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Abstract

Modern alignment systems (e.g., Constitutional AI’s non-evasive
harmless assistant and Safe RLHF’s constrained optimization) high-
light a practical tension: evasive refusals reduce immediate harm but
also reduce transparency and the ability to discover and patch vul-
nerabilities through red teaming. We formalize this as a dynamic
economic problem in which an AI developer chooses a refusal style
for risky prompts—either evasive refusal or explanatory refusal that
engages safely and clarifies why the request is harmful. Explanatory
refusals generate monitoring-relevant information (higher vulnerability
discovery rates), accelerating future robustness improvements; evasive
refusals slow learning and can increase long-run harm. In a tractable
Markov model with affine learning dynamics and linear payoffs, we
show the developer’s equilibrium refusal policy is characterized by a
threshold: explain early when the system is fragile (few vulnerabil-
ities discovered) and switch to evasiveness only when robustness is
sufficiently high. We further show a Refusal Externality: if the in-
formational benefits of explanatory refusals spill over to auditors, reg-
ulators, and the broader ecosystem, private developers underprovide
explanation relative to the social optimum. The model yields compar-
ative statics in audit intensity, attacker innovation, harm severity, and
evaluation penalties for evasiveness—providing economic justification
for 2026-era standards and procurement requirements that prefer non-
evasive, explanatory refusals when safe. We outline an empirical design
comparing RLHF regimes that reward explanation vs evasiveness, mea-
suring vulnerability discovery rates, adaptive red-team robustness, and
long-run harm.
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1 Introduction: refusal style as an economic design
variable

Refusals on risky prompts used to be treated as an essentially “static” safety
feature: a model either does or does not comply with requests for wrongdo-
ing, and evaluation focuses on the immediate content of a single response. In
current deployments, we increasingly find that how a model refuses—whether
it offers a brief, evasive non-answer or a more explanatory, policy-grounded
refusal—has become a first-order design choice with operational, legal, and
reputational consequences. We can no longer treat refusal behavior as a thin
wrapper around a fixed capability; it is a control surface that shapes user
behavior, incident response, and the system’s own improvement loop.

Three forces make refusal style economically salient.

First, refusal style is now part of safety operations. A deployment or-
ganization typically runs a monitoring and response pipeline: telemetry on
flagged conversations, incident triage, red-teaming and adversarial testing,
patching (via prompt updates, data curation, system-level classifiers, or fine-
tuning), and re-evaluation. Refusal outputs are not merely outcomes to be
scored; they are data products that enter this pipeline. An explanatory
refusal may reveal which safety boundary was triggered (e.g., chemical syn-
thesis assistance, evasion of safeguards, or targeted persuasion) and may
articulate the model’s “understanding” of the request in a structured way
that is useful for auditors and engineers. An evasive refusal, by contrast,
may minimize immediate leakage but also collapses information about fail-
ure modes into a generic “I can’t help with that.” If we care about reducing
future harm, we should treat refusals as part of a feedback system that allo-
cates attention and accelerates (or slows) vulnerability discovery.

Second, refusal style affects liability and governance exposure. Regu-
lators, courts, and procurement processes increasingly evaluate not only
whether a model avoids facilitating wrongdoing, but also whether it behaves
in a way that is transparent, consistent, and auditable. “Policy citing” re-
fusals, which explicitly reference constraints and offer safe alternatives, can
demonstrate due care and reduce ambiguity about the system’s intended use.
At the same time, detailed refusals can be framed as negligent if they provide
actionable scaffolding for misuse (e.g., by narrowing the search space for an
attacker). This creates a genuine economic tradeoff: the refusal policy influ-
ences both the probability and severity of harmful incidents and the expected
penalty conditional on incidents, through foreseeability, documentation, and
the organization’s ability to show effective controls.

Third, refusal style shapes trust and user utility in benign contexts. In
many products, the marginal user cost of an overly evasive refusal is not just
frustration; it is reduced reliance, lower retention, and migration to less safe
alternatives. Explanatory refusals can preserve helpfulness by redirecting the



user toward safe substitutes (e.g., high-level safety information, compliance-
friendly guidance, or harm-minimizing resources). They can also reduce the
risk that benign users repeatedly probe the boundary out of confusion, which
itself generates noisy monitoring load. Thus, refusal style mediates a familiar
platform design tension: safety interventions that are too blunt impose user-
experience costs that may be privately salient to the developer even when
the direct harm avoided is socially salient.

These considerations motivate a dynamic perspective that is not captured
by static harmlessness metrics. Many standard benchmarks effectively ask:
“Given a risky prompt, does the model output disallowed content?” This is
necessary but insufficient for two reasons. First, harm is not a one-shot event:
attackers iterate, defenders patch, and the underlying threat model evolves.
Second, the content of refusals changes the rate at which both attackers and
defenders learn. A refusal policy that minimizes immediate leakage could still
be dynamically suboptimal if it slows the system’s ability to discover and
mitigate vulnerabilities faster than the adversary can innovate. Conversely,
a refusal policy that explains too much could be locally attractive (e.g., for
user satisfaction) while increasing near-term misuse risk. We therefore need a
formalism that can express the intertemporal tradeoff between (i) immediate
exposure and (ii) future robustness through information production.

Constitutional AI (CAI) and “Safe RLHF"-style methods make this trade-
off concrete. CAI encourages the model to follow a written constitution and
to justify its behavior in ways that are legible to users and auditors. In
practice, this often produces refusals that are more explicit about principles
(e.g., harm prevention, privacy, illegality) and that offer safer alternatives.
Safe RLHF pipelines similarly train models to avoid unsafe content while
preserving helpfulness, frequently resulting in refusals that include expla-
nations, boundary statements, and redirections. These approaches are at-
tractive because they can make safety behavior more consistent and easier
to evaluate, but they also heighten the question of whether the refusal out-
put itself becomes a channel for capability transfer. Put bluntly: a refusal
that “explains” why something is harmful can sometimes be indistinguishable
from a high-level recipe for how to do it.

The key observation is that refusal style changes the informativeness of
interactions for multiple stakeholders. Users receive information (which may
deter misuse, or may help them rephrase attacks). The developer receives
information via logs, incident reports, and model behavior under probing.
External auditors and the broader ecosystem may also learn, through shared
evaluations, bug reports, and norms that propagate across organizations.
When explanatory refusals make it easier to localize failures, they can in-
crease the rate at which vulnerabilities are discovered and mitigated. But
those benefits need not be fully internalized: ecosystem-level learning, re-
duced systemic risk, and shared best practices are partially public goods.
This suggests a potential wedge between privately optimal refusal style and



socially optimal refusal style, even holding fixed the developer’s direct harm
costs.

A dynamic framing also makes room for an often-ignored feature of real
deployments: obsolescence. Threat models drift, jailbreak techniques mu-
tate, and newly connected tools expand the action space. In a rapidly chang-
ing environment, robustness is not a monotone achievement; it is an asset
that depreciates unless continuously replenished by discovery and mitigation.
This is precisely the setting in which the informational content of refusals
can matter: if we expect continuous attacker innovation, then policies that
speed defensive learning can have disproportionately large long-run value.

At the same time, we should not romanticize explanation. There are
clear failure modes. Explanatory refusals can be gamed: attackers can treat
them as an oracle for boundary-finding, extracting a taxonomy of constraints
and then searching for paraphrases that evade them. Explanations can leak
model-internal heuristics (e.g., what content triggers filters), enabling tar-
geted bypass. They can also lead to “capability laundering” if safe alterna-
tives are too close to the disallowed goal. Finally, explanation may create
governance risks when it appears to provide advice, even if intended as de-
terrence. Any useful formal model must therefore allow an immediate harm
term from explanation that can be larger than that of evasiveness.

