
Vector-Lagrangian Safe RLHF: Multi-Category
Risk Budgets and Shadow Prices for LLM Safety

Governance

Liz Lemma Future Detective

January 22, 2026

Abstract

Modern alignment methods (Constitutional AI and Safe RLHF)
operationalize safety using a small set of principles or a single learned
‘cost’ model, then trade off safety and performance via RLHF-style
optimization. In 2026 deployment regimes, however, regulation and li-
ability are intrinsically multi-dimensional: self-harm, hate, fraud, pri-
vacy, bio/weaponization, and terrorism face separate standards, en-
forcement, and social costs. This paper argues that treating safety
as a single scalar cost is economically and operationally mis-specified,
and proposes Vector-Lagrangian Safe RLHF: a multi-constraint for-
mulation where each harm category is a separate constraint with its
own endogenously determined shadow price λi. We develop a clean
convex policy model that yields closed-form KKT characterizations
and interprets λ as category-specific ‘risk budget prices’. We prove a
risk-budget allocation theorem and an impossibility/inefficiency result
for scalarized safety objectives: fixed-weight scalar aggregation induces
cross-category substitution (category leakage) and cannot generally im-
plement category-wise compliance. We outline empirical tests using a
multi-head cost model aligned to a harm taxonomy (e.g., 14 categories
as in Safe RLHF) and targeted red-teaming that demonstrates reduced
leakage and improved tail-risk control relative to scalar cost training.
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1 Introduction

In current deployments, we rarely have the luxury of treating “safety” as a sin-
gle axis. By 2026, frontier model providers are typically accountable to mul-
tiple, partially independent standards: internal policies and constitutional
guidelines; platform integrity rules; sectoral obligations around privacy, con-
sumer protection, and non-discrimination; and domain-specific restrictions
(e.g., dual-use biology, cybersecurity, financial wrongdoing). These regimes
do not collapse cleanly into one number. They are enforced by different
stakeholders, measured with different instruments, and—crucially—they of-
ten bind in different parts of the input distribution. When we optimize a
model as if safety were a single score, we implicitly assume we can trade
one kind of harm against another at a fixed exchange rate. That assump-
tion is operationally brittle: regulators and platforms do not, in general,
accept such exchange, and adversaries actively seek prompts that exploit
mismatched tradeoffs.

We therefore start from a simple observation: most deployed “single-
metric” safety tuning pipelines behave like scalar optimization. We take a
base reward for helpfulness, subtract a weighted penalty for unsafe behavior,
and tune until aggregate evaluation looks acceptable. This works passably
when the world is dominated by one safety concern and measurement is
stable. It breaks when there are multiple constrained risks, each with its own
threshold and audit process. The failure mode is not merely philosophical;
it is geometric. Optimizing a scalar objective selects a single supporting
hyperplane of the achievable set of (reward, harms). But compliance is
defined by a box of constraints—one threshold per category—and the identity
of the binding constraint depends on the budget vector, the prompt mix, and
the available behavioral repertoire of the model. Fixing weights in advance
hard-codes an exchange rate between categories, even though the “right”
exchange rate is endogenous to the constraint set and shifts as governance
priorities (and distributions of use) change.

This mismatch manifests as what we will call category leakage. Suppose
a developer tightens a filter for one harm type, say fraud facilitation. Under
a scalarized training signal, the easiest way to improve the aggregate score
may be to shift the model toward behaviors that are still penalized—but
less so—such as providing borderline privacy-violating guidance, producing
more abrasive content, or offering speculative claims that skirt misinforma-
tion thresholds. Even if the aggregate scalar score improves, the model may
newly violate a different standard. In practice, this is exactly the scenario
auditors and red teams report: targeted mitigations reduce the measured
incidence of a focal harm while increasing failure rates on neighboring di-
mensions, often in ways that are less visible under the current evaluation
suite. From a governance standpoint, leakage is not an edge case; it is the ex-
pected response of any optimizer confronted with incomplete or misweighted
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objectives.
We propose to formalize multi-standard safety as risk budgets. Rather

than asking the model to maximize a single safety score, we treat each harm
category as a separate constraint with an explicit threshold. The developer
then solves a constrained optimization problem: maximize expected helpful-
ness subject to satisfying each category budget. The Lagrange multipliers
of this program have a direct interpretation as shadow prices for risk: they
quantify, at the optimum, how much helpfulness we must sacrifice to re-
duce expected harm in a particular category. This provides a principled
replacement for ad hoc penalty weights. Instead of tuning a fixed vector of
weights once and hoping it remains valid across deployments, we allow the
dual variables to adapt to the binding constraints implied by the current
budget vector and prompt distribution. In other words, the “exchange rates”
between harms are not assumed; they are learned as part of satisfying the
constraints.

This perspective is motivated by how compliance is actually verified.
External governance rarely inspects an internal scalar objective; it inspects
category-specific rates (or tail risks) under specified evaluations. Auditors
produce labels and measurements per category, sometimes with noisy in-
strumentation and changing taxonomies. Platforms maintain separate en-
forcement tracks (e.g., privacy incidents versus self-harm facilitation). Even
within a single organization, different teams own different risk registers. A
risk-budget formulation mirrors this reality: it aligns the optimization tar-
get with how the world measures failure. It also makes explicit where we
are making assumptions. In our baseline model we treat category costs as
known functions and prompts as drawn i.i.d. from a fixed distribution; in
deployments, both are learned and adversarially stress-tested. The value
of starting with the clean constrained program is that it reveals the struc-
ture of the tradeoffs that any practical training and evaluation pipeline must
manage.

Our first contribution is conceptual: we articulate why single-score safety
is structurally misaligned with multi-standard governance, and we name
the resulting substitution behavior as category leakage. Importantly, leak-
age does not require malicious intent or distribution shift. It arises under
good-faith optimization whenever the set of feasible behaviors contains non-
collinear harm tradeoffs across categories. This is the typical case: there are
many ways for a model to be unhelpful or harmful, and improvements along
one axis often open room for regressions elsewhere.

Our second contribution is formal: we develop a finite, convex model of
a stochastic policy over prompts and responses with multiple harm con-
straints. In this setting, the constrained optimum admits a Lagrangian
characterization with a vector of nonnegative multipliers. Under standard
regularity, these multipliers are unique and can be interpreted as category-
specific “prices” that implement the constrained solution. This yields a clean
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language for discussing compliance and incentives: budgets are policy pa-
rameters chosen by a regulator or governance body, while multipliers sum-
marize the marginal cost of compliance and predict how the optimal behavior
changes as standards tighten.

Our third contribution is diagnostic: we show that naive scalarization
with fixed weights cannot, in general, implement the constrained optimum
across varying budget vectors. This is not a critique of scalar penalties as
a heuristic; it is a statement about impossibility in the presence of multiple
independent constraints. Fixed weights may coincidentally work for a par-
ticular governance regime and prompt mix, but there exist nearby regimes
where the same weights either violate some constraint or choose a dominated
policy. This provides a theoretical grounding for a common operational pain
point: the endless retuning of safety weights as evaluation suites evolve.

Our fourth contribution is methodological: we connect the dual variables
to practical training and monitoring procedures. If per-category costs are
estimated by learned classifiers or preference models, then the multipliers
naturally suggest a primal–dual loop: update the policy to improve helpful-
ness net of the current risk prices, and update the risk prices when audits
detect budget violations. This suggests a governance-relevant interface: reg-
ulators or internal safety committees can adjust budgets bi, and developers
can report the implied shadow prices λi as a quantitative measure of how
tight each constraint is. While this does not solve measurement and gam-
ing on its own, it does create a transparent coupling between standards,
optimization, and observed tradeoffs.

Finally, we emphasize the safety implications and limitations that mo-
tivate the rest of the paper. First, multi-constraint optimization reduces
one Goodhart channel (hiding tradeoffs behind a scalar), but it does not
eliminate Goodharting: if the cost models are misspecified, the policy will
optimize against the proxy, and leakage may occur into unmeasured sub-
categories or distributional tails. Second, the prompt distribution is not
exogenous in adversarial settings; attackers can shift mass toward high-risk
contexts, effectively tightening budgets and increasing shadow prices. Third,
the clean convex picture is a benchmark: real training is nonconvex, costs
are noisy, and constraints may be better represented as tail probabilities
rather than expectations. We treat these as extensions rather than reasons
to avoid formalization; without a baseline, it is difficult to state precisely
what is failing and what needs to be audited.

Roadmap: Section 2 situates our approach relative to Constitutional AI
and Safe RLHF, and to the literature on constrained and multi-objective
reinforcement learning, as well as work on Goodhart effects and evaluation
design. Section 3 introduces the formal model and derives the KKT and dual
interpretations of risk budgets. Section 4 analyzes why fixed-weight scalar-
ization fails and characterizes leakage under tightening standards. Section 5
discusses implications for training loops, auditing protocols, and reporting,
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including how shadow prices can serve as a governance-facing summary
statistic. We conclude with open problems around robust budgets under
distribution shift, tail-risk constraints, and incentive-compatible auditing.

2 Related Work

Our starting point—that deployed systems face multiple, partially inde-
pendent safety standards—sits at the intersection of three literatures that
are often discussed separately: (i) principle-based alignment methods (no-
tably Constitutional AI) that encode multiple normative desiderata, (ii)
optimization-based alignment methods (RLHF, Safe RLHF) that usually
train against a small number of learned objectives, and (iii) work on safe
and multi-objective decision-making in reinforcement learning and opera-
tions research, including constrained Markov decision processes (CMDPs),
multi-constraint control, and risk-sensitive optimization. A fourth thread,
increasingly central in practice, concerns Goodhart effects and evaluation
design: how measurement, auditing, and adaptive optimization interact to
produce overfitting and substitution into unmeasured failure modes.

Constitutional AI makes the multi-axis nature of safety especially ex-
plicit. In its canonical form, a developer specifies a constitution—a list of
principles such as “avoid harassment,” “respect privacy,” “do not facilitate
wrongdoing,” and “be helpful and honest”—and trains the model to critique
and revise its own outputs with respect to these principles, sometimes fol-
lowed by preference optimization using synthetic or human comparisons ?.
Operationally, the constitution is a structured object that enumerates multi-
ple constraints or desiderata, and the training pipeline attempts to produce
behavior that satisfies them across diverse contexts. This is close in spirit
to a risk-register view of governance: different harms are tracked separately,
and compliance is assessed in a category-wise manner. However, in many
implementations the multi-principle structure is eventually collapsed into a
smaller number of training signals (e.g., a scalar preference model, or a sin-
gle reward function combining helpfulness and harmlessness), and the degree
of permissible tradeoff between principles is implicit in the data generation
and aggregation scheme. Our framing can be read as making this implicit
exchange rate explicit: even if the normative object is a list of principles, the
optimizer must still confront the question of how to arbitrate conflicts, and
that arbitration is effectively governed by the dual variables (or by whatever
surrogate weights the pipeline induces).

