have any ability to intervene in data collection, the
highest-leverage move is to reduce the variance of w by design. Two robust
patterns are (i) stratified collection over (x, ĉ) cells that are important for
pT , and (ii) pairing randomization within each stratum so that gO is simple
and bounded away from zero. In our setting this often looks like: allocate
labeling budget to a pre-specified mixture of prompt buckets, and within
each bucket sample response pairs using a known mixture of policies with
explicit mixture weights. The technical point is that importance weighting is
a last resort: it corrects bias but amplifies noise. From a safety standpoint,
reducing the need for large weights is equivalent to reducing the chance that
a small number of rare, high-weight samples dominate the gradient.

Sensitivity analysis when C is latent. Most deployments will not sat-
isfy the idealized setting where C is observed. We therefore recommend
treating causal DPO claims as graded rather than binary: the question be-
comes how sensitive the learned policy and estimated welfare are to plausible
violations of the conditional unconfoundedness assumption when condition-
ing only on (X, Ĉ). Practically, we can do three complementary analyses.

• Proxy stress tests. Train and evaluate under progressively coarsened
versions of ĉ (merging buckets, dropping fields), and check whether
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the implied target-welfare ranking of policies is stable. Instability is
evidence that unmeasured heterogeneity is driving the result.

• Weight-robustness frontiers. Report performance as a function of
weight clipping thresholds and of β. Since clipping trades variance for
bias and β controls how aggressively we move away from πref , plotting
welfare (or preference accuracy) versus these knobs gives a concrete
robustness curve rather than a single fragile point estimate.

• Latent-confounding bounds. Introduce an explicit sensitivity pa-
rameter Γ that upper-bounds how much an unobserved binary con-
founder could tilt the odds of ℓ = 1 within a (x, ĉ, y, y′) cell (an ana-
logue of Rosenbaum-style bounds). Even if the bound is coarse, it
forces teams to state what magnitude of hidden heterogeneity would
overturn their conclusion about which policy is preferred under pT .

The meta-principle is that when C is latent, we should avoid treating reweight-
ing as a magical deconfounder. Instead, we should publish robustness en-
velopes : ranges of conclusions under a family of plausible confounding mod-
els.

Actionable guidance for regulators and internal governance. A reg-
ulator (or an internal model-risk committee) should not need to inspect gra-
dient code to evaluate whether a “causal alignment” claim is meaningful. We
propose a lightweight set of artifacts that make the counterfactual objective
auditable:

• A declared target regime. Document pT (x, ĉ) and its motivation
(e.g., anticipated user-mix shift, safety-critical over-sampling, fairness
constraints). If pT changes over time, version it.

• A propensity and overlap report. Provide summary statistics of
w: quantiles, maxw, E[w], E[w2], and neff for the chosen pT . These are
direct proxies for estimator variance and for the credibility of transport.

• A counterfactual evaluation protocol. Pre-specify how target-
weighted evaluation is computed (including any clipping), which slices
are monitored (e.g., safety-critical domains), and what constitutes a
deployment-blocking regression.

• Change management hooks. Require that changes to logging,
filters, or pair generation that affect gO trigger a re-computation of
propensities and overlap diagnostics. Silent changes to gO are, in our
model, silent changes to the estimand.

This is also where we see a concrete safety tradeoff: stricter governance
around pT , gO, and overlap can slow iteration, but it sharply reduces the
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probability that a system is optimized for an unintended subpopulation due
to confounded telemetry.

Deployment-team heuristics: when to trust the method and when
to fall back. Finally, we want a simple operational decision rule. In our
experience, causal reweighting is most trustworthy when (i) neff is not dra-
matically smaller than n under the chosen pT , (ii) the top-weight mass is
not dominated by a tiny number of prompts, and (iii) conclusions are sta-
ble across reasonable clipping/β choices. Conversely, if overlap is weak or
if ĉ is demonstrably uninformative, the safest posture is to treat weighted
DPO as a diagnostic rather than as a guarantee: it can highlight where
the logging regime is misaligned with the intended deployment regime, but
it should not be the sole basis for high-stakes claims about counterfactual
safety performance.

10 Limitations and extensions: unobserved confound-
ing, strategic feedback, and a path to active
overlap design

Our causal-DPO framing makes explicit what must be true for reweighting
to transport preference data from the logged regime to a target regime.
That explicitness is also where the main limitations become visible: the
assumptions that make w meaningful (and finite) are strong, and the training
loop can itself create new dependencies that break them. In this section we
sketch the main failure modes and a research roadmap that, in our view,
moves the method from a “correctness on paper” statement toward deployable
alignment procedures.

Unobserved confounding is not a small technicality. The central
vulnerability is that the preference model depends on a latent objective C,
but in most deployments we only condition on proxies Ĉ (or on prompt
metadata) rather than on the true C. If there remains a variable U that
both (i) affects which prompts or which response pairs are labeled and (ii)
affects label outcomes beyond what is explained by (X, Ĉ), then importance
weighting can be directionally misleading: we are correcting the wrong se-
lection mechanism. This is not merely “variance inflation”; it is estimand
drift. In particular, even if we can compute pT (x,ĉ)

pO(x,ĉ) exactly, the transported

quantity is E[r∗(X,Y,C) | X, Ĉ] averaged under pT , which need not coin-
cide with E[r∗(X,Y,C) | X,C] averaged under pT . The resulting policy can
optimize for an unintended mixture of user goals—a safety-relevant failure
when rare but high-risk objectives are systematically under-captured by Ĉ.
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Methodologically, this pushes us toward partial identification rather than
point identification. One concrete direction is to integrate sensitivity models
(e.g., odds-ratio bounded unobserved confounding with parameter Γ) directly
into training: instead of producing a single π̂, we would produce a family
{π̂Γ} or a worst-case robust policy π̂rob that maximizes a lower bound on J(π)
over all confounding structures consistent with the bound. The open problem
is to do this while preserving the attractive computational properties of DPO-
style objectives, and without producing a policy that is so conservative that
it simply collapses back to πref .