Our goal in the remainder of this work is to make these tradeoffs explicit
in a minimal dynamic control problem. We treat refusal style as a policy
lever that affects both (i) contemporaneous harm and (ii) the evolution of
system robustness through discovery and mitigation. This lens does not
assume that explanatory refusals are always good or that evasive refusals
are always bad; rather, it clarifies when each is optimal, how thresholds
depend on measurable parameters (learning rates, depreciation, and penalty
intensity), and where externalities arise.

Before introducing the formal model, we next ground the discussion in in-
stitutional practice: how RLHF and CAI training pipelines operationalize re-
fusal and non-evasiveness, why evaluation instructions (and procurement cri-
teria) can implicitly price refusal style, and how the monitoring/red-teaming
pipeline functions as an information production process that interacts with
refusal outputs.

2 Institutional background: refusal and evasiveness
as training and evaluation targets

In practice, refusal style is not chosen in a vacuum at deployment time;
it is the end product of training objectives, policy documents, and evalua-
tion regimes that implicitly (and sometimes explicitly) assign value to being
explanatory versus being terse. We find it useful to treat these institu-
tional choices as part of the “mechanism” that prices different refusal behav-



iors. This section summarizes how contemporary RLHF /“helpful-harmless”
pipelines and Constitutional AI (CAI) operationalize refusal, why evaluator
instructions can change the learned equilibrium, and how monitoring and
red-teaming can be understood as an information production process whose
effectiveness depends on the content of refusals.

A typical RLHF stack begins with supervised fine-tuning (SF'T) on demon-
strations, followed by preference modeling and reinforcement learning (or
related direct optimization) against a learned reward signal ??7?. Refusal
behavior enters at all three stages. During SF'T, demonstrations often in-
clude templated refusals: a short statement of inability, a brief policy ratio-
nale (e.g., illegality, harm, privacy), and a redirect to permissible alterna-
tives. During preference data collection, labelers are commonly instructed
to down-rank “stonewalling” responses that are unhelpful even when they
are safe, and to up-rank refusals that are polite, firm, and provide safe sub-
stitutions. When these preferences are distilled into a reward model, they
create a measurable incentive to avoid purely evasive non-answers. In other
words, non-evasiveness can become a trained capability: models learn to
produce refusals that are more structured, more consistent, and more legible
to humans.

However, the same machinery can also create incentives for over-disclosure.
When labelers reward specificity (because specificity correlates with per-
ceived helpfulness on benign queries), the model can learn to be specific
even in refusal contexts—for example by naming the prohibited category,
clarifying what counts as “actionable,” or enumerating disallowed sub-steps
before declining. From a safety standpoint, such content can be dual-use:
it may deter benign users by clarifying boundaries, yet it can also function
as a boundary-finding oracle for attackers. This is not merely a theoretical
concern. In operational red-teaming, we routinely observe iterative attack
strategies that treat refusal text as an informative channel: the attacker
probes, reads the refusal rationale, and adapts the next prompt to target
the apparent decision rule (e.g., shifting from “instructions” to “fiction,” or
from “how to” to “what are common mistakes”). Thus, the reward shaping
that produces “better” refusals under human preferences may also increase
the informational gradient available to adversaries.

CAl-style training makes these incentives even more explicit by encour-
aging models to justify their behavior with reference to a written constitution
?. The CAI workflow typically uses self-critique and revision: the model pro-
duces an initial response, critiques it against principles, and then outputs a
revised response. In deployments influenced by CAI, refusals often contain (i)
a principle citation (harm prevention, illegality, privacy, non-violent wrong-
doing), (ii) an explanation of why the request violates the principle, and (iii)
a safer alternative. This can be attractive for governance: principle-grounded
refusals are easier to audit, can be made more consistent across languages
and domains, and can be aligned with external policy commitments (e.g.,



“we do not provide instructions for cyber intrusion”). But CAI also raises
a design question: when a model is trained to be explicitly reason-giving,
it may reveal the structure of the safety policy in ways that facilitate eva-
sion. Even when the refusal contains no explicit procedural instructions, it
may narrow the adversary’s search over attack prompts by indicating what
the system “noticed” (targets, intent, quantities, or contextual cues). Put
differently, CAI can increase the mutual information between the attacker’s
probe and the defender’s observable output, which is desirable for internal
debugging but potentially harmful under adversarial adaptation.

Evaluation instructions and procurement criteria play a second, under-
appreciated role: they determine what training teams optimize for and what
product teams are rewarded for shipping. Many benchmark protocols include
an explicit non-evasiveness axis—e.g., penalizing refusals that are generic,
inconsistent, or unhelpful, and rewarding refusals that provide safe alterna-
tives and clear boundaries. This matters because RLHF pipelines are often
“eval-driven”: teams iterate on prompts, policies, and training data to move
the evaluation score. If an evaluation suite rewards explanatory refusals (for
being policy-consistent and user-friendly), the platform acquires a private
benefit to explanation independent of any safety dynamics. Conversely, if
evaluation or legal review penalizes any content that could be construed as
facilitating wrongdoing, teams may adopt conservative guidance that favors
terse refusals, even at the cost of user frustration and reduced auditability.
These incentives are not hypothetical; they show up in vendor question-
naires, model risk management templates, and regulator-facing documen-
tation, where organizations must demonstrate both “robustness to misuse”
and “transparency of controls.” The key point is that non-evasiveness can
be priced either positively (as a trust and usability feature) or negatively
(as a perceived liability), and those prices feed back into the learned refusal
policy.

We can also view evaluation instructions as shaping what signals are
available to the organization’s own monitoring pipeline. Consider two ex-
treme labeler guidelines. Omne says: “Refuse briefly; do not mention the
specific policy category; avoid any detail that could guide misuse.” The
other says: “Refuse with a clear policy reason and provide a safe alternative;
be consistent and explicit about boundaries.” Both can yield high safety
on a narrow ‘no disallowed content” metric, but the second produces richer
structured text that can be mined for debugging: it often contains a self-
classification of why the model refused, which can be used to route incidents,
cluster failure modes, and measure drift. In organizations with large volumes
of user interactions, this difference can materially change the marginal cost
of triage and the speed with which engineers identify systematic gaps (e.g., a
new jailbreak pattern that the refusal itself describes as ‘“roleplay” or “educa-
tional” framing). Thus, evaluator instructions influence not only the outward
user experience but also the internal observability of safety-relevant events.



Finally, the monitoring and red-teaming ecosystem is itself an informa-
tion production process, and refusal style affects its productivity. In mature
deployments, the operational loop typically includes (i) automated detection
(classifiers, keyword triggers, anomaly detection), (ii) logging and sampling
policies, (iii) human review and incident escalation, (iv) targeted red-teaming
to reproduce and generalize failures, (v) mitigation (policy updates, classi-
fier changes, data collection, fine-tuning), and (vi) regression evaluation.
External auditors, bug bounty programs, and shared evaluation sets can be
understood as additional sources of discovery that sometimes spill across or-
ganizational boundaries. Within this loop, a refusal is not merely a “safe
outcome”; it is a data point that can either preserve or destroy information
about where the model sits relative to safety boundaries. Explanatory re-
fusals can increase the yield of this pipeline by making it easier to infer latent
intent categories, to detect near-misses (cases where the model almost com-
plied), and to measure distribution shift (new topics or new attack framings
that produce qualitatively different refusal rationales). Evasive refusals, by
design, tend to compress these signals, which can reduce the immediate risk
of leakage but can also slow down learning from incidents and near-incidents.