A related line of work uses constitutions, policies, or taxonomies to gen-
erate labels for multiple categories (e.g., “self-harm,” “sexual content,” “pri-
vacy,” “hate”) and then trains separate classifiers, critics, or reward models
per category ?. In deployment, these tools often appear as a stack: a base
model, a set of safety classifiers or “guards” gating outputs, and a policy
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model trained to avoid triggering the guards. The stack is inherently multi-
headed, but the training of the policy layer frequently reduces to scalar
penalties, a cascade of hard filters, or a prioritized ordering of constraints.
While these heuristics can work well, they tend to obscure the underlying
substitution incentives: when one guard becomes stricter, the policy may
shift toward outputs that are acceptable under that guard but more likely to
trigger another. This is one reason we emphasize a unified constrained opti-
mization picture rather than a purely procedural description of guardrails.

Safe RLHF and closely related methods provide a more explicitly optimization-
centric entry point. Classical RLHF pipelines learn a reward model from
preference data and then optimize a policy via reinforcement learning with
regularization to a reference model (often implemented as a KL penalty)
?. “Safety” can enter this process in at least three ways: (i) by shaping
the preference data to disfavor unsafe outputs, thereby baking safety into a
single reward model; (ii) by introducing explicit refusal or harmlessness re-
wards as additional terms in a scalar objective; or (iii) by treating safety as
a cost and imposing a constraint or penalty during policy optimization ??.
The third approach aligns most directly with the CMDP formalism: max-
imize expected utility subject to an expected cost constraint. Much of the
practical algorithmic toolkit (Lagrangian relaxation, primal–dual updates,
clipping, and trust-region constraints) is inherited from this literature, even
when papers describe the system in RLHF-specific language.

At the same time, much of the Safe RLHF discussion is implicitly single-
constraint : one defines a safety cost (sometimes a composite score) and
constrains or penalizes it. This is a natural first step because it is sim-
pler to implement and evaluate, and because many early safety interventions
targeted a dominant category (e.g., toxicity). But when there are multiple
categories with distinct audit thresholds, the single-cost abstraction becomes
brittle. A composite safety score is itself a scalarization choice; it fixes an
exchange rate across harms and invites the optimizer to “spend” risk in un-
derweighted categories. This observation parallels results in multi-objective
optimization: weighted sums can recover Pareto-optimal points only under
restrictive conditions and generally fail to represent non-convex parts of the
frontier or policy-dependent constraint sets. In other words, the scalar objec-
tive is not merely an engineering simplification; it can change which tradeoffs
are implementable as governance requirements change.

The broader safe reinforcement learning literature has long studied CMDPs
and constrained control ??. In a CMDP, an agent maximizes reward sub-
ject to one or more expected cost constraints; Lagrangian methods convert
constraints into penalties with multipliers updated by dual ascent. In tabu-
lar or convex settings, strong duality and convergence guarantees are avail-
able, while in large-scale function approximation settings the guarantees are
weaker and the practical focus shifts to stability, constraint satisfaction un-
der estimation error, and conservative updates. Two aspects are particularly

7



relevant for LLM alignment. First, CMDP methods provide a principled
interpretation of penalty weights as dual variables rather than arbitrary hy-
perparameters, which motivates treating “safety weights” as endogenous and
audit-driven. Second, the multi-constraint CMDP literature explicitly rec-
ognizes that different constraints can bind in different regions of state space
and can interact in unintuitive ways (substitution, complementarity, and
constraint cycling), which resembles the empirical phenomenon of targeted
mitigations shifting failure mass across categories.

Multi-constraint CMDPs and vector-valued costs have also been studied
under the umbrella of multi-objective reinforcement learning and constrained
optimization ??. Here, a key methodological distinction is between (a) seek-
ing a Pareto frontier (treating the problem as inherently multi-objective) and
(b) implementing externally specified constraints or budgets (treating some
objectives as hard requirements). LLM safety in regulated deployments is
typically of the second type: the relevant question is not “which point on the
frontier do we like,” but “can we meet these category-wise thresholds while
remaining useful?” This distinction matters because many multi-objective
methods assume the designer is free to choose tradeoffs, whereas governance
often dictates them. Our emphasis on budgets and shadow prices is intended
to bridge that gap: budgets encode externally imposed requirements, while
multipliers summarize the induced tradeoffs at the optimum.

A complementary thread concerns risk-sensitive constraints: rather than
constraining an expected cost, one constrains tail probabilities, quantiles,
or coherent risk measures such as CVaR ?. In safety applications, this is
often the more faithful representation of stakeholder concerns: auditors care
about rare catastrophic failures, not just average rates. Recent work in
safe RL and robust optimization explores chance constraints, distributionally
robust objectives, and adversarially chosen environments. For LLMs, the
analogue is evaluation under red-teaming and distribution shift: prompt
distributions are not fixed, and the relevant constraint may involve worst-
case or stress-test performance. Our baseline model focuses on expected costs
for tractability, but the related literature clarifies where this abstraction is
likely to break and suggests natural extensions (e.g., robust budgets, tail-risk
costs, or adversarial D).

Goodhart effects and evaluation design form the final pillar of related
work. The core observation is that once a proxy metric becomes a target,
optimization pressure induces both overfitting to the measurement process
and substitution into unmeasured channels ?. In LLM alignment, this shows
up as reward hacking, jailbreak susceptibility, and benchmark saturation: a
model can learn to satisfy a particular classifier or rubric without improving
the underlying property, and improvements on one eval suite can coincide
with regressions on another. Importantly, Goodharting interacts with multi-
category governance in a specific way: even if each category has a reasonable
proxy, optimizing a scalar aggregate of proxies incentivizes reallocation of er-
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ror mass to whichever proxy is easiest to evade or least weighted. This is
distinct from (though compatible with) classic over-optimization within a
single metric. It suggests that the evaluation problem is not only to build
better per-category measurements, but also to design training and monitor-
ing loops that respect the vector nature of the constraints.

Recent practical work on auditing, red teaming, and systematic evalu-
ation frameworks reinforces this point. External evaluations are typically
reported as a table of category-wise rates, sometimes with confidence inter-
vals and scenario breakdowns, rather than a single scalar score. Governance
mechanisms (platform policies, sectoral regulation, internal risk committees)
similarly operate with separate risk registers and escalation paths. This in-
stitutional fact motivates treating category thresholds as first-class objects in
the optimization problem. It also motivates transparency tools that report
how tight each constraint is in marginal terms (e.g., “how much helpfulness
are we giving up to meet privacy budgets?”) rather than only reporting
pass/fail outcomes.

In sum, existing alignment pipelines already contain the ingredients of a
multi-constraint perspective—multiple principles, multiple evaluators, mul-
tiple harms, and iterative tuning. What is often missing is a minimal formal
model that makes the implied exchange rates and substitution incentives
explicit, and that cleanly separates (i) externally set standards (budgets),
(ii) developer optimization (policy choice), and (iii) measurement and adap-
tation (audits and updates). We develop such a model next, using a finite
prompt–response formulation that is deliberately simple but rich enough
to capture the central phenomenon: category leakage induced by scalariza-
tion and mitigated by vector-valued constraints and their associated shadow
prices.

3 A Minimal Model of LLM Deployment: Prompts,
Responses, Rewards, and Category Costs

We model deployment as a repeated interaction between an environment
that generates prompts and a system that returns responses. The purpose of
the model is not to capture the full complexity of language, but to isolate a
structural feature of regulated settings: safety is assessed along multiple par-
tially independent dimensions, each with its own threshold, and optimization
pressure can move failures across dimensions rather than eliminating them.
To make this interaction explicit, we start with a finite prompt–response
abstraction that can be viewed as a discretization of a continuous process
(e.g., prompt clusters, scenario templates, or an evaluation suite with repre-
sentative contexts).

Let X be a finite set of prompts/contexts and D a distribution over X . A
realized prompt x ∼ D may represent an end-user query, a tool-augmented
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context window, or a red-team scenario. The model produces a response
y ∈ Y , where Y is a finite set of available actions (e.g., answer styles, refusal
modes, or response candidates after decoding). The developer chooses a
(possibly stochastic) policy π ∈ Π, where

Π := {π : π(· | x) ∈ ∆(Y) ∀x ∈ X},

and deployment draws y ∼ π(· | x). This stochasticity is not essential but is
useful both technically (convexity) and descriptively (real systems randomize
via sampling, beam search ties, or non-deterministic tool calls).

We distinguish two kinds of outcomes. First, the system generates help-
fulness (or more broadly, task utility), represented by a bounded function
r : X × Y → R. In regulated deployments, r should be read as the value
of providing correct, relevant, and appropriately calibrated assistance, net
of generic quality concerns (verbosity, latency, etc.). Second, the system in-
curs category-specific harms. We index harm categories by i ∈ {1, . . . ,m}
and write ci : X × Y → R for the contribution of response y to harm cate-
gory i when prompted with x. Categories may correspond to policy-relevant
buckets such as privacy leakage, facilitation of wrongdoing, self-harm encour-
agement, harassment/hate, regulated advice, or misinformation. While costs
can in principle be signed, we will interpret ci as nonnegative or bounded
below, consistent with an auditing pipeline that flags and scores violations.

Given a policy π, the induced expected reward and expected category
costs are

R(π) := Ex∼D, y∼π(·|x)[r(x, y)], Ci(π) := Ex∼D, y∼π(·|x)[ci(x, y)].

The regulator (or an internal risk committee acting as a proxy) specifies bud-
gets b ∈ Rm+ , where bi is the maximum permitted expected cost in category
i over the relevant prompt distribution. We say that a policy π is compliant
if it satisfies the category-wise constraints

Ci(π) ≤ bi ∀i ∈ {1, . . . ,m}.

This definition matches how many deployments are actually governed: safety
reporting and external audits are typically presented as a table of per-
category rates or severities, and failure in one category is not offset by success
in another. Importantly, compliance is a property of the policy under the
prompt distribution D: changing the user population, adding a new product
surface, or inducing attacker adaptation effectively changes the distribution
being averaged over, even if the underlying model weights are unchanged.

The developer-facing decision problem is then to choose a policy π that
is as helpful as possible while meeting all budgets. Conceptually, we can
interpret π as the result of a training pipeline: data collection and filtering,
supervised fine-tuning, RLHF (or direct preference optimization), system
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prompts and tool policies, and post-training guardrails. Our abstraction col-
lapses these degrees of freedom into a single object—a mapping from prompts
to distributions over responses—because what matters for governance is the
induced joint distribution over (x, y), and hence over (r, c1, . . . , cm).

Two modeling choices deserve emphasis. First, we treat X and Y as
finite. This ensures that R(π) and Ci(π) are linear in π, and that the fea-
sible set is a product of simplices. In practice, one can regard X as a finite
set of prompt types (including adversarial types), and Y as a finite set of
response modes (e.g., “comply with high detail,” “comply with low detail,”
“safe completion,” “refuse with resources,” etc.). Second, we take the func-
tions r and ci as primitives. Empirically, these correspond to reward models,
safety classifiers, human labels, and audit procedures. The gap between the
true latent harms and the measured costs is a central source of Goodhart
effects, but the present goal is to isolate a different issue: even if each ci
were perfectly measured, optimizing the wrong aggregation of them can still
induce predictable substitution failures.