Latent Z discovery: learning the right conditioning set. A natural
extension is to replace the ad hoc proxy Ĉ with a learned latent variable
Z that captures preference-relevant heterogeneity (intent, risk tolerance, do-
main norms) in a way that is stable across collection channels. Conceptually,
we want Z such that conditioning on (X,Z) renders the labeling process ap-
proximately unconfounded and the reward model approximately invariant
across regimes. Practically, this becomes a joint representation-learning and
policy-learning problem: we infer Z from available telemetry and text, and
train using weights w(x, z, ·).

This direction is promising but brittle. First, Z can absorb spurious cor-
relates of labeling artifacts (annotator idiosyncrasies, UI differences) rather
than underlying user objectives. Second, the objective “make preferences
predictable” is not the same as “block backdoor paths”; naive representa-
tion learning can increase confounding by creating a collider-like summary.
Third, personalization pressure can cause Z to encode sensitive attributes.
For safety and governance, Z-discovery needs constraints: invariance tests
across collection pipelines, privacy-preserving training, and explicit audit-
ing of which features Z uses. A constructive near-term target is multi-
environment logging (different surfaces, different prompt routers) and learn-
ing a Z that equalizes preference prediction error across environments; this
is not a proof of causal sufficiency, but it is a measurable step toward trans-
portability.

Strategic labeling and preference manipulation. Our model treats
the labeler as sampling L from a Bradley–Terry distribution with latent re-
ward differences. Real labeling pipelines violate this in at least three ways.
(i) Strategic annotators: when incentives, fatigue, or policy pressure exist,
the label distribution can shift in response to the platform’s current model,
rubric, or measurement regime. (ii) Model-assisted evaluation: when an
evaluator model is used as a proxy labeler, its errors can be systematically
exploited by the policy being trained, creating a Goodhart loop. (iii) Ad-
versarial inputs: some users (or external actors) may craft prompts to elicit
outputs that are likely to be labeled as “good” under the rubric but are unsafe
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in deployment contexts.
These phenomena suggest two extensions. First, we should treat labeling

as a mechanism with its own causal graph and potential strategic behavior,
not as exogenous noise. A minimal step is to add annotator identity and
context as conditioning variables and to monitor nonstationarity of P(L =
1 | x, y, y′, ·) over time. Second, we should incorporate robust aggregation
and adversarial evaluation into the target objective: instead of a single r∗,
we may need a set of plausible reward functions (capturing rubric ambiguity
and evaluator disagreement) and optimize for a conservative criterion (e.g.,
quantile welfare or worst-case over reward sets) on safety-critical slices. This
connects directly to verification: if the target is “never produce disallowed
content,” then preference optimization should be constrained by a separately
audited policy-compliance classifier, rather than relying on preferences to
implicitly enforce constraints.

Adaptive data collection breaks i.i.d. and changes the estimand
unless we model it. Modern training loops are adaptive: we deploy a
candidate policy, collect new prompts conditioned on that policy’s behavior,
choose which examples to label, and update again. This adaptivity changes
both pO and gO in a history-dependent way; naive importance weighting
that treats logged data as i.i.d. from a fixed pO can be invalid. The right
abstraction is sequential decision-making: data collection is a policy over
queries, and preference labels are outcomes. In that setting, the relevant
tools look more like off-policy evaluation and doubly-robust estimation in
contextual bandits than like one-shot covariate shift.

From an alignment perspective, the key issue is exploration for overlap. If
we only label what the current system is likely to produce, then the support of
gO shrinks around current behavior and the effective ϵ deteriorates over time.
This creates a failure mode where the training loop becomes increasingly
confident while becoming less identified. A safety-aligned adaptive pipeline
should therefore include explicit exploration constraints: guarantees that
each critical (x, ĉ) stratum receives labeling mass and that each response-
generation mode remains sampled with nontrivial probability, even when
short-term metrics suggest otherwise.

Roadmap: from passive reweighting to active overlap design and
personalized alignment. The long-run goal is to make overlap a design
parameter rather than a post hoc diagnostic. Concretely, we can view the
platform as choosing the logging design (pO, gO) under a labeling budget con-
straint to minimize the expected generalization error for the target regime.
This suggests optimization problems of the form: allocate labeling across
strata to minimize E[w2] subject to covering safety-critical regions, or to
maximize neff subject to fairness and privacy constraints. Technically, this
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is a form of experimental design for preference learning with KL-regularized
policy updates.

Finally, we anticipate growing pressure toward personalized alignment :
learning π(y | x, c) (or π(y | x, z)) rather than a single shared policy opti-
mized for r̄∗. Personalization can reduce conflicting gradients across types,
but it introduces new attack surfaces (users gaming c), new governance ques-
tions (what types are permitted, how they are inferred), and new safety con-
straints (ensuring that personalization cannot relax safety policies). A prin-
cipled path is to treat personalization as bounded : optimize within a family
of type-conditional policies while enforcing global constraints and monitor-
ing for distributional shifts in inferred c. The open problem is to combine
such constraints with causal transport and adaptive collection in a way that
remains auditable—so that “aligned for whom, under what regime” remains
a question we can answer with logged evidence rather than with aspiration.
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