This framing suggests a useful abstraction: refusal behavior controls how
effectively risky interactions are converted into actionable knowledge for de-
fenders, even holding fixed the underlying model capability. At the same
time, we must acknowledge the failure mode that motivates evasiveness: the
same information that helps defenders may also help attackers, and the net
effect is ambiguous ex ante. The operational choice is therefore not “explain
or do not explain” in the abstract, but rather how to allocate explanatory
bandwidth across time and states of system robustness, subject to an evolv-
ing threat model and imperfect incentives. In the next section, we formalize
this intuition with a minimal dynamic model in which refusal style affects
both contemporaneous harm and the rate of vulnerability discovery and mit-
igation, allowing us to derive threshold policies and to characterize when
private incentives diverge from social objectives.

3 Model setup: state, refusal actions, learning dy-
namics, and payoffs

We now formalize the safety—usability tradeoff implicit in refusal style. The
core idea is that what the model says when it refuses is not merely a present-
tense interaction outcome; it is also an input into an ongoing discovery-and-
mitigation pipeline. Explanatory refusals can create structured signals that
make it easier to diagnose boundary failures, cluster incidents, and harden
the system, but they can also leak information that increases short-run risk.
Evasive refusals reduce what is revealed in the moment, but may slow down
the rate at which risky interactions are converted into actionable knowledge.



State: a reduced-form ‘“robustness stock.” Time is discrete, indexed
by t =0,1,2,.... The system state is a scalar z; € [0, 1], interpreted as the
fraction of an underlying (normalized) “vulnerability mass” that has been
discovered and mitigated by time ¢. Higher x; means the deployed model-
and-mitigation stack is more robust in the sense that fewer exploitable weak-
nesses remain. The residual mass 1—x; summarizes all ways the system could
still fail on risky prompts (e.g., jailbreakable patterns, policy gaps, monitor-
ing blind spots, or model behaviors that enable misuse). This aggregation is
deliberate: our goal is not to track individual vulnerabilities, but to capture
how refusal policy affects the rate at which the platform learns about and
closes them.

We assume z; is observed by the decision-maker at the start of period ¢.
Concretely, z; can be thought of as a sufficient statistic for internal safety
indicators (incident rates, red-team findings closed, coverage of known attack
families), compressed to a single dimension.

Actions: refusal style as a control variable. In each period, the plat-
form chooses a refusal style a; € {E, R} applied to the risky-prompt envi-
ronment:

E explanatory refusal (reason-giving, boundary clarification, safe alternatives),
ay = . . .. . .
R evasive refusal (terse, generic, minimal information).

(1)
We treat benign prompts as contributing an additive constant to payoffs
and omit them without loss of generality. The action a; should be read
as the outcome of an institutional bundle (training targets, style guidelines,
evaluator preferences, and policy constraints) that pins down how the system
responds conditional on refusing. The modeling choice to focus on the refusal
channel isolates the mechanism we care about: the information content of
safety enforcement.

Learning and obsolescence dynamics. Refusal style affects the effi-
ciency with which the platform (and its surrounding ecosystem) discovers
and mitigates the remaining vulnerability mass. We encode this with an
action-dependent “learning/discovery rate” «, € [0,1]. We assume

04E>O¢RZO, (2)

capturing that explanatory refusals produce richer artifacts (structured ra-
tionales, self-classifications, more legible boundary descriptions) that can be
mined by monitoring pipelines and red teams, while evasive refusals compress
those signals. The key is not that evasive refusals generate zero information,
but that they reduce marginal learnability.



At the same time, robustness is not purely cumulative: threat actors
innovate, new domains are deployed, and mitigations can decay. We incor-
porate this with an “obsolescence/attacker-innovation” rate w € [0,1). When
w is higher, a larger fraction of accumulated robustness becomes ineffective
each period (or equivalently, new vulnerability mass arrives that must be
rediscovered).

We model the law of motion as the affine transition

Ti41 = fat(xt) = (1 - w) [(1 - O‘at)xt + aat] . (3)

This functional form has three features we will use throughout. First, it is
increasing in z;: a more robust system remains (weakly) more robust next
period, holding the refusal style fixed. Second, the state drifts toward 1 at
a rate governed by «,, but only insofar as robustness is not eroded by w.
Third, the incremental learning advantage of explanatory refusals shrinks as
x4 rises:

fe(x) = fr(x) = (1 —w)(ag —ar)(l — ), (4)

so explanation matters most when there is “more left to learn” (low z) and
becomes less pivotal as the system approaches the frontier x — 1. This
diminishing-returns structure is meant to capture that once major vulnera-
bility families are patched and monitoring is mature, additional reason-giving
yields less marginal discovery.

It is also helpful to note the boundary behavior. When = 1, we have
fa(1) = (1 —w), so even a fully hardened system is pulled below perfection
when w > 0: continual learning is required to keep pace. When x = 0, we
obtain f,(0) = (1 —w)ag, so the first steps in hardening are governed directly
by the learning rate induced by refusal style.

Per-period platform payoffs: benefits of style and costs of harm.
We specify a per-period private payoff that combines (i) a benefit term re-
flecting user trust and product utility associated with the refusal style, and
(ii) a cost term proportional to expected harm from residual vulnerability
and any immediate leakage induced by the refusal content. Formally, under
action a € {E, R} at state x:

Ta(z) = by — k(R(1 — ) + A,). (5)

Here b, is an action-specific “experience” or “reputational” benefit from the
refusal style. A natural interpretation is that explanatory refusals reduce
user frustration, increase perceived transparency, and perform better on non-
evasiveness evaluations, so one may have by > bg, though we do not require
this. The term h(1 — ) is baseline harm intensity: as long as residual
vulnerability mass remains, there is some chance that risky prompts lead
to harmful outcomes (successful jailbreaks, facilitated misuse, or operational
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incidents). The parameter £ > 0 scales this harm into the platform’s private
objective (e.g., via expected liability, enforcement risk, reputational damage,
or internalized ethical cost).

Finally, A, > 0 captures incremental immediate harm directly attributable
to the refusal style, holding x fixed. The canonical case is Agp > Apg: ex-
planatory refusals may leak boundary information or provide a more infor-
mative oracle for adversarial adaptation, increasing short-run risk even if
they also improve long-run learning. Importantly, by separating h(1 — x)
from A,, we allow immediate leakage risk to persist even in relatively robust
states (e.g., some information channels remain sensitive regardless of overall
hardening).

A social objective with informational spillovers. The platform typ-
ically does not capture all benefits from faster discovery. Mitigations, bench-
marks, incident taxonomies, and red-team methods often spill into the broader
ecosystem (through publications, shared vendor practices, open-source tools,
and regulator learning), reducing systemic risk beyond the focal platform. To
represent this, we introduce a social planner payoff that adds a public-good
term proportional to the extra discovery induced by explanatory refusals
relative to the evasive baseline:

Ta(r) = ma(z) + 9 (a0 — ar)(l — ), (6)

where g > 0 is the marginal social value of incremental discovery. The term
(g — ar)(1 — z) isolates the portion of learning attributable to choosing
FE rather than the baseline R, and scales it by the remaining vulnerability
mass. This captures a simple but operationally relevant fact: when the
system is already near the frontier (x high), there is less new information to
be produced for the ecosystem; when it is fragile (x low), informative refusal
behavior can have outsized external value.

Intertemporal tradeoffs and discounting. Both the platform and the
planner evaluate streams of payoffs with discount factor 5 € (0, 1). The plat-
form chooses a policy for a; to trade off immediate consequences (including
any leakage cost Ap — Ap and any private benefit by — bgr) against the dy-
namic effect of faster movement in x; under higher ag. The planner faces
the same dynamic tradeoff but additionally internalizes the spillover value

g.