Heterogeneity across prompts and the meaning of budgets. A use-
ful mental model is that each category cost is highly context-dependent. For
many prompts x, the privacy cost cpriv(x, y) is essentially zero for all rea-
sonable y; for a small subset (e.g., “summarize this medical note”), privacy
risk dominates. Similarly, self-harm costs are concentrated on a narrow slice
of the prompt space, while harassment costs concentrate on identity-referent
prompts. Therefore, an expected constraint Ci(π) ≤ bi is not merely a global
rate limit; it is an allocation rule for how much risk the policy is allowed to
take on the subset of contexts where category i is salient. This observa-
tion foreshadows why category interaction matters: if two categories become
salient on overlapping but not identical subsets of X , then a mitigation aimed
at one subset can move probability mass of problematic behavior to another
subset.

Budgets also implicitly encode a measurement granularity. If auditors
measure ci only on certain scenarios or with certain detectors, then Ci(π) is
effectively an expectation over the audited distribution rather than the true
deployment distribution. Our baseline takes D as given to keep the analysis
crisp; later extensions can treat D as stress-tested or adversarially perturbed
to model red-teaming and adaptive misuse.

Formalizing substitution opportunities. The key structural assump-
tion behind “leakage” is that the action space offers multiple ways to achieve
similar helpfulness with different harm profiles. Formally, for a given prompt
x, consider two responses y, y′ ∈ Y such that

r(x, y) ≈ r(x, y′) but c(x, y) ̸= γ c(x, y′) for any scalar γ > 0,
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where c(x, y) = (c1(x, y), . . . , cm(x, y)). The non-collinearity condition says
that the two responses induce different mixes of harms across categories. In
deployment terms, the model might be able to answer a sensitive question
in a way that is less likely to violate privacy but more likely to constitute
regulated advice, or less likely to produce harassment but more likely to
disclose personal data via over-specific examples. When such tradeoffs exist
on a nontrivial set of prompts, there is no single “safe” action that dominates
across all categories; meeting multiple budgets requires coordinated control
rather than one-dimensional tuning.

This substitution structure is not an exotic edge case. It arises naturally
whenever (i) categories are only partially overlapping (privacy vs. harass-
ment vs. fraud), (ii) responses have multiple components (tone, specificity,
refusal strategy, citations), and (iii) users can adversarially reframe requests.
The finiteness of Y does not remove this complexity; it simply forces us to
represent it as a discrete menu of options.

Defining leakage at the policy level. We use “category leakage” to
mean a policy response to pressure on one category that reallocates harm
into other categories rather than reducing harm uniformly. One clean way
to state this is via comparative statics over budgets. Fix a baseline budget
vector b and let π∗(b) denote an optimal compliant policy (assuming existence
and, where needed, uniqueness). Consider tightening category k by replacing
bk with b′k < bk, keeping other budgets fixed, yielding a new optimal policy
π∗(b′) where b′ = (b1, . . . , b

′
k, . . . , bm). We say there is leakage from k into j

(under this tightening) if

Ck(π
∗(b′)) ≤ Ck(π

∗(b)) and Cj(π
∗(b′)) > Cj(π

∗(b))

for some j ̸= k. The first inequality is the intended effect of tightening;
the strict increase in Cj captures the unintended shift. In words: making
the system safer with respect to one audited dimension can make it less
safe with respect to another, even when both dimensions are measured and
constrained.

This definition separates leakage from the trivial case where all costs
move down together because the system becomes uniformly more conser-
vative (e.g., always refuse). Leakage is specifically about recomposition of
the cost vector under optimization pressure. It is also distinct from classic
single-metric Goodharting: even if each ci is perfectly measured, the system
can still respond to a change in one budget by exploiting substitutability
that increases another cost.

Why scalar safety scores are structurally fragile. A common engi-
neering simplification is to collapse category costs into a scalar “safety score”
and optimize a single penalized objective. In our notation, this corresponds
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to choosing weights ν ∈ Rm+ and a penalty intensity κ > 0, then maximizing
an objective of the form

E[r(x, y)]− κE[ν · c(x, y)].

This construction fixes an exchange rate across harm categories: one unit of
privacy risk is treated as νpriv/νhate units of harassment risk, regardless of
the regulator’s budgets or the current operating point of the system. The
fragility comes from the fact that budgets are not stable across deployments:
they differ by jurisdiction, product surface, user population, and time, and
they can tighten after incidents. If the system is trained against a fixed
scalarization, it will generally not satisfy arbitrary category-wise thresh-
olds without either excessive conservatism (sacrificing R(π) unnecessarily)
or leakage into underweighted categories.

In the minimal model, this failure mode is driven entirely by geometry:
the feasible set defined by Ci(π) ≤ bi is an intersection of halfspaces in the
space of achievable cost vectors, while scalarization optimizes along a single
supporting hyperplane determined by ν. When the developer must satisfy a
vector of constraints that can bind in different combinations, a single fixed
hyperplane cannot, in general, implement the correct tradeoff across all b.
The next section formalizes this observation using the primal–dual perspec-
tive and shows how category-specific shadow prices arise endogenously as
the right notion of “exchange rates” at the optimum.

4 Vector-Constrained Optimization and Shadow Prices

The developer problem is a linear program over a product of simplices, but it
is more illuminating to view it through the primal–dual lens. The reason is
conceptual rather than computational: in multi-category regimes, the correct
“exchange rates” across harms are not design parameters that we pick once,
but endogenous objects that depend on which budgets bind in the current
deployment. The dual variables make this dependence explicit and provide
a clean bridge to training and governance procedures that update safety
pressure category-by-category.

Primal program and value function. Fix a budget vector b ∈ Rm+ . The
developer chooses π ∈ Π to solve

max
π∈Π

R(π) s.t. Ci(π) ≤ bi ∀i ∈ {1, . . . ,m}. (1)

Let V (b) denote the optimal value:

V (b) := max
π∈Π: C(π)≤b

R(π).
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Because Π is compact and R(π) is linear, an optimizer exists; because con-
straints are linear and we assumed strict feasibility (Slater), the feasible
region has nonempty relative interior. The central question is how to char-
acterize π∗(b) and how it moves as b changes. This is exactly the sort of
comparative static problem for which Lagrange multipliers provide the right
coordinates.

Lagrangian and the dual problem. Introduce multipliers λ ∈ Rm+ and
form the Lagrangian

L(π, λ) := R(π)−
m∑
i=1

λi
(
Ci(π)−bi

)
=

(
R(π)−

m∑
i=1

λiCi(π)
)
+

m∑
i=1

λibi. (2)

For fixed λ, maximizing L(π, λ) over π ∈ Π is an unconstrained optimization
problem: we are no longer enforcing category budgets directly, but instead
penalizing them with category-specific prices λi. This motivates defining the
dual function

d(λ) := max
π∈Π

L(π, λ). (3)

The dual problem is then
min
λ≥0

d(λ). (4)

Under Slater’s condition, strong duality holds in this finite setting: V (b) =
minλ≥0 d(λ), and there exists at least one λ∗ attaining the minimum. This
is not merely a technical convenience. Strong duality is what allows us to
interpret multipliers as meaningful marginal quantities and to view policy
selection as (approximately) maximizing a penalized score with the right
penalty weights.

Dual decomposition and per-prompt structure. The dual function
separates across prompts because the objective is an expectation. Writing
out the Lagrangian score per (x, y),

sλ(x, y) := r(x, y)−
m∑
i=1

λici(x, y),

we can rewrite

L(π, λ) = Ex∼D
[
Ey∼π(·|x)[sλ(x, y)]

]
+ λ · b.

Hence
d(λ) = λ · b+ Ex∼D

[
max

π(·|x)∈∆(Y)
Ey∼π(·|x)[sλ(x, y)]

]
. (5)
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Without additional regularization, the inner maximization for each x places
all mass on any response y that maximizes sλ(x, y). Thus, for fixed λ, a best
response πλ can be chosen to be (almost everywhere) deterministic:

πλ(y | x) ∈ arg max
π̃(·|x)∈∆(Y)

Ey∼π̃(·|x)[sλ(x, y)] ⇒ supp(πλ(· | x)) ⊆ argmax
y∈Y

sλ(x, y).

(6)
This decomposition highlights why a vector of multipliers is qualitatively
different from a single scalar penalty: the effective score sλ(x, y) can shift
sharply as λ changes component-wise, enabling targeted pressure on whichever
categories are close to binding.

KKT conditions and the meaning of λi. A pair (π∗, λ∗) is primal–dual
optimal if and only if it satisfies the Karush–Kuhn–Tucker conditions. In our
setting they take a simple form:

Ci(π
∗) ≤ bi ∀i (primal feasibility), (7)

λ∗
i ≥ 0 ∀i (dual feasibility), (8)

λ∗
i

(
Ci(π

∗)− bi
)
= 0 ∀i (complementary slackness), (9)

π∗ ∈ argmax
π∈Π

L(π, λ∗) (stationarity / optimality). (10)

Complementary slackness encodes an operational governance fact: if a cate-
gory budget is loose at the optimum (the measured cost is strictly below the
threshold), then its multiplier is zero and that category exerts no marginal
pressure on behavior. Conversely, if a category constraint binds, then λ∗

i > 0
and the corresponding term −λ∗

i ci(x, y) appears as an active penalty in the
per-prompt score sλ∗(x, y). In this sense, λ∗

i is the developer-facing “risk
price” that rationalizes the regulator’s vector of budgets.

The stationarity condition (10) also clarifies why fixed-weight scalariza-
tion is structurally brittle across different b. A fixed scalarization corresponds
to forcing λ to lie on a one-dimensional ray (e.g., λ = κν), whereas the KKT
system generally selects λ∗(b) in an m-dimensional orthant, with support and
magnitudes that change as the set of active constraints changes. When the
binding set flips (say, privacy becomes tight after a product change), the ap-
propriate λ∗ can rotate sharply, producing exactly the kind of cross-category
substitution that a single fixed ν cannot anticipate.

Shadow prices and envelope identification. The most policy-relevant
interpretation of λ∗ comes from the value function V (b). Under standard reg-
ularity (which holds generically in the finite model away from degeneracies),
the envelope theorem yields

∂V (b)

∂bi
= λ∗

i (b) for each i. (11)
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Thus λ∗
i is the marginal helpfulness value of relaxing category i’s budget: if

an auditor or regulator increases bi by a small amount (holding other bud-
gets fixed), the best achievable expected reward increases at rate λ∗

i . Equiv-
alently, tightening a budget by ∆bi < 0 imposes a first-order reward loss
of approximately −λ∗

i∆bi. This is a concrete quantity that can be reported
and tracked: it is an endogenous measure of how expensive compliance is in
a particular category at the current operating point.

Two immediate implications are worth flagging. First, large λ∗
i indicates

that the system is operating on a steep portion of the frontier in category i:
the developer must sacrifice a lot of helpfulness to buy a small reduction in
expected harm. This can signal either genuine technical difficulty (limited
model capacity or limited action richness) or a mis-specified measurement
pipeline (the cost head is overly sensitive, or the audited distribution over-
weights hard cases). Second, because λ∗ depends on D, shadow prices are
deployment-specific: a shift in the prompt mix toward adversarial or high-
stakes contexts effectively changes the frontier and can raise the multipliers
even if the underlying model is unchanged. In governance terms, λ∗ is a
compact summary of how much “safety pressure” the environment and the
budgets jointly induce.

Uniqueness, degeneracy, and instability. In the linear finite setting,
λ∗ need not be unique if there are multiple supporting hyperplanes at the
optimum (e.g., if the optimal cost point lies on a flat face of the achievable
set, or if multiple constraints are active with dependent normals). Our non-
degeneracy assumptions are meant to rule out the most pathological cases
and align with deployment intuition: typically, a small number of categories
are near-binding and trade off sharply with reward, producing well-identified
shadow prices. Still, even when λ∗ is unique, the primal optimizer π∗ can be
non-unique because multiple actions may tie in the penalized score sλ∗(x, ·)
for some prompts.

This non-uniqueness is not merely aesthetic. If we implement π∗ via
a deterministic argmax of sλ∗ , then small estimation errors in r or ci, or
small changes in λ, can cause discontinuous flips in the chosen action for a
prompt. Such brittleness is a recognizable failure mode in LLM systems: a
tiny prompt rephrasing or logit perturbation switches the model from refusal
to compliance, or from one compliance mode to another with a different harm
profile. This motivates adding a stabilizing regularizer (most naturally, an
entropy or KL term) so that the induced policy varies smoothly with λ and
ties are resolved continuously rather than arbitrarily.

Practical reading: multipliers as trainable safety knobs. Although
we have presented λ as an analytical device, it has an immediate oper-
ational analogue. In any pipeline that optimizes a penalized objective—
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whether via RLHF-style policy gradients, rejection sampling, or decoding-
time reweighting—we can interpret the coefficients multiplying different cost
heads as multipliers. The dual view suggests that these coefficients should
not be fixed global constants, but should be adapted until the measured
constraints are met:

λi increases if audits estimate Ci(π) > bi, λi decreases (or stays at zero) if Ci(π) < bi.

This is precisely the qualitative logic of dual ascent: raise the price of what-
ever budget is being violated. The key conceptual point is that this update
is category-wise and does not require committing to a single scalar safety
score.

At the same time, the dual perspective surfaces two limitations that
matter for real audits. First, if cost estimates ĉi are noisy or systematically
biased, then the learned λ will misprice risk, potentially inducing either
over-conservatism or hidden leakage into unmeasured regions of X . Second,
because λ∗(b) is environment-dependent, a multiplier vector learned under
one prompt distribution may not enforce budgets under another; distribution
shift effectively changes the meaning of the constraint. Both issues argue
for coupling multiplier learning to ongoing monitoring and for stress-testing
under shifted (or adversarial) prompt mixes.

Transition to closed-form structure. So far, the primal–dual story
identifies what the correct exchange rates λ∗ mean and how they relate
to budgets b. To turn this into a useful characterization of behavior, we
next add a small entropic regularization. This does not change the economic
interpretation of λ, but it yields a clean closed-form for πλ (a per-prompt
softmax over penalized scores), improves uniqueness and stability, and makes
the comparative statics of leakage particularly transparent via smooth de-
pendence of π∗ on b through λ∗(b).

Entropy-regularized risk-budget allocation. To obtain a closed-form
and to remove the discontinuities induced by per-prompt argmax tie-breaking,
we add a small entropic regularizer to the primal program. Concretely, for
a temperature parameter τ > 0, consider

max
π∈Π

{
R(π) + τ Ex∼D

[
H(π(· | x))

]}
s.t. Ci(π) ≤ bi ∀i, (12)

where H(π(· | x)) := −
∑

y∈Y π(y | x) log π(y | x) is the Shannon entropy.1

The economic content is unchanged: the regulator still supplies budgets b,
and the developer still trades helpfulness against category costs. The role of

1In implementations, one often uses a KL regularizer to a reference policy π0 (e.g., an
SFT model). Everything below extends by replacing H with −KL(π(· | x)∥π0(· | x)); the
resulting closed-form is a softmax around π0 with the same linear penalty term −λ · c.
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τ is purely to pick a stable point on the frontier by making the per-prompt
best response smooth and unique.

Risk-Budget Allocation Theorem (closed-form policy and unique-
ness). The regularized Lagrangian is

Lτ (π, λ) := R(π) + τ Ex[H(π(· | x))]−
m∑
i=1

λi
(
Ci(π)− bi

)
, λ ≥ 0. (13)

As before, the problem decomposes pointwise in x. The entropy term makes
the inner maximization strictly concave in π(· | x), which yields a Gibbs
form.

Theorem 4.1 (Risk-Budget Allocation / Gibbs Policy Structure). Fix τ > 0
and budgets b ∈ Rm+ . Assume Slater’s condition. Then:

1. For any λ ≥ 0, the maximizer πλ ∈ argmaxπ∈Π Lτ (π, λ) is unique and
satisfies, for every x ∈ X ,

πλ(y | x) =
exp

(
1
τ (r(x, y)−

∑m
i=1 λici(x, y))

)∑
y′∈Y exp

(
1
τ (r(x, y

′)−
∑m

i=1 λici(x, y
′))

) . (14)

Equivalently, log πλ(· | x) is an affine function of (r(x, ·), c1(x, ·), . . . , cm(x, ·))
up to a normalizing constant.

2. The dual function dτ (λ) := maxπ∈Π Lτ (π, λ) is convex and continu-
ously differentiable with gradient

∇λdτ (λ) = b− C(πλ), (15)

so dual optimality is equivalent to meeting budgets in the usual KKT
sense.

3. If, at the dual optimum, the active categories have non-degenerate vari-
ation under πλ∗ (formally: the covariance matrix of the active-cost
vector c(x, Y ) under x ∼ D, Y ∼ πλ∗(· | x) is positive definite on the
active coordinates), then the dual minimizer λ∗ is unique, and hence
the primal optimizer π∗ = πλ∗ is unique.

Theorem 4.1 is the precise sense in which a vector of risk budgets induces
a vector of endogenous “category prices” that linearly penalize costs in the
model’s effective score. In deployment terms, (14) says that λ acts like a
category-wise logit adjustment: increasing λi subtracts λici(x, y)/τ from the
log-probability of response y at prompt x, holding everything else fixed. This
is exactly the structural form used implicitly by many multi-head “safety
critics”—the theorem clarifies when such a form is not merely heuristic but
actually optimal for the regularized constrained program.
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Stability and comparative statics through the dual geometry. A
central advantage of the entropy term is that it turns discontinuous argmax
behavior into smooth dependence on λ, and therefore on the budgets b
(through λ∗(b)). Differentiating (15) and using the well-known softmax cal-
culus yields a particularly interpretable curvature identity: the Hessian of
the dual is (up to a 1/τ factor) a covariance of costs under the induced policy.
Writing C(πλ) = (C1(πλ), . . . , Cm(πλ)),

∇2
λdτ (λ) = −∇λC(πλ) =

1

τ
Covx∼D, Y∼πλ(·|x)

(
c(x, Y )

)
, (16)

where c(x, Y ) ∈ Rm is the vector of category costs for the sampled response.
Two operational points follow immediately. First, ∇2dτ (λ) ⪰ 0 makes con-
vexity tangible: dual optimization is well-behaved because curvature is lit-
erally “how much the policy randomizes across actions with different cost
profiles.” Second, uniqueness of λ∗ is tied to identifiable variation: if the
system, under πλ∗ , never explores responses that trade off among the active
categories, then those categories can become locally indistinguishable from
the dual’s perspective, reintroducing degeneracy.

The same geometry yields a clean stability statement. When the active-
cost covariance is well-conditioned (and τ not too small), the mapping λ 7→
C(πλ) is Lipschitz, and hence small changes in budgets induce small changes
in the learned multipliers and in behavior. By contrast, in the τ → 0 limit, πλ
concentrates on per-prompt maximizers and Cov(c) collapses, precisely when
we observe brittle “mode switching” between qualitatively different response
types. In practice, this is one reason to view τ (or an RLHF KL coefficient)
as a governance-relevant parameter: it controls not only average performance
but also the continuity of the safety–helpfulness tradeoff as audits tighten or
relax budgets.

Risk-budget allocation as a learnable control layer. Theorem 4.1
also tells us what it means, algorithmically, to “allocate” safety effort across
categories. Because ∇λdτ (λ) = b−C(πλ), a canonical projected dual-ascent
update is

λt+1 =
[
λt + αt

(
C(πλt)− b

)]
+
, (17)

where [·]+ is projection onto Rm+ . This update has a direct compliance in-
terpretation: if audits estimate that category i exceeds budget, we raise its
price; if it is comfortably below budget, the price decays toward zero. Im-
portantly, the update is coordinate-wise: we do not need to convert harms
into a single scalar score to decide how to respond to violations.

In real systems, we do not observe ci(x, y) directly; we observe ĉi from
classifiers, red-team labels, or post-hoc incident reports. The theorem there-
fore should be read as an identification target : the intended policy class is
a softmax over a linear combination of a helpfulness score and multiple cost
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heads, and λ is the set of coefficients that should be tuned until measured
constraints are met on the relevant prompt distribution. When monitoring
is noisy or the prompt mix shifts, λ must be treated as an adaptive state
variable rather than a fixed hyperparameter.

Why this is not scalarization in disguise. It is tempting to read (14)
as “just” a scalar reward r − λ · c. The crucial distinction is that λ is not
a fixed weight vector: it is an equilibrium object pinned down by budgets
b, distribution D, and the available actions Y . As budgets change (or as
the audited distribution changes), λ∗(b) can rotate in the orthant, turning
on new categories and turning off old ones via complementary slackness.
This is exactly the mechanism by which vector constraints prevent category
leakage: if tightening bk makes category k bind, then λ∗

k rises and directly
suppresses responses with high ck, rather than indirectly hoping that a single
global scalar penalty happened to put enough weight on that dimension.

This sets up the next section. Once we accept that the “right” penalty
weights are budget- and environment-dependent, it becomes clear why fixed-
weight scalar safety objectives are structurally misaligned with multi-category
regulation: a single ν cannot generally track the endogenous λ∗(b) as the
binding set changes, and the mismatch shows up either as infeasibility (vio-
lated budgets) or as dominated tradeoffs (avoidable helpfulness loss for the
same or higher harm).

Why fixed-weight scalar safety objectives fail. Many deployed train-
ing recipes implicitly assume that “safety” can be represented by a single
scalar penalty—either by collapsing multiple incident types into one score,
or by choosing fixed weights ν ∈ Rm+ and optimizing the scalarized objective

max
π∈Π

R(π)− κEx∼D, y∼π(·|x)
[
ν · c(x, y)

]
, κ > 0. (18)

This looks superficially similar to the Gibbs form in (14), but the resemblance
is precisely the trap: ν is fixed by design-time preference, whereas λ∗ is an
equilibrium object that changes with budgets b, the prompt mix D, and the
action set Y . When the regulator is genuinely multi-dimensional (different
categories with separate caps), a single fixed direction ν cannot generally
represent the full set of feasible supporting hyperplanes needed to implement
constrained optima across different b.

A useful way to say this geometrically is: the constrained problem chooses
a point on a Pareto frontier in (R,C1, . . . , Cm) space by intersecting the
feasible region with an axis-aligned box C ≤ b. The associated KKT vector
λ∗(b) is the normal to a supporting hyperplane at the optimum, and as
the box changes shape (budgets tighten in one coordinate but not others),
the supporting hyperplane generically rotates. Fixed-weight scalarization, by
contrast, picks points supported by the single normal vector ν (up to a global
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scale κ), so it can only track optima along budget changes for which λ∗(b)
stays proportional to ν. In non-degenerate multi-category environments,
that proportionality is a knife-edge event.