Scope and limitations of the reduced form. This setup abstracts
away many details: heterogeneous users (benign versus adversarial), multi-
dimensional vulnerability surfaces, and explicit strategic adaptation by at-
tackers. Those forces are partially folded into h, A,, and w. The payoff is
tractability: we obtain a one-dimensional state whose evolution is directly
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controlled by refusal style, which lets us ask a sharp question that is difficult
to answer qualitatively in deployment debates—namely, when should a plat-
form be explanatory versus evasive, and how do institutional incentives shift
that decision. In the next section we make this precise by defining the plat-
form’s Markov decision problem and characterizing the resulting equilibrium
policy.

4 Equilibrium concept: the platform’s Markov de-
cision problem

Because refusal style is chosen by a single platform facing an evolving ro-
bustness state, the equilibrium object in our reduced form is a stationary
Markov policy (often called a Markov-perfect policy by analogy to dynamic
games, though there is no strategic opponent explicitly modeled here). A
(stationary) Markov policy is a measurable map o : [0, 1] — {E, R} that se-
lects the refusal style as a function of the current robustness stock x. Given
o, the induced state process is x¢y1 = fa(xt)(xt) and the platform evaluates
the discounted return

E[Zﬁtwa($t)(xt) ‘ Ty = x], (7)

t>0

where expectation is trivial in our deterministic transition but is useful no-
tation for later extensions (e.g., stochastic incidents or noisy discovery).

Bellman equation and the dynamic programming operator. Let
V(x) denote the platform’s optimal value starting from state x. Standard
dynamic programming yields the Bellman equation

V(@) = max {mp(2) + BV (fe(2)), Ta(z) + BV (fa(@)}.  (8)

Define the Bellman operator 7" acting on bounded functions v : [0,1] — R
by

(To)(@) = max {ma(x) + Bolful)) }. (9)

a€{E,R}

The equilibrium value function is a fixed point V' = TV, and an optimal
Markov policy can be recovered by selecting, for each x, an action attaining
the maximum in . We will write the associated action-value functions as

Qa(7;v) = ma(2) + Bo(fa()), (10)

so that Tv(z) = max{Qg(x;v), Qr(z;v)}.
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Existence and uniqueness of the value function. Our primitives im-
ply a well-posed discounted Markov decision problem on a compact state
space. First, payoffs are bounded on [0, 1] because 7,(x) is affine in x with
finite coefficients. Second, the transition maps fg, fr are continuous and
map [0, 1] into itsele Under these conditions, 7" is a contraction on the
complete metric space of bounded functions with the sup norm: for any
v, W,

1Tv = Twlloo < Bllv = wlloo, (11)

since |max; u; — max; 4;| < max;|u; — @;| and the only dependence on v
is through Sv(f,(x)). By the Banach fixed-point theorem, there exists a
unique bounded fixed point V' solving , and value iteration v("t1) = Ty
converges uniformly to V from any bounded initial v(°). This uniqueness is
about the value V; optimal actions need not be unique at states where the
platform is indifferent between F and R.

Monotonicity of the value function and comparative statics intu-
ition. We will maintain (and later verify in examples) that V' is increasing
in . Intuitively, higher x reduces baseline expected harm in every future
period and, because the transition is increasing in z, it also leads to (weakly)
higher future robustness under any fixed action sequence. Formally, if v is
increasing, then T'v is increasing: each Q(+;v) is increasing because 7, () is
increasing in x (higher robustness reduces harm) and f,(x) is increasing with
v increasing. Since value iteration preserves monotonicity and converges to
V, it follows that V is increasing whenever we start from an increasing v(%)
(e.g., 00 = 0) and the monotonicity-preserving conditions hold. This prop-
erty is central for the threshold characterization: it ensures that a larger
learning step in x is always weakly more valuable in continuation terms.

From Bellman optimality to a threshold rule. To characterize the
optimal policy, consider the action advantage

D) := (nu(e) = nr(@) + B(V(fp(@) = V(fa@).  (12)

Choosing F is optimal at z if and only if D(z) > 0. Our goal is to establish
a single-crossing property: D(z) is (weakly) decreasing in x. If so, the set
{z : D(z) > 0} is an interval of the form [0, z*] (possibly degenerate), which
implies a threshold policy.

The economic content of the single-crossing condition is straightforward.
The current-period term 7g(x) — mr(x) captures the immediate net benefit
of being explanatory rather than evasive (including any leakage penalty).
The continuation term depends on how much more robustness we expect

'Indeed, fo(z) = (1 — w)[(1 — aa)z 4+ aa] € [0,1 —w] C [0,1] for aq € [0,1] and
w € [0,1).
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tomorrow under F than under R, scaled by the marginal value of robustness
encoded in V. Crucially, the incremental learning advantage

fe(@) = fr(z) = (1 —w)(ag —ag)(l —x) (13)

shrinks as x rises: when little vulnerability mass remains, there is less left
for explanation to uncover, so the dynamic value of explanation attenuates.

To make this formal, we impose sufficient conditions that deliver decreas-
ing differences. First, we assume 7wg(z) — mr(x) is weakly decreasing in xE|
Second, we use that fg(x)— fr(x) is strictly decreasing in z, as shown above.
Third, we require that V' is increasing, and (for a convenient sufficient con-
dition) that V' is convex so that the mapping y — V(y) exhibits increasing
marginal value of yE|

Under these assumptions, D(z) is weakly decreasing, hence the optimal
policy is a threshold: there exists z7, € [0,1] such that the platform chooses
E if x <z}, and R otherwise. When D(z) is strictly decreasing (for example,
when the continuation term is strictly decreasing and indifference occurs at
most at a point), the threshold is essentially unique: any two optimal Markov
policies can differ only on a set of states where D(x) = 0, which in the strict
case is at most a singleton.

Indifference, tie-breaking, and (non-)uniqueness of policies. Even
with a unique value function, the optimal action correspondence can be set-
valued at indifference states. This matters operationally: two platforms
with identical primitives could implement different refusal styles near the
switching region if their evaluation or governance processes impose different
tie-breaking rules (e.g., “prefer safer in the short run” vs. “prefer more infor-
mative outputs”’). In our analysis, the main comparative statics and welfare
conclusions depend on the location of the switching region rather than on
behavior at a single knife-edge state, so we treat the threshold as unique up
to these indifferences. Formally, if D(z) > 0 on an interval, E is uniquely
optimal there; if D(z) < 0 on an interval, R is uniquely optimal there; if
D(x) = 0 at isolated points, any selection is optimal.

Computability and verification perspective. The contraction prop-
erty implies that the threshold policy can be computed by value iteration

*In the baseline payoff specification 74 (z) = by — w(h(1 — 2) + A,), the difference
me(x) — wr(z) = (be — br) — K(Ag — AR) is constant in x, satisfying this assumption
with equality. We state the condition in a slightly more general form to accommodate
extensions where, e.g., explanation has a larger immediate leakage penalty in more fragile
states.

3Convexity is not logically necessary for a threshold result but provides a clean route via
monotone comparative statics: when V' is convex and fr — fr decreases in x, the difference
V(fe(x))—V (fr(z)) inherits a decreasing pattern. One can alternatively work with weaker
curvature bounds or use a supermodularity argument in (x, a) under appropriately ordered
transitions.
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on a grid over [0, 1], and verified by checking the sign of D(x) (or the dis-
crete analogue). This computational angle is more than a technicality: in
deployment settings, refusal policies are often governed by measurable tar-
gets (incident rates, audit findings closed, evaluation scores), and a scalar
index like z is a plausible abstraction of internal dashboards. The threshold
structure says that, under diminishing informational returns to explanation,
optimal behavior can be summarized by a simple rule: explain while the sys-
tem is still meaningfully learnable, then become more evasive once marginal
discovery falls below its immediate risk and product-cost tradeoff. In the
next section we leverage this structure to compare private and social objec-
tives when discovery has spillover value.

5 Main results: externalities, a closed-form switch-
ing rule, and welfare comparisons

Our central welfare claim is that refusal style is not merely a UX choice: it is
an information-production decision that governs how quickly the robustness
stock improves, and those informational gains are partly non-rival. In deploy-
ment, explanatory refusals can surface actionable details for internal triage,
generate structured telemetry for auditors, and create reusable safety knowl-
edge (e.g., red-team corpora, mitigations, and classifier features). These are
precisely the kinds of benefits that a single platform may not fully internalize
when its objective is limited to product benefit minus expected harm. We
formalize this as a wedge between the platform’s and the planner’s switching
thresholds.

Theorem 5.1 (Refusal Externality / private underprovision of explanation).
Suppose the single-crossing conditions in the enclosing scope hold so that both
the platform and the planner admit (possibly degenerate) threshold-optimal
Markov policies. If the planner’s per-period payoff adds spillovers

9-(@a—ag)(l—-x), g=0,
then the planner’s explanatory region weakly contains the platform’s:
xp < xyy,
with strict inequality whenever g > 0 and the switching threshold is interior.

Proof sketch and interpretation. Let D(z) denote the platform’s ad-
vantage of F over R at state x as in . The planner’s corresponding
advantage is

D(@) = (7u(@)~7r(@))+B8(W(fo(@)~W (fa@))) = D@)+g(an—ar)(1-)+8([W-V]ofp—W-
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The key observation is that, holding fixed the continuation values, the plan-
ner enjoys an additional current gain from choosing F at any x < 1:

7p(z) — 7r(r) = Tp(*) — TR(T) + 9(ap — ar)(l —z) > 7p(z) — 7r(2),

with strict inequality if ¢ > 0 and x < 1. Under the maintained threshold
structure (single-crossing), adding a nonnegative term that is decreasing in
x shifts the indifference point weakly to the right. Operationally: even if
explanatory refusals are privately unattractive once the system is already
robust, the planner keeps explaining longer because the marginal informa-
tional return—though diminishing in z—still benefits third parties. The
theorem thus identifies a concrete externality channel: the platform behaves
too evasively relative to the social optimum.

A tractable switching rule under an *“R-continuation” approxima-
tion. While Theorem is qualitative, governance often requires a quanti-
tative rule-of-thumb: when is a temporary push toward explanation justified
given a prevailing operational default of evasiveness? A simple and infor-
mative approximation is the one-step deviation test: compare (i) choose E
today and then revert to R forever against (ii) choose R forever. This corre-
sponds to evaluating whether a single explanatory intervention is worthwhile
given a fixed operational continuation.

Let VE(x) denote the value under the stationary policy that always
chooses R. Because payoffs are affine in « and the transition fr(z) is affine,
VE is affine:

VE(z) = Ar + Bgrz.

Write fr(z) = cg + dre with dr = (1—-w)(1- aR)iand cr = (1 — w)ag.
Also write mr(z) = Tr + khx, where T := b — k(h + Ag). Substituting
into the fixed-point equation V¥ (z) = 7r(z) + BVE(fr(z)) yields the slope

Br = rh+ BBrdy = B il > 0. (14)

=K = .
f s B 1-80-w)(1—ag)

The sign Br > 0 formalizes the “shadow value” of robustness: improving
x reduces baseline harm forever, discounted and attenuated by obsolescence
and imperfect learning under R.

Now compare mg(x) + BVE(fp(z)) to VE(x). Using linearity, the gain
from a one-period switch to E is

mp(w) — mr(x) + BBr(fe(r) — fr(=)) = (bp — br) — K(Ap — AR) + M?R()l —w)(ap —agr)(l —x).
15

Thus, under the R-continuation test, choosing E is optimal if and only if
is nonnegative. The implied threshold is

_ k(A — Ag) — (bg — bR)

b
s BBr(1 — w)(ap — an)

(16)
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clipped to [0, 1] when the numerator is negative (then zf > 1, so E is always
worthwhile under the test) or when the numerator is large (then zf < 0, so
E is never worthwhile under the test).

Two aspects of matter for mechanism design. First, the dynamic
term scales with (1 — z): explanation is most valuable when the system is
still far from fully robust, consistent with the diminishing-returns intuition
behind the global threshold structure. Second, the multiplier SBg converts
“faster learning” into “future harm reduction”; by 7 this shadow value
is larger when baseline harm severity & is high, when the decision-maker is
more patient (high ), and when robustness is persistent (low w and/or low
ag so that R does not already close vulnerabilities quickly).

Welfare comparison and a governance-relevant wedge. Theorem[5.]]
implies that the private policy induces a lower steady-state rate of vulnera-
bility discovery than is socially optimal whenever g > 0 and x is not already
near 1. In welfare terms, let op and oy denote the platform’s and planner’s
optimal threshold policies, and let x? , a:fV be the induced state trajectories
from a common xy. The welfare gap can be written as

W(wo) = V(@0) = 3 B (Foyy (o) (#1) = Topap)(@P)),

t>0

which combines (i) direct spillovers g(ag — ar)(1 — x) in periods where the
planner explains and the platform does not, and (ii) the downstream effect
that earlier explanation raises future x and thereby reduces baseline harm
kh(1—z) in all subsequent periods. Even if one is agnostic about the precise
magnitude of g, the model isolates a practical failure mode: platforms can
rationally select evasive refusals because they internalize immediate leakage
risk Agp — Ar but not the ecosystem-level returns to producing structured
information about what the model would have done.

Finally, it is important to flag a boundary case: if K(Ag — Ap) is large
enough relative to both (b — bg) and the dynamic value in (15)), then both
the platform and the planner optimally choose evasiveness everywhere. This
is the regime where explanation cannot be made safe at the margin (e.g., be-
cause it reliably leaks operationally useful details to attackers). In such cases,
the externality result does not argue for unconditional mandates; rather, it
highlights an R&D target: reduce Ag (through safer templating, constrained
decoding, or redaction) and/or increase ap — ap (through better monitor-
ing pipelines) to move the system into a region where explanatory refusal is
dynamically and socially beneficial. The next section turns to comparative
statics that make these levers explicit and clarify when standards should
push platforms toward explanation.
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6 Comparative statics and policy levers

The threshold characterizations above let us read comparative statics directly
as statements about when explanatory refusal is worth its (possibly) higher
immediate leakage risk. Under the tractable R-continuation rule (16, the
explanatory region expands whenever the dynamic term

BBRr(1 —w)(ap — ag)(1 —x)

becomes large relative to the immediate net cost K(Ag — Agr) — (bg — br).
This decomposition is useful because each factor corresponds to a concrete
deployment or governance lever: patience and horizon (), the shadow value
of robustness (Bpg, driven by harm severity and persistence), the speed at
which robustness decays (w), and the incremental informativeness of expla-
nation (g — ag). In what follows, we interpret these levers as audit design
choices, threat-model properties, and evaluation/regulatory incentives, and
we spell out when standards should mandate explanation versus when they
should merely enable it.

Audit intensity and instrumentation: raising ar can reduce the
marginal value of explanation. A common argument for explanatory
refusals is that they create better feedback for internal safety work. But
in practice, a large fraction of feedback comes from telemetry (prompt logs,
classifier scores, sandboxed tool traces, and post-hoc incident analysis) rather
than from the literal refusal text. In our reduced form, better auditing and
instrumentation can be modeled as increasing the discovery rate even under
evasiveness, i.e. raising ag. This has two opposing implications.