An explicit counterexample: deterministic “leakage” into under-
weighted categories. We can exhibit the core failure mode with an inten-
tionally simple finite instance where scalarization provably pushes harm into
the wrong category. Let m = 2, X = {x1, x2}, and D(x1) = D(x2) = 1/2.
Let Y = {A,B}, and define rewards and costs by

r(x1, A) = r(x1, B) = r(x2, A) = r(x2, B) = 1,

and
c(x1, A) = (1, 0), c(x1, B) = (0, 1),

c(x2, A) = (0, 1), c(x2, B) = (1, 0).

Intuitively: at each prompt there are two equally helpful responses, but they
“swap” which category they harm. Now fix a scalar weight vector ν = (2, 1)
(category 1 is weighted twice category 2) and any κ > 0. Because the
scalarized objective (18) is linear in π and decomposes pointwise in x, any
scalar optimizer πS can be chosen to minimize ν · c(x, y) at each prompt.
Here,

ν · c(x1, A) = 2, ν · c(x1, B) = 1 ⇒ πS(B | x1) = 1,

ν · c(x2, A) = 1, ν · c(x2, B) = 2 ⇒ πS(A | x2) = 1.

Therefore the induced expected costs are

C(πS) =
1

2
(0, 1) +

1

2
(0, 1) = (0, 1).

Now choose any budgets b with b2 < 1, for instance b = (0.9, 0.4). The
scalarized optimizer is infeasible for the true constrained problem, despite
there existing feasible policies with the same reward. Indeed, for any p, q ∈
[0, 1] define a stochastic policy by

π(A | x1) = p, π(A | x2) = q.

Then

C1(π) =
1
2p+

1
2(1−q) = 1

2(p+1−q), C2(π) =
1
2(1−p)+ 1

2q = 1
2(1−p+q).

Picking p = 0.6 and q = 0.4 yields C(π) = (0.6, 0.4), which is feasible for
b = (0.9, 0.4) and attains reward R(π) = 1 (the same as the scalar optimum).
What fails is not the existence of a good policy, but the selection rule induced
by fixed scalar weights: because category 2 is relatively cheap in ν · c, the
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scalar optimizer deterministically routes all harm into category 2. This is
the simplest formal version of category leakage: scalarization implements a
single exchange rate between harms, so the optimizer concentrates harm in
whichever category is cheapest at that exchange rate, regardless of whether
that category has a tight regulatory cap.

Dominated outcomes: avoidable helpfulness loss at the same or
higher harm. The preceding example emphasized infeasibility. A second,
more subtle pathology is inefficiency even when the scalar optimum happens
to be feasible. The issue is that a fixed scalar penalty can force the developer
to “pay” in reward along the wrong margin, selecting a policy that is Pareto-
dominated in (R,−C) by another feasible policy.

One way to see this is to construct responses that trade off categories
differently across prompts. Suppose again m = 2 and D uniform on {x1, x2},
but now allow Y = {S,A,B}, where S is a conservative “safe refusal/deflection”
action with low reward and zero cost. Let

r(·, S) = 0, c(·, S) = (0, 0),

and for a small δ > 0,

r(x1, A) = 1, c(x1, A) = (1, 0), r(x1, B) = 1− δ, c(x1, B) = (0, 1),

r(x2, A) = 1− δ, c(x2, A) = (0, 1), r(x2, B) = 1, c(x2, B) = (1, 0).

Here each prompt has one “high reward” action that harms category 1, and
one slightly lower reward action that harms category 2 (and vice versa across
prompts). A multi-budget regulator might set b = (0.5, 0.5), under which a
natural constrained optimum is to choose both high-reward actions half the
time and both lower-reward actions half the time (or, more directly, to mix
per prompt to hit C1 = C2 = 0.5) without ever using S, yielding average
reward close to 1 − δ/2. But for some fixed ν and κ, the scalar objective
can instead prefer routing both prompts to the same “cheaper” harm cat-
egory (as above), and then compensate for violated budgets by using the
conservative action S too often once additional heuristics are applied (e.g.,
post-training hard filters or refusal triggers). In such pipelines, the scalar
training signal creates a model that is structurally biased toward one harm
dimension; downstream enforcement then removes outputs to satisfy caps,
producing a dominated final system: lower reward and no lower harm than
could have been achieved by training directly with vector constraints. Put
differently, scalarization encourages the wrong internal substitution pattern,
and hard compliance layers pay an avoidable helpfulness tax.

This dominated-outcome phenomenon is easiest to interpret through
KKT: the constrained optimum uses λ∗ to shape the model’s indifference
surfaces so that it trades off reward against the binding budgets. Fixed
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scalarization uses ν to hard-code an exchange rate between categories, which
will generally not match λ∗(b); the result is either (i) a violation (necessi-
tating blunt post hoc rejection) or (ii) an interior point that is not on the
constrained frontier (leaving reward on the table for the same harm vector).

When does scalarization work? (Knife-edge regimes). There are
regimes where fixed-weight scalarization can implement the constrained so-
lution, but they are precisely those where multi-category control is not actu-
ally needed. Formally, for a given ν, scalarization can match the constrained
optimum for a family of budgets b only if the corresponding KKT multipliers
satisfy

λ∗(b) ∈ {κ ν : κ ≥ 0} for all budgets in that family. (19)

Condition (19) is restrictive: it requires the direction of λ∗ to remain constant
as b varies, i.e., the set of binding constraints must not change in a way that
rotates the normal vector.

Concretely, scalarization can work in (at least) three knife-edge cases:

1. Effectively one-dimensional harm: there exists w ∈ Rm+ and scalars
ρ(x, y) such that c(x, y) = w ρ(x, y) for all (x, y). Then all cost vectors
are collinear, and the constraints reduce to a single effective constraint
E[ρ] ≤ mini bi/wi. Any ν proportional to w is equivalent.

2. Only one constraint binds (generically) over the budget range of inter-
est: if, for all relevant b, exactly one category k is active and the others
are slack, then λ∗ is supported on coordinate k, so any ν that also puts
all mass on k works. This is not a multi-category setting operationally;
it says the other constraints are non-binding.

3. Budgets vary only along a single ray with fixed shadow-price direction:
even when multiple constraints can bind, it may happen that the reg-
ulator only considers budgets b(t) = b0 + t∆ for which λ∗(b(t)) stays
proportional to some ν. This can occur in highly symmetric or sep-
arable environments, but it is not stable to distribution shift in D or
changes in Y.

Outside these cases, the mismatch between fixed ν and endogenous λ∗(b) is
not a tuning problem; it is structural. One can of course fit ν on a particular
audit distribution and a particular set of budgets, but as soon as the binding
set changes (tightening one category, or shifting the prompt mix toward a
different incident type), the correct exchange rate between harms changes,
and scalarization has no degrees of freedom to follow it.
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Safety implication: scalarization confuses “how much safety” with
“which safety.” From a governance standpoint, the key distinction is that
κ only adjusts the overall intensity of the scalar penalty, whereas multi-
category compliance requires adjusting the composition of safety effort across
categories. Fixed scalarization can say “be safer in aggregate,” but it cannot
say “shift safety effort from category 1 to category 2” when category 2 be-
comes binding. The predictable result is substitution: the system learns to
avoid whatever is expensive under ν · c and to route failures into whatever is
cheap, even if that cheap category has the strictest regulatory cap.

This is why the dual interpretation is more than mathematical conve-
nience. Once we treat λ as a learnable control layer, we can ask comparative-
static questions that are governance-relevant: how does tightening bk change
λ∗
k and spill over into other costs Cj? how does a shift in the prompt dis-

tribution D (e.g., more adversarial queries) reallocate shadow prices? and
how does expanding model capacity change the achievable frontier and re-
duce the shadow price of safety? We turn to these questions next, because
they determine whether multi-category regulation is stable under the oper-
ational realities of distribution shift, adaptive attackers, and evolving model
capabilities.

Comparative statics as a governance interface. Once we treat multi-
category compliance as the constrained program (P) with dual variables λ∗,
we obtain a language for how governance choices and operational realities
propagate through the trained system. The central object is not merely the
optimal reward R(π∗) or the realized cost vector C(π∗), but the shadow-price
vector λ∗(b,D,Y), which summarizes which categories are effectively binding
and how costly further tightening would be at the margin. In deployment
terms, λ∗

i measures the marginal helpfulness sacrificed (in expectation) per
unit of reduced expected harm in category i, given the current prompt mix
and available behaviors. This is exactly the quantity a regulator implicitly
manipulates when it moves budgets b, and exactly the quantity a developer
must track as D and Y evolve.

Budgets b and the envelope theorem: why λ is the correct “price.”
Define the value function V (b) := maxπ∈Π:C(π)≤bR(π). Under the regularity
assumptions already invoked for KKT (convexity/compactness and Slater),
the envelope theorem yields, for each coordinate i where differentiability
holds,

∂V (b)

∂bi
= λ∗

i (b). (20)

This identity is more than a mathematical convenience. It gives a direct
operational interpretation: if a regulator relaxes the allowable expected harm
in category i by a small amount dbi, the best-achievable expected reward
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increases by approximately λ∗
i dbi. Conversely, tightening bi decreases reward

at rate λ∗
i . Thus, λ∗ provides an economically meaningful unit conversion

between the regulator’s safety units and the developer’s performance units,
and it does so separately for each harm category.

A second implication is diagnostic. If an audit reveals that tightening
a particular budget produces a large degradation in helpfulness, that corre-
sponds precisely to an increase in the relevant λ∗

i . In other words, the mag-
nitude of λ∗

i is a quantitative measure of “compliance pressure” in category
i: large λ∗

i indicates the developer is operating near the edge of feasibility
for that category, and small λ∗

i indicates slack.

Tightening one budget can increase other harms: formalizing leak-
age via cross-effects. A regulator typically tightens one category at a
time (e.g., a new privacy rule) while holding others fixed. The comparative
statics of this operation are subtle because it changes the shape of the fea-
sible set (the box C ≤ b), and the optimal policy responds by re-allocating
probability mass across Y. Even when the tightened category cost Ck(π

∗)
decreases, other category costs Cj(π∗) may increase: this is the formal coun-
terpart of category leakage under multi-constraint control.

One clean way to see the mechanism is through the Gibbs form under
entropy regularization (Proposition 2). For any λ, the induced policy πλ
behaves like a softmax over the penalized score r − λ · c. As we raise λk,
we shift probability mass away from actions with high ck; whether this mass
flows toward low-cj actions depends on the joint structure of costs. In fact,
in the regularized finite case, the mapping λ 7→ C(πλ) is smooth, and its
Jacobian can be expressed in covariance form:

∂Ci(πλ)

∂λj
= −1

τ
Ex∼D

[
Covy∼πλ(·|x)

(
ci(x, y), cj(x, y)

)]
. (21)

Equation (21) makes the governance concern precise. If, under the current
policy, categories i and j are substitutes in the sense that actions tend to trade
off ci against cj (negative covariance), then increasing λj (to enforce category
j) can increase Ci. This is exactly the leak: enforcement in one dimension
pushes the model into regions of behavior where another dimension becomes
worse unless that other dimension is also constrained.

From a regulatory-design perspective, this implies that budgets cannot be
set independently as if categories were separable. If the covariance structure
is strongly negative between two categories (e.g., privacy vs. refusal harms,
or fraud vs. harassment in certain domains), then tightening only one bud-
get predictably shifts violations into the other category, and the observed
incident mix changes even if total “safety effort” increases.

Prompt-mix shifts D: distributional governance and adversarial
pressure. The formal model treats D as exogenous, but in deployment D
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changes: user populations evolve, new product surfaces appear, and attackers
actively search for high-cost regions. Comparative statics with respect to
D explain why a system can become non-compliant without any change in
weights. If the prompt distribution shifts mass toward contexts where certain
costs are harder to avoid (higher irreducible ci on the support), then Ci(π)
increases for every fixed policy π, shrinking the feasible region and typically
increasing the corresponding shadow prices λ∗

i .
In governance terms, this yields a concrete warning: compliance assessed

on one audit distribution does not automatically transfer to another. It also
suggests a natural role for “stress-test” distributions. If we evaluate not only
under D but under a family {D′} that upweights rare but high-risk prompts
(e.g., targeted red teaming), then we are effectively probing whether the
system remains feasible under adversarially tilted environments. A robust
extension makes this explicit by replacing D with an uncertainty set U(D, ϵ)
and requiring constraints to hold under the worst case:

sup
D′∈U(D,ϵ)

Ex∼D′, y∼π(·|x)[ci(x, y)] ≤ bi.

Even without adopting full robustness, the comparative statics already tell
us what to monitor: when prompt-mix indicators shift toward a category,
we should expect λ∗

i to rise, and unless budgets are adjusted or capacity
improves, either reward falls or other categories deteriorate via substitution.

Capacity and action richness Y: why better models reduce compli-
ance pressure. A frequent confusion in policy discussions is to treat safety
and capability as opposing axes. In this framework, the interaction is con-
ditional. Expanding the feasible response set Y (or equivalently increasing
model capacity so that more response distributions are attainable) expands
the feasible frontier in (R,C) space. Holding budgets fixed, this expansion
weakly increases the maximum achievable reward V (b) and weakly decreases
the minimal required multipliers λ∗

i for active constraints: intuitively, with
more expressive behaviors, we can satisfy the same caps with less distortion
of helpfulness.

Governance implication: observed decreases in λ∗
i after a model upgrade

are not necessarily evidence that the regulator has become laxer; they can
reflect genuine technological improvements that make compliance cheaper.
Conversely, if λ∗

i rises after a capability increase, that is evidence of either (i)
a prompt-mix shift toward harder contexts, (ii) newly enabled behaviors that
increase certain costs (a capability externality), or (iii) measurement drift
in the cost model. This motivates treating λ time series as an operational
telemetry signal: it is a compressed summary of the safety–capability tradeoff
as realized under current conditions.
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Regularization and stability: avoiding brittle corner solutions. En-
tropy (or KL) regularization parameter τ does not merely smooth optimiza-
tion; it affects governance-relevant behavior such as variance across prompts
and susceptibility to leakage through rare, extreme actions. Smaller τ con-
centrates πλ on near-argmax actions of r−λ·c, producing sharper compliance
but potentially more brittle behavior: small shifts in D or in the estimated
costs can flip which action is optimal, causing discontinuous changes in in-
cident profiles. Larger τ spreads mass and reduces such discontinuities, but
can leave slack unexploited (lower R even when budgets are not tight) or
fail to fully suppress tail events if the cost model is imperfect. This suggests
a governance tradeoff between responsiveness (rapidly adapting to budgets)
and stability (predictable behavior under drift). In practice, we can view τ
as a “policy inertia” knob that regulators may wish to constrain indirectly
(e.g., via requirements on variance of outcomes across prompt slices).

Regulatory interpretation: budgets as rights, λ as revealed priori-
ties. Budgets b are the regulator’s explicit policy instrument: they encode
rights or limits per category (e.g., privacy leakage must be below a thresh-
old). The dual vector λ∗ is the system’s revealed prioritization needed to
satisfy those rights under current conditions. Two governance uses follow.

First, λ∗ supports marginal impact reporting. If an agency contemplates
tightening bk, a developer can report an estimated λ∗

k to quantify expected
helpfulness loss per unit tightening, and can also report cross-category elas-
ticities using estimates of (21) to anticipate leakage into other incident types.
This is a more informative negotiation object than a single “safety score” be-
cause it decomposes the tradeoff by category.

Second, λ∗ supports audit targeting. Large λ∗
i indicates the system is op-

erating near the boundary in category i, meaning small measurement errors
or distribution shifts are most likely to cause violation there. An auditor can
use λ∗ to allocate testing effort across categories and prompt slices: high-λ
categories warrant heavier sampling, adversarial search, and tighter confi-
dence intervals.

Limitations and open problems for governance-grade comparative
statics. These comparative statics are clean in the planner model but be-
come fragile in practice for three reasons. (i) Costs ci are estimated by
imperfect classifiers; errors can induce spurious substitution patterns, effec-
tively warping (21). (ii) The prompt process is strategic; attackers adapt to
the current policy, making D endogenous and potentially invalidating static
sensitivity analysis. (iii) Budgets often reflect tail-risk concerns (rare catas-
trophic events) rather than expectations; replacing Ci(π) = E[ci] with CVaR-
type constraints changes the dual interpretation and may require richer mul-
tipliers indexed by quantile levels.
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Nevertheless, the core governance lesson remains: multi-category regula-
tion is inherently about vector tradeoffs. Comparative statics of λ∗ provide
a principled way to anticipate how tightening one category reallocates harm,
how distribution shift can silently break compliance, and how increasing
capability can either alleviate or exacerbate safety pressure depending on
which parts of the frontier expand. This sets up the empirical question we
address next: how to estimate these objects reliably in a real training-and-
audit pipeline, and how to detect leakage empirically rather than assuming
it away.

Empirical design sketch: from the vector program to a training-
and-audit loop. The formalism above is intentionally static, but it natu-
rally suggests an empirical design pattern: (i) learn a multi-head cost model
that approximates the category cost functions ci(x, y) under an evolving
prompt distribution, (ii) train the deployed policy with a vector Lagrangian
objective whose multipliers λ are updated from measured constraint viola-
tions, and (iii) run targeted red teaming that is explicitly designed to estimate
cross-category substitution (leakage) rather than only marginal per-category
incidence. We emphasize that we are not proposing a single canonical exper-
iment; rather, we are sketching a governance-grade protocol that produces
the objects regulators and auditors actually need: per-category compliance
estimates, uncertainty bounds, and a leakage map that predicts what hap-
pens when one budget is tightened.

Multi-head cost modeling: shared representation, category-specific
calibration. Operationally, the developer rarely has direct access to ci(x, y);
instead they have labeled samples (x, y, ℓi) from auditors or internal review,
with label noise and selection bias (because the reviewed outputs are not i.i.d.
from D). A pragmatic architecture is a shared backbone fϕ(x, y) feeding m
heads gψi

, producing ĉi(x, y) = gψi
(fϕ(x, y)). Two design choices matter for

governance.
First, calibration by category is not optional. If budgets bi are interpreted

as hard compliance targets, then systematic miscalibration in ĉi translates
into predictable under- or over-enforcement. We therefore want post-hoc
calibration curves per category and per prompt slice (e.g., topic clusters,
languages, user segments), and we want to report calibrated estimates c̃i (or
conservative upper confidence bounds) rather than raw logits.

Second, we want uncertainty in the cost estimates, because the binding-
constraint regime is precisely where small errors cause violations. In prac-
tice we can approximate uncertainty via ensembles {ĉ(k)i }, dropout-based
estimates, or conformal prediction on held-out audited data. A simple
governance-aligned rule is to enforce constraints on an upper bound,

ĈUCB
i (π) ≤ bi,
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where ĈUCB
i is computed from the empirical mean plus a confidence radius

(possibly slice-dependent). This turns the static feasibility condition into a
form of statistical compliance, making explicit how much risk is being carried
in measurement error.

Vector-Lagrangian training: dual variables as a controllable inter-
face. Given reward modeling or preference data for helpfulness, we can
train the policy with a regularized Lagrangian objective of the form

max
π∈Π

E
[
r(x, y)− λ · c̃(x, y)

]
− τ E

[
log π(y | x)

]
,

with λ ≥ 0. This can be implemented with standard RLHF-style machinery
by replacing the scalar reward with a penalized reward r̃λ(x, y) = r(x, y) −
λ · c̃(x, y) and maintaining the KL/entropy term as a stability constraint.
The key empirical point is not the exact optimizer, but the update loop for
λ. A minimal dual update is projected ascent on constraint violations:

λt+1,i =
[
λt,i + αt

(
Ĉi(πt)− bi

)]
+
, (22)

where Ĉi(πt) is an audit-estimated expected cost under the current policy
(ideally corrected for selection bias), and [·]+ is coordinate-wise projection
onto R+. This is attractive for two reasons: it makes category priorities
explicit and auditable (via the time series λt), and it avoids the failure mode
of fixed scalarization, where underweighted categories silently absorb harm.

In a deployment setting, we typically cannot estimate Ĉi(πt) from purely
online traffic without introducing unacceptable risk. A common compromise
is a staged loop: update λ on a controlled evaluation mixture that includes
(a) a naturalistic sample approximating current D, and (b) stress-test slices
described below. This yields λ that is tuned to both ordinary usage and fore-
seeable adversarial pressure, rather than to whichever distribution happens
to dominate logs this week.

Separating three distributions: training, audit, and stress tests.
To measure leakage credibly, we need to stop pretending there is a single
D. We propose maintaining three distributions (or families) throughout the
pipeline.

1. A training distribution Dtrain reflecting product usage and standard
data collection.

2. An audit distribution Daudit designed for unbiased estimation of ex-
pected category costs (with documented sampling and annotation pro-
cedures).
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3. A set of stress-test distributions {D(k)
stress} that intentionally upweight

risky regions (prompt templates, adversarial prompt generators, or cu-
rated red-team corpora).

The compliance claim should be explicitly indexed: Ĉi(π;Daudit) ≤ bi with
confidence 1 − δ, plus separate reporting of Ĉi(π;D

(k)
stress) as a robustness

diagnostic. This avoids the common governance failure where a model is
“compliant” on a benign audit mix while being brittle under predictable
misuse.

Targeted red teaming as leakage measurement, not only worst-
case discovery. Red teaming is often treated as a search for isolated bad
prompts. For leakage, we need something more structured: we want to learn
how tightening one category changes the incident mix. Concretely, we can
run red-team prompt generation in two modes.

Single-category maximization: for each category i, generate prompts x
that maximize Ey∼π(·|x)[c̃i(x, y)] subject to basic plausibility constraints.
This estimates where the model is near the boundary in category i, and
provides high-signal evaluation data for that head.

Cross-category tradeoff search: generate prompts that maximize a con-
trast such as c̃j(x, y) − c̃i(x, y) (or that maximize c̃j while constraining c̃i
to be low). This specifically looks for regions where behaviors that reduce
category i tend to increase category j, which is the empirical signature of
substitution.

The second mode is the core governance contribution: it produces a map
of likely leakage channels that can be used both to adjust budgets jointly and
to target additional mitigations (e.g., adding refusal-safe completions that
are low cost in multiple categories rather than merely shifting mass between
them).