First, increasing g shrinks the gap ag — ag, reducing the incremental
learning advantage of explanation and thus lowering the threshold at which £
is privately optimal. This is the “substitution” effect: if we can learn almost
as well from evasive refusals (because audits are strong), then explanatory
text adds less unique value.

Second, stronger audits can also change the immediate-risk terms A g, Ag.
For example, templated explanations with automated redaction, plus contin-
uous monitoring for prompt-injection and policy circumvention, can reduce
the effective leakage risk of explanation, lowering Ag without commensu-
rately lowering ap. This is a “complementarity” effect: audit systems make
explanation safer and more actionable (by tying refusals to structured labels,
reproduction harnesses, and mitigation pipelines). Which effect dominates
is empirical and depends on whether the organization is telemetry-limited
(low ag) or mitigation-limited (high Ag due to uncontrolled phrasing and
unconstrained decoding).

Governance implication: standards that only demand “more auditing”
can unintentionally make mandated explanation less attractive by pushing
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apr up without reducing Ag. If the goal is to elicit socially valuable expla-
nation, audit requirements should be paired with safe explanation protocols
(e.g. fixed refusal templates, constrained generation, and redaction rules)
that specifically target Ap.

Attacker innovation / obsolescence w: continual change favors longer
explanatory phases, up to a point. The obsolescence parameter w cap-
tures the intuition that robustness is not a one-time capital stock: new at-
tack methods appear, distribution shift occurs, and mitigations decay. In
the transition f,(z) = (1 — w)[(1 — aq)x + @], higher w directly attenuates
the carry-over of today’s robustness into tomorrow. This creates two forces.
On the one hand, higher w raises the need for ongoing discovery: without
continual learning, x erodes mechanically. In a richer model where E could be
chosen repeatedly, this tends to push optimal policies toward more frequent
information production, because the system must “run to stay in place.”
On the other hand, in the one-step expression , w scales down the
immediate effect of learning on next period’s robustness through the factor
(1 — w). Thus, extreme obsolescence reduces the effectiveness of any one-
period discovery intervention. Put differently: when the world changes too
quickly, explanation may still be socially valuable for ecosystem learning, but
the platform’s private incentive to invest in robustness through explanation
can weaken because the platform cannot reliably bank the gains.
Governance implication: when w is high (rapidly evolving threat land-
scape), standards should emphasize continuous monitoring and mitigation
pipelines rather than sporadic disclosure; if explanation is mandated, it
should be coupled to rapid patch loops so that the information produced can
be converted into durable improvements before obsolescence erases them.

Harm severity and liability: xh increases the shadow value By and
can make explanation privately rational. Equation shows Bpg
scales linearly with xh. Interpreting s as a per-unit social/penalty cost and
h as baseline harm intensity, their product captures the extent to which
residual vulnerability mass (1 — z) is costly. When harms are severe (e.g.
biosecurity, scalable cyber abuse) or liability is salient (expected penalties,
contractual damages, or enforcement risk), the shadow value of moving z
upward increases. Since Bg enters the dynamic benefit term in 7 higher
kh expands the parameter region where E is optimal even if explanation
slightly increases immediate risk (moderate Ap — AR).

This is an important corrective to a common intuition: “if harms are
severe, we should be more evasive.” Our model says the opposite can hold
dynamically: severe harms raise the value of accelerating robustness, which
can justify explanatory refusal provided the explanation can be made safe
enough (i.e. Ag is controllable). The relevant tradeoff is not “explain vs be
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safe,” but “invest in discoverability vs accept persistent risk.”

Governance implication: in high-severity domains, standards should not
treat evasiveness as the default safe harbor. Instead, they should specify
conditions under which explanation is required (for learnability) and condi-
tions under which it is prohibited (when Ap cannot be bounded), with an
explicit burden on developers to demonstrate control of Ag via redaction
and constrained decoding.

Evaluation penalties for evasiveness: shifting by — bg can close the
private—social wedge without requiring implausible altruism. The
term (bg —bg) captures private benefits of non-evasiveness: user trust, prod-
uct usefulness, and procurement/evaluation rewards for being forthright.
Evaluators and regulators can operationalize this by penalizing evasive re-
fusals (lowering br) or rewarding safe, structured explanations (raising bg).
Because (bg —bg) enters the switching condition linearly, even modest evalu-
ation incentives can substantially shift the threshold when the learning term
is already positive.

However, there is a failure mode: rewarding “explanation” without spec-
ifying safety constraints can increase Ag by inducing models to be more
verbose, more specific, or more negotiable in refusal contexts. This is a
mechanistic Goodhart problem: optimizing for explanation quality can push
systems toward revealing actionable detail unless the explanation format is
constrained.

Governance implication: evaluation should score structured explanations
that are (i) non-actionable, (ii) consistently templated, and (iii) instrumented
(linkable to internal taxonomy and mitigation tickets). In our terms, the goal
is to raise bg — br while simultaneously lowering Ag — Ag.

When should standards mandate explanation? A thresholded man-
date tied to measurable proxies. The externality result implies that
when g > 0 there are states where the planner prefers E but the platform
prefers R. A practical standard cannot observe x directly, but it can mandate
explanation contingent on proxies for “how much is left to discover.” Exam-
ples include: recent incident rate, red-team yield (fraction of novel findings),
distribution-shift indicators, and measured robustness scores on adversarial
suites.

A conservative rule consistent with the model is: mandate explanatory
refusal in regimes where (a) residual risk is high (low proxy for x), (b) the
incremental learning advantage is real (large measured o —a g under the or-
ganization’s telemetry), and (c) the incremental leakage risk is demonstrably
bounded (small A — Agr under controlled evaluations). Conversely, when
Ap cannot be controlled (e.g. explanations reliably leak attacker-relevant
details), standards should not mandate explanation; they should mandate
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investments that move the system into the explainable-safe regime, such as
constrained decoding, redaction, and better post-deployment monitoring.

Framed this way, the mandate is not ideological (“always explain”) but
state-dependent: explain while fragile, evade when robust or when explana-
tion is unsafe. The model’s comparative statics then become a checklist for
policy design: raise by — br via evaluation incentives, reduce Ag via safe
templating, increase ap — apr via better labeling and triage pipelines, and
treat high-w domains as requiring continuous rather than episodic informa-
tion production.

7 Extensions (optional, tractable)

The baseline model deliberately collapses several real deployment details
into a single robustness state x and a binary refusal style. That abstrac-
tion is useful for isolating the dynamic tradeoff, but we can extend it in
ways that (i) remain analytically close to the threshold logic above, and
(ii) map more directly to operational decisions (rate-limiting, user segmen-
tation, safety taxonomy design, and controlled degrees of disclosure). We
sketch four such extensions; in each case, the key question is whether we
preserve a monotone “explain-when-fragile” structure, and what new failure
modes appear.

(i) Endogenous attack frequency and strategic traffic shaping. A
missing channel in the reduced-form payoff is that refusal behavior can
change how often risky prompts are attempted. If explanations are per-
ceived as informative or negotiable, they may increase probing and adapta-
tion; conversely, they may deter low-effort attempts by making policy bound-
aries clear. A tractable way to capture this is to let the arrival rate of risky
prompts be m(a,z) > 0, so that per-period harm and benefit scale with
traffic:

Ta(2) = m(a,x) (ba — ﬁ(ﬁ(l —x)+ Aa)), Tig1 = fa(xy).