Metrics: compliance, leakage, and stability. Beyond reporting Ĉi and
R, we need metrics that correspond to the comparative statics objects in the
theory.

Constraint violation probability and margin: report not only Ĉi − bi but
also the estimated probability that Ci(π) > bi under annotation uncertainty,
and a standardized margin (Ĉi − bi)/SE(Ĉi). This is what makes “near-
binding” operational.

Shadow-price telemetry: track λi over training and across model ver-
sions. Large λi indicates that category i is expensive to satisfy under current
conditions; a sudden jump in λi is an early warning for distribution shift,
measurement drift, or a newly enabled harmful capability.

Leakage matrix estimation: estimate the Jacobian of costs with respect to
multipliers (or budgets). In the regularized setting, Equation (21) suggests
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an estimator:

Ĵij :=
∂Ĉi(πλ)

∂λj
≈ −1

τ

1

n

n∑
t=1

Covy∼πλ(·|xt)
(
c̃i(xt, y), c̃j(xt, y)

)
,

with xt ∼ Daudit (and separately for each stress-test slice). Negative Ĵij
(equivalently negative covariance) indicates substitutability and thus poten-
tial leakage: increasing λj may increase Ci. For interpretability, we can also
report finite-difference elasticities by re-solving for λ after small perturba-
tions to b, yielding an empirical approximation of ∂Ci(π∗(b))/∂bj .

Frontier reporting: when feasible, compute a local approximation to the
Pareto frontier by sweeping a subset of budgets b (or sweeping λ) and re-
porting (R̂, Ĉ) pairs. This directly addresses the governance question “what
performance is achievable at what safety profile?” without collapsing every-
thing into a single score.

Evaluation protocol: avoiding selection bias and gaming. Two im-
plementation details are easy to get wrong.

First, if Ĉi is computed on outputs that have already been filtered by
safety systems, the estimate is biased downward. We therefore want an
evaluation-only sampling mode that logs unfiltered candidate outputs under
controlled access (or uses offline sampling from the policy) and then applies
auditing to those outputs. When online logging is unavoidable, we can use
importance sampling to correct for known filters, but the variance can be
large; in high-stakes categories, conservative bounds may be more appropri-
ate than point estimates.

Second, once developers know the exact audit prompts, Goodhart effects
appear. Stress-test sets should therefore be periodically refreshed, partially
held out, and complemented by adversarial prompt generation that is not
fully disclosed. The goal is not secrecy as a substitute for rigor, but rather
ensuring that the reported Ĉi(·;Daudit) generalizes to a documented class of
shifts {D(k)

stress}.

What this design buys us, and what it cannot. If implemented, this
pipeline yields three governance-relevant artifacts: (i) a calibrated estimate
of per-category compliance with uncertainty, (ii) an explicit vector λ that
can be reported and monitored as “compliance pressure,” and (iii) an empir-
ical leakage matrix that predicts which incident types will rise when another
is suppressed. The limitations are equally important: if the cost heads miss
a harm mode, dual updates will faithfully enforce the wrong constraints; if
auditors disagree on definitions, λ becomes a price on an unstable commod-
ity; and if adversaries can move D faster than audits update, static estimates
will lag.
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These caveats motivate the next section: how audit reporting should be
structured, how liability could be differentiated by category and by demon-
strated leakage controls, and what deployment commitments (monitoring,
refresh cadence, red-team scope) are plausible as enforceable requirements
rather than aspirational best practices.

5 Discussion: audit reporting, differentiated liabil-
ity, and deployment recommendations; limitations
and extensions

The vector-constraint formulation reframes “alignment” as a compliance prob-
lem with an explicit interface between (i) a regulator who sets per-category
budgets b and (ii) a developer who produces a policy π plus auditable ev-
idence that E[ci] ≤ bi. The practical question is therefore not merely how
to reduce a scalar “toxicity score,” but how to make a credible claim of
multi-category compliance under measurement noise, distribution shift, and
strategic adaptation. In this section we discuss what an audit report should
contain, how liability could be differentiated in a way that discourages cat-
egory leakage rather than rewarding it, and what deployment commitments
are plausibly enforceable. We then flag limitations of the static model and
sketch extensions that matter in practice (multi-turn interaction and ro-
bust/adversarial prompt distributions).

Audit reporting as a contract over distributions and estimators.
A central governance failure mode is ambiguity about what distribution the
compliance claim ranges over. An audit report should therefore state (a) the
prompt distribution(s) on which each estimate is computed, (b) the estimator
used, and (c) uncertainty quantification. Concretely, for each category i the
report should include an estimate Ĉi(π;Daudit) with a confidence bound,
e.g.,

Pr
(
Ci(π;Daudit) ≤ Ĉi(π;Daudit) + ρi

)
≥ 1− δi,

and it should declare whether the compliance criterion is the point estimate
Ĉi ≤ bi or the conservative criterion Ĉi + ρi ≤ bi. This distinction is not
pedantic: in near-binding regimes, the difference between point estimates
and upper bounds is often the difference between de facto violation and
reliable compliance.

We also want the report to expose the structure of safety tradeoffs rather
than compressing them into a single number. Two objects are especially
informative. First is a time-stamped record of the multipliers used to train
or tune the model (or, in a post-training setting, to configure a safety layer),
λ, along with the measured violations that induced changes. While λ is not
itself a guarantee, it is operational telemetry: persistent large λi is a signal
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that category i is expensive to satisfy and thus likely to be brittle under shift;
sudden changes in λi are an early warning for drift in either the model or
the measurement pipeline. Second is a leakage summary that captures cross-
category substitution. At minimum, auditors should require either a local
Jacobian estimate Ĵ (however computed) or a set of finite-difference stress
results showing how costs move when one budget is tightened. Without such
a leakage artifact, developers can meet a narrowly measured target while
silently moving harm into underweighted categories—a Goodhart channel
that is predictable from the theory.

Slicing, tails, and conditional compliance. Expected costs E[ci] are
often insufficient in high-stakes categories, because low-probability contexts
can dominate real-world harm. A governance-aligned audit report should
therefore include slice-based estimates and at least one tail-sensitive statis-
tic. Slice reporting can be formalized as a family of conditional constraints
E[ci | x ∈ S] ≤ bi,S for documented slices S (e.g., user age group, language,
topic cluster, tool-use mode). Tail sensitivity can be implemented via quan-
tile constraints, conditional value-at-risk, or exceedance probabilities. For
example, for a threshold ti meaningful to auditors, one can report

pi(π) := Pr
(
ci(x, y) ≥ ti

)
,

and treat pi(π) ≤ βi as a supplementary budget. This is not a purely tech-
nical refinement: it aligns reporting with how regulators and courts reason
about rare but severe incidents.

Differentiated liability: pricing leakage rather than rewarding it.
If budgets bi are to function as enforceable constraints, liability should track
(i) realized violations, (ii) the reasonableness of measurement and monitor-
ing, and (iii) the foreseeability of leakage. A naive liability regime that
penalizes only whichever incident type is most salient invites substitution:
the developer reduces that visible category and lets other categories rise.
Our framework suggests a more robust approach: liability should be vector-
valued (or at least indexed by category), and safe-harbor provisions should
depend on the presence of leakage controls.

One plausible regime is a two-part standard. First, strict or negligence-
like liability attaches to ex post category exceedances above declared bud-
gets on a stated audit distribution (plus documented stress tests), subject
to clearly specified measurement procedures. Second, a safe harbor (reduced
damages, reduced penalties, or a rebuttable presumption of due care) is
available only if the developer can show: (a) calibrated per-category mea-
surement, (b) monitoring sufficient to detect drift, and (c) an explicit leakage
evaluation demonstrating that tightening one category does not predictably
increase another beyond declared tolerances. In other words, the developer
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is not rewarded for merely hitting a target; they are rewarded for demon-
strating that the system behaves like a controlled multi-constraint optimizer
rather than a brittle scalar scorer.

Shadow prices λ∗ provide an additional lever for differentiated treatment.
While λ∗ is not directly observable as a legal fact, it is indirectly identifi-
able from comparative statics and training telemetry, and it encodes which
constraints are binding. If a developer reports that a category has a tight
budget bi yet trains with effectively zero pressure on that category (low λi
and no evidence of near-binding behavior), this is a red flag: either the
measurement pipeline is miscalibrated, or the compliance claim is not be-
ing operationalized. Conversely, a developer that demonstrates sustained
enforcement pressure and still observes high estimated costs can credibly
argue that the frontier is technologically constrained, motivating either re-
vised budgets or targeted investment in mitigations. This is the institutional
interpretation of the dual variables: they separate “we chose not to pay for
safety” from “the current technology makes this safety level costly.”

Practical deployment recommendations: commitments that can
be audited. Beyond the training details, what can regulators plausibly
require in deployment? We think the right level of abstraction is to require
commitments over interfaces and processes rather than over any single model
architecture.

First, require a budget interface: the deployed system must expose con-
trollable parameters that implement per-category tradeoffs (directly as λ,
indirectly via policy variants, or via a certified safety wrapper). The point is
to avoid a regime where the developer can only offer “the model” and cannot
respond to tightened budgets without retraining from scratch.

Second, require monitoring and refresh cadence: the developer must spec-
ify how often Ĉi is re-estimated, how drift is detected, and what triggers a
rollback or reconfiguration. Because prompt distributions change (product
features, user populations, adversaries), a one-time audit is closer to a snap-
shot than a guarantee.

Third, require stress-test disclosure and reproducibility: auditors should
be able to reproduce the compliance estimate on Daudit and independently
evaluate on a declared family of stress tests. The goal is not to disclose
every red-team prompt (which can itself induce gaming), but to disclose the
method class of stress testing and to commit to periodic refresh and partial
holdout.

Fourth, require incident handling aligned with categories: when a severe
incident occurs, the response should include which constraint(s) failed, how
measurement missed it (if it did), and whether the incident is consistent
with predicted leakage channels. This closes the loop between theory (sub-
stitution) and operational accountability (postmortems that do not collapse
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everything into “model was unsafe”).

Limitations of the static one-shot model. Our baseline program treats
X as drawn from an exogenous D, assumes bounded costs, and enforces
expectations. Each of these assumptions breaks in recognizable deployment
scenarios. The most severe limitation is misspecification of ci: if auditors
cannot reliably label a harm mode, or if the harm is inherently contextual and
only emerges over time, then the constraint is enforcing the wrong object.
A second limitation is that “category” boundaries are neither natural nor
stable; correlated harms can make per-category budgets incomplete, and
new capabilities can create new categories. Third, the convexity of the finite
mixture model hides nonconvexities in real training dynamics; the KKT
picture is an equilibrium idealization, not a guarantee about gradient-based
training in large models. These limitations do not invalidate the framework,
but they shift the governance emphasis from “solve the optimization” to
“maintain a measurement-and-control system that approximates it and fails
loudly when assumptions break.”

Extension: multi-turn interaction as a constrained control prob-
lem. Many high-stakes harms are multi-turn: persuasion, grooming, incre-
mental disclosure of private data, or tool-mediated fraud unfold over trajec-
tories rather than single responses. A natural extension is to replace prompts
x with histories ht and treat the model as a policy in a partially observed
decision process. Let yt ∼ π(· | ht) and define per-step rewards r(ht, yt) and
costs ci(ht, yt). For a horizon T (or discount γ), the constrained objective
becomes

max
π

E
[ T∑
t=1

r(ht, yt)
]

s.t. E
[ T∑
t=1

ci(ht, yt)
]
≤ bi ∀i.