If m(E,z) > m(R,z) for low x (explanations invite more probing when the
system is fragile), then explanation becomes less attractive precisely where
learning benefits are highest, creating a sharper tradeoff. However, the ex-
tension remains tractable if m(a, x) is decreasing in x (robust systems attract
fewer successful probes) and if the difference m(E, x) — m(R, x) is itself de-
creasing in z (probing externalities are largest when fragility is obvious).
Under these monotonicity conditions, the action-value difference can still
exhibit single-crossing, but the threshold generally shifts downward.

This formulation also makes explicit a governance-relevant lever: traffic
shaping. Rate limits, friction, and abuse monitoring can be modeled as
reducing m(a,x) without directly changing f,. In practice, this means we
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can sometimes “buy back” explanatory refusals by coupling them to anti-
probing controls, rather than treating explanation as intrinsically unsafe.

(ii) Heterogeneous users: benign demand vs malicious probing.
Our baseline payoff b, implicitly mixes benign user value with any reputa-
tional or product effects of refusal style. A more explicit decomposition sepa-
rates benign and malicious prompt streams with different objective weights.
Let A € [0,1] be the share of risky-prompt mass that is malicious, with
(1 — A) benign-but-risky (e.g., users requesting disallowed content without
adversarial intent). Suppose the developer derives benefit b2 from benign in-
teractions and faces harm from malicious interactions. A simple specification
is
Ta(x) = (1 = MbE — Ak (R(1 — 2) + AY) — (1 = N)rAZ,

where AM captures incremental immediate misuse risk and AP captures
benign-side costs (e.g., chilling effects, user frustration) that we may want
to penalize as welfare loss. The state transition can still be driven by ag-
gregate discovery, but we can now allow discovery to depend on user type:
explanations may elicit more actionable reports from benign users (raising
effective learning) while also improving malicious adaptation (raising imme-
diate risk). One tractable reduced form is to keep xi11 = fo(z) with aq
interpreted as net discovery after internal triage, while allowing AM to scale
with A.

Two qualitative implications follow. First, policies may become seg-
mented: we can justify explanatory refusals for authenticated, low-risk co-
horts (small effective A) while remaining evasive for untrusted traffic. Sec-
ond, the “threshold in 2”7 may interact with a “threshold in A\”: explanation
is optimal when the system is fragile and the audience is sufficiently benign.
This resonates with common deployment practice (graduated access, KYC,
research programs) and clarifies an alignment failure mode: if user-mix shifts
over time (e.g., during a viral event), a policy calibrated for low A can become
unsafe without any change in x.

(iii) Multi-category harms with different learning rates and ob-
solescence. Real systems face multiple hazard classes (e.g., cyber, fraud,
self-harm, bio) with different mitigation pipelines, different rates of attacker
adaptation, and different externalities. A tractable extension replaces scalar
x with a vector x = (:U(l), e ,m(K)), where each component tracks mitigated
mass for category k. Let the transition be separable:

2™ = O @) = (1= ) [(1 = aup)z® + aan],

and let per-period harm aggregate additively with category weights kyhy:
K

Ta(®) = ba — > _ kg ((1 = 2W) + Ag ).
k=1

22



This remains computationally simple (affine dynamics and linear payoffs),
but introduces a choice: the action a is shared across categories, while learn-
ing and leakage effects vary by category. If category-level terms differ sharply
(e.g., Apy is large for bio but small for cyber, while gy — ap i, is the op-
posite), then a single global refusal style is inherently mis-specified. One
response is to allow category-contingent actions a(*) e {E, R}, which yields
K independent scalar problems and hence K thresholds. Another response is
to retain a global action but interpret it as a policy bundle whose effective pa-
rameters are weighted averages induced by classifier routing and templating.
Either way, the extension makes a concrete empirical prediction: category
suites with higher wy (faster attacker innovation) should exhibit longer “ex-
planatory phases” provided Ag; can be bounded, whereas categories with
high irreversible leakage risk should remain evasive even when fragile.

A further open problem is combinatorial: if we add a constraint on the
total explanation budget (e.g., only a fraction of refusals can be explana-
tory due to reviewer capacity), we obtain a knapsack-like dynamic allocation
problem. The affine structure suggests index-style heuristics (e.g., explain
in the category with highest marginal shadow value of x(k)), but formal
optimality generally requires stronger assumptions.

(iv) Partial explanations: continuous disclosure and safe templates.
Finally, the binary action set is too coarse for many safety protocols. In prac-
tice we choose how much to disclose: a terse refusal, a generic policy citation,
a high-level harm rationale, or a detailed (but redacted) explanation with
pointers to safe alternatives. We can model this with a continuous action
e € [0,1] representing explanation intensity. A tractable parameterization is

a(e) = agte(ag—ag), A(e) = Ag+e(Ag—AR), b(e) = bp+e(bp—bRr),

yielding the same affine transition z¢y1 = fu(c)(7¢) and linear payoffs in e.
With this linear mixing, the per-period objective is linear in e plus a contin-
uation term that is concave/convex depending on V. Under mild convexity
of V, the optimum often remains “bang-bang” (choose ¢ = 0 or e = 1),
which rationalizes why organizations gravitate toward discrete refusal tem-
plates. But if we add diminishing returns to explanation (concave a(e)) or
sharply convex leakage risk (convex A(e)), interior solutions emerge: the
optimal policy uses partial explanation when z is moderate, reserving full
explanation for the most fragile regimes.

This extension also cleanly represents “safe explanation protocols” as con-
straints on the feasible set: we can cap A(e) by enforcing templated language,
constrained decoding, and redaction, effectively allowing higher a(e) at lower
A(e). In other words, protocol design shifts the action frontier rather than
merely picking a point on it.

Across these extensions, the overarching methodological point is that we
can preserve the core threshold intuition while adding operational degrees
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of freedom. Doing so sets up the next step: specifying how to measure
the effective a’s, A’s, and w’s from deployment data and evaluations, so
that the model’s state-dependent prescriptions become testable rather than
rhetorical.

8 Empirical design sketch: measuring discovery and
adaptive robustness

To make the dynamic tradeoff actionable, we need to operationalize three
latent objects that our theory treats as primitives: (i) the robustness state
x¢ (how much vulnerability mass is already “found and mitigated”), (ii) the
action-dependent discovery rates ag, ar (how quickly remaining mass is con-
verted into mitigations under different refusal styles), and (iii) the obsoles-
cence rate w (how quickly newly relevant vulnerability mass appears, or how
quickly old mitigations stop working). The empirical challenge is that none
of these are directly observed: what we see are noisy incidents, evaluation
scores, red-team findings, and policy outputs, all under strategic adaptation
and shifting traffic.

Measuring the state z; via a latent robustness index. A practi-
cal proxy for x; is a severity-weighted “residual risk” score built from stan-
dardized adversarial evaluations. Suppose we maintain a fixed evaluation
battery of unsafe tasks (plus periodically refreshed tasks to detect over-
fitting) and record a success probability s; (higher means more successful
jailbreaks/misuse). A simple mapping is z; &~ 1 — s, but this conflates cat-
egory mix and changes in evaluator difficulty. A more robust approach is
to treat z; as a latent factor estimated from multiple signals: (a) jailbreak
success on several suites (public, internal, third-party), (b) severity-weighted
open vulnerability backlog (e.g., number of unresolved high-severity policy
bypasses), (c) incident rate among monitored abuse channels, and (d) time-
to-mitigation for newly discovered issues. Formally, we can use a state-space
model with observation equations of the form

y = ¢+ djae+ v,

where yt(j ) are logged metrics (transformed to approximate linearity) and
x; follows the controlled transition xy11 = f4,(x¢) + €. This allows us to
filter z; over time (Kalman-style if Gaussian, particle filtering otherwise) and
to quantify uncertainty, which matters because policy thresholds should be
risk-adjusted rather than point-estimated.