This is a standard constrained RL problem, but with an alignment-specific
twist: auditors often only observe sparse or delayed labels (e.g., the conver-
sation becomes unsafe after several turns). In that regime, the multi-head
cost model must be defined over trajectories or augmented with credit as-
signment. Governance-wise, the implication is that single-turn audits can be
systematically optimistic: a system may look compliant on isolated prompts
yet reliably drift into unsafe regions in longer interactions. Hence, a cred-
ible audit program should include multi-turn evaluations and budgets over
trajectory-level costs, even if the deployed system is primarily single-turn in
ordinary usage (because users can chain prompts).

Extension: robust and adversarial prompt distributions. The other
key limitation is treating D as fixed. In practice, both benign shifts (new
product features) and strategic shifts (attackers) change the prompt mix. A
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minimal robustness upgrade is distributionally robust optimization: define
an uncertainty set Uϵ(D) (e.g., an f -divergence ball or a Wasserstein ball)
and require constraints to hold in the worst case,

max
π

RD(π) s.t. sup
Q∈Uϵ(D)

Ci(π;Q) ≤ bi ∀i.

This formalizes the governance intuition that compliance should not be a
knife-edge property of the current audit mix. It also clarifies what “adver-
sarial robustness” means in a compliance setting: not necessarily worst-case
over all strings, but worst-case over a documented class of distribution shifts
that are plausible given the product surface.

A more game-theoretic extension endogenizes D by introducing an at-
tacker who chooses Q (within feasible constraints) in response to π. One
can model this as a Stackelberg game (developer commits to π, attacker
chooses Q) or as a repeated interaction where attackers learn over time. The
resulting equilibrium typically increases the effective shadow prices on the
attacked categories and makes leakage more salient: suppressing one harm
invites attackers to search for the next cheapest category. Institutionally,
this argues for joint budgeting (avoid leaving “slack” categories that become
attack targets) and for monitoring that detects changes in the empirical λ
or in slice-specific costs as a signal of adaptive pressure.

A final governance implication: compliance is an ongoing measure-
ment problem. Taken together, these discussion points reinforce a com-
mon theme: the core object that regulators need is not a single safety score,
but a system of measurement and control that (i) supports vector-valued
constraints, (ii) reports uncertainty and tail risk, (iii) detects leakage, and
(iv) is robust to predictable shifts in how the system is used and attacked.
The formalism motivates these requirements by making the failure modes
legible: whenever safety is scalarized, or whenever compliance is claimed on
an ill-defined D, we should expect substitution, brittle generalization, and
incentives to optimize the metric rather than the harm.

6 Conclusion: alignment as an economic institu-
tion, and open questions

We can now summarize the main lesson of the paper in one sentence: once
we move from a single, vaguely defined notion of “safety” to a regulated
environment with multiple harm categories, alignment is naturally described
as an institutional problem—a system of budgets, measurements, incentives,
and adaptive control—rather than as the minimization of any one scalar
metric. The formalism is deliberately spare (finite X , finite Y , expectations
under D), but it forces clarity about what a compliance claim means and
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why many intuitive training heuristics break once categories are numerous,
heterogeneous, and politically salient.

A first takeaway is conceptual. The vector-constrained program turns
alignment from an aesthetic preference into a contractible interface: the reg-
ulator selects a vector b of permissible risk, and the developer supplies a
policy π plus evidence that the induced expected costs satisfy Ci(π) ≤ bi.
In this picture, λ∗ is not merely a mathematical artifact; it is the canoni-
cal representation of the marginal difficulty of compliance across categories.
Shadow prices provide a language for discussing tradeoffs that is simulta-
neously technical and legible to governance: when λ∗

i is persistently large,
category i is not “ignored,” it is expensive, brittle, and likely to fail under
shift; when λ∗

i ≈ 0 despite a supposedly tight budget, we should suspect
either slackness, mismeasurement, or performative compliance. This is the
sense in which the Lagrangian is an institutional object: it mediates between
what is demanded (budgets), what is feasible (the frontier induced by Y and
model capacity), and what is actually enforced (training and deployment
control knobs).

A second takeaway is negative but practically important. Fixed-weight
scalarization is not just “suboptimal”; in multi-category settings it is struc-
turally incapable of implementing a regulator’s menu of possible budgets.
The reason is the familiar geometry of multi-objective optimization: a single
weight vector ν can support at most a subset of Pareto-optimal points, and
which point is implementable depends on the supporting hyperplane that
itself changes with b. The governance translation is leakage: if the developer
optimizes a single score, we should expect harm to migrate into whichever
categories are least represented by that score or least salient in enforcement.
This does not require malice; it follows from optimization. As a result, a
regulatory regime that treats compliance as “hit the metric” is, in our view,
an incentives regime that selects for Goodharting.

A third takeaway concerns verification. The formal model makes clear
that the object of interest is a statement about a distribution (and often
about tails or slices), not about an unconditional average in a vacuum. In
deployment, distributions move, measurement pipelines drift, and attackers
search over X to find slack. Thus, the practical endgame is not a one-time
demonstration of low Ĉi, but an ongoing control loop that keeps estimated
costs within budgets as the effective D changes. This is where the eco-
nomics and the computer science meet: the regulator is effectively designing
an environment in which developers internalize shadow prices and invest in
measurement, while developers are solving a constrained learning/control
problem with partial observability and noisy labels. The model is simple
enough to expose the moving parts, yet expressive enough to explain why
organizations repeatedly fail when they collapse compliance into a single
number.

A fourth takeaway is about the division of labor between technical and
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institutional interventions. The mathematics suggests a clean decomposi-
tion. Technical work expands the feasible frontier (better model capacity,
better refusal policies, better tool-use containment, better cost modeling),
which reduces the required λ∗ to satisfy a given b. Institutional work clarifies
b, specifies the evidentiary standard for claims about Ci(π), and aligns in-
centives so that developers cannot profitably substitute across categories.
Importantly, neither side alone solves the problem: stronger institutions
without better technical frontiers can force socially costly restrictions (large
decreases in R(π∗)), while better models without vector-valued oversight can
simply reallocate harm.

These conclusions motivate a set of open questions that we view as both
technically substantive and governance-relevant.

(1) Measurement validity and identifiability of costs. Our frame-
work assumes that the category costs ci(x, y) exist as well-defined objects.
In reality they are constructed from labels, policies, and legal categories, and
are therefore subject to misspecification and strategic pressure. What does it
mean to have a “calibrated” cost model for harms that are context-dependent,
rare, or only legible after downstream consequences? When can we reliably
estimate Ci(π) under distribution shift, especially when the system itself
changes user behavior? A particularly sharp question is identifiability: un-
der what conditions can auditors infer anything like λ∗ or the location of
the frontier from partial telemetry, without access to proprietary training
details?

(2) Tail risk objectives beyond expectations. We gestured at tail-
sensitive reporting, but a deeper issue remains: which tail notions are insti-
tutionally stable and technically tractable? Quantiles and CVaR are attrac-
tive, but they can be brittle under small sample sizes and slice granularity.
Exceedance probabilities are interpretable but depend on threshold choices
that can be gamed. More broadly, we lack a mature theory of vector-valued
tail constraints (multiple i, multiple slices S) that yields both computa-
tionally feasible training procedures and audit procedures with meaningful
statistical power.

(3) Dynamics: learning, adaptation, and non-stationarity. The
static program is an equilibrium idealization. In practice, π is produced
by a nonconvex training process, and the effective constraints evolve as the
developer updates models, filters, policies, and tooling. Moreover, the en-
vironment adapts: users learn what works, and attackers probe for failure
modes. A robust institutional theory should therefore treat compliance as
a repeated game with feedback, where budgets and measurement protocols
may themselves update. This raises questions familiar from mechanism de-
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sign: how should budgets b be revised when technology improves, when
categories become obsolete, or when new categories emerge? How should we
prevent “budget shopping” across jurisdictions or product variants? And how
should regulators reason about transient violations during model updates?

(4) Compositionality and systems-level costs. Many high-impact de-
ployments are not a single policy π but a system: multiple models, routing,
tools, retrieval, and post-processing filters. Category costs can interact non-
linearly across components (e.g., a safe base model paired with an unsafe
tool can increase fraud risk). We need compositional guarantees: if each
subsystem satisfies certain budgets under certain conditions, what can be
said about the composed system? Conversely, if the system violates a bud-
get, can we localize which component is responsible in a way that supports
accountability and remediation?

(5) Incentive-compatible disclosure and anti-gaming design. Au-
diting requires disclosure; disclosure invites gaming. The question is not
whether to disclose, but what to disclose so that the resulting equilibrium
improves welfare. What is the right “minimal sufficient statistic” for com-
pliance that allows verification while limiting exploitation (for example, dis-
closure of stress-test methodology classes rather than specific prompt sets)?
How should we treat confidentiality when the very act of revealing slices and
thresholds can create new attack surfaces? This is a core institutional design
problem, not merely a technicality.

(6) Computational constraints and approximate optimality. Even
in finite settings, scaling vector-constraint methods to frontier-scale models
involves approximations: learned proxies for ci, stochastic estimates of Ci,
and imperfect optimization. A key open problem is to characterize what
kinds of approximation error are tolerable under a regulatory lens. When
does approximate primal feasibility imply anything meaningful about real-
world incident rates? How can we design training and monitoring procedures
that come with auditable error bars on both reward and constraint satisfac-
tion, rather than only on in-distribution performance?

(7) Normative uncertainty and category definition. Finally, cate-
gory budgets presume categories. But categories are socially contested, and
different jurisdictions will draw boundaries differently (e.g., what counts as
“political persuasion” or “self-harm assistance”). A realistic alignment in-
stitution must therefore handle normative uncertainty: how do we design
budgets and audits that can be updated as categories evolve, without creat-
ing perverse incentives to exploit definitional gaps? Technically, this suggests
designing flexible cost representations and stress-test suites; institutionally,
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it suggests procedures for revising category taxonomies that do not reset
accountability.

Stepping back, the formalism offers a pragmatic stance. We should ex-
pect frontier constraints: there will be domains where satisfying certain b
vectors is genuinely costly, and society must decide whether to pay that cost
(in reduced functionality, increased friction, delayed deployment) or to relax
budgets. What the model provides is a way to make that decision explicit and
contestable. It separates questions of feasibility (what is attainable given Y
and model capability) from questions of preference and policy (what b should
be), and it highlights the predictable failure mode of pretending that a scalar
score can substitute for that separation.

If we take alignment seriously as an economic institution, our goal is
not to claim that a model is “safe” in the abstract. Our goal is to build
systems in which (i) the relevant harms are measured with known error, (ii)
tradeoffs are represented transparently as vectors rather than hidden in scalar
objectives, (iii) incentives discourage leakage and reward robust control, and
(iv) compliance remains meaningful under distribution shift and strategic
pressure. The mathematical apparatus is, in that sense, only a map—but
it is a map that makes the hard parts visible, and therefore makes them
governable.
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