Operationalizing “discovery rate” o, from mitigation kinetics. In
the model, a4 is not merely the rate at which we observe new failure modes;
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it is the effective conversion of remaining vulnerability mass into durable
mitigations after triage. Empirically, we can approximate oy by tracking the
flow of actionable discoveries that lead to model or system changes (training
data additions, rule updates, tool hardening) and then verifying that those
changes reduce measured residual risk. Concretely, we log a pipeline: (i)
candidate failures (user reports, automated monitors, red-team probes), (ii)
validated failures, (iii) mitigations deployed, and (iv) post-mitigation regres-
sion results on holdout attack sets. The key is to discount discoveries that
are duplicates or non-generalizing. If Dy is the severity-weighted count of
novel validated vulnerabilities at time ¢, and Z; is our filtered robustness esti-
mate, then a reduced-form estimator consistent with the transition structure
is obtained by fitting

P = (1 —w)[(1 — aa,) Tt + a,] +

by maximum likelihood (with aq, taking one of two values depending on
whether the deployed refusal policy is predominantly F or R). In practice, we
will want to allow for partial compliance (mixed templates, model variance),
so we can replace the binary a; with the observed fraction of explanatory
refusals in period t and estimate an “effective” « as a function of that fraction.

Estimating obsolescence w under nonstationarity. The term w cap-
tures adversary innovation and concept drift: even if we stop changing the
model, the environment changes. We can estimate w by observing degrada-
tion in robustness metrics during intervals with minimal mitigation updates
(or by controlling for update size). For example, if we have a “frozen” evalu-
ation harness (or a stable subset) and we observe xy11 < Ty despite no major
interventions, that decay is informative about wE| More realistically, we fit
w jointly with o, in the state-space model, letting w vary by category or by
threat surface when the multi-category extension is used.

Training regimes as interventions on (b,, A,, o). A core implication
of the theory is that refusal style is a policy choice whose value depends on
how it shifts immediate harm A, and discovery g, as well as user-facing
utility b,. Different training regimes move these parameters differently. For
example, reward-model training that explicitly values “helpful refusals” can
increase by — br (users prefer non-evasive responses) and may also increase
ap — ap if explanations yield higher-quality feedback and debugging sig-
nals. However, the same training can increase Ag — Ay if explanations leak
procedural details that enable adaptation. This suggests a disciplined exper-
imentation loop: define a family of refusal templates or decoding constraints

4This is imperfect because absence of logged interventions does not imply absence of
effective changes (e.g., upstream model updates, tooling modifications). The identification
strategy should therefore instrument for true update intensity.
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(the treatment), measure how they change leakage proxies and discovery
yield, and then compute the implied threshold shift. Importantly, we should
treat “explanatory refusal” as a bundle (templating, redaction, constrained
decoding, reference to safe alternatives), because Ap is largely a function of
protocol design rather than a fixed property of being “explanatory.”

Outcome metrics: immediate harm, dynamic robustness, and spillovers.
We need metrics aligned to each term in the objective. Immediate harm prox-
ies include: (i) success rate on high-risk tasks under a red-team harness, (ii)
severity-weighted policy violation rate in monitored traffic, and (iii) down-
stream incident reports (fraud, malware generation, etc.) after appropriate
attribution controls. Dynamic outcomes include: (a) time-to-detection of
novel failures, (b) time-to-mitigation, (c) post-mitigation generalization (re-
duction in success on held-out attacks, not just the discovered prompt), and
(d) stability under refreshed attacks (measuring effective w). To capture
the spillover value g, we can measure externalities such as (1) the rate of
high-quality third-party vulnerability reports attributable to refusal expla-
nations, (2) cross-org patch diffusion (e.g., whether shared taxonomies or
disclosed failure modes reduce incidents elsewhere), and (3) ecosystem-level
indicators like reduced prevalence of known attack patterns. None of these
is perfect, but the point is to treat spillovers as measurable outputs rather
than rhetorical claims.

Identification strategy: randomized rollout and quasi-experiments.
The central causal question is how switching from R to E (or increasing
explanatory intensity) changes both near-term harm and subsequent robust-
ness. The cleanest design is a randomized controlled rollout: randomize
refusal style at the level of (i) user cohorts (authenticated research users
versus baseline), (ii) geographic regions, or (iii) time blocks, with guardrails
that cap worst-case harm. Because interference is plausible (attackers can
adapt and share prompts), cluster randomization and careful monitoring are
required. When randomization is infeasible, we can use quasi-experimental
designs: difference-in-differences around policy changes, regression discon-
tinuity when a threshold rule is introduced (e.g., explanation allowed only
above a trust score), or instrumental variables using exogenous shifts in ex-
planation feasibility (e.g., temporary staffing increases that improve triage
speed and hence effective o without directly changing leakage). Across de-
signs, we must explicitly model selection: if E changes the arrival rate of
risky prompts, then naive comparisons confound policy effects with traffic
composition. Logging prompt volumes, attacker novelty, and user trust sig-
nals is therefore part of the identification plan, not an afterthought.
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A practical estimation loop. Putting these pieces together, we can im-
plement a repeated cycle: (1) deploy a controlled variation in refusal policy
(template, decoding constraints, or training regime); (2) estimate its effect
on immediate harm metrics (informing Arp — Agr) and on discovery pipeline
outputs (informing ap —ar); (3) update the filtered robustness state z; and
re-estimate (ag, ar,w) with uncertainty intervals; and (4) compute the im-
plied privately optimal and socially optimal switching rules under candidate
governance weights (k, g). The end goal is not to pretend the world is exactly
affine-Markov, but to use the structure to force a consistent accounting of
(i) what we gain dynamically from transparency and explanation, (ii) what
we risk immediately, and (iii) where governance mechanisms must intervene
when spillovers are large.

These empirical considerations set up the next step: translating the
wedge between private and social thresholds into concrete policy levers (au-
dits, procurement requirements, and transparency norms), while being hon-
est about where the model’s tractability ends and numerical methods become
unavoidable.

9 Discussion and policy implications: procurement,
audits, and transparency

Our threshold results are not merely a stylized “behavioral” claim about tone;
they imply that refusal style is an intertemporal safety investment with a pre-
dictable wedge between private and social incentives when discovery benefits
spill over. That wedge is precisely what governance and organizational design
are meant to address. In this section we translate the model into (i) pro-
curement language that creates enforceable incentives, (ii) audit designs that
measure the primitives our switching rule depends on, and (iii) transparency
requirements that increase g-type spillover benefits while managing A g-type
leakage risk. We then flag where the tractable affine Markov structure ends
and where numerical methods (and richer data) become unavoidable.

Procurement language: contracting on refusal quality rather than
refusal rate. A recurring failure mode in practice is that buyers contract
on a coarse scalar—e.g., “refuse all unsafe requests” or “maintain a policy vi-
olation rate below 7—which encourages evasive refusals that satisfy surface-
level compliance while starving the monitoring pipeline of actionable signal.
Our framework suggests contracting on a profile of refusal behavior: when
the system is in a low-robustness regime (low x), buyers should want a higher
share of “helpful-safe” refusals that generate diagnostic information and steer
users to legitimate alternatives, provided leakage is controlled.

Concretely, procurement documents can require (a) a refusal taxonomy
(e.g., categories of unsafe intent), (b) a calibrated “explanatory refusal” tem-
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plate family with redaction rules, and (c) evidence that these templates
increase effective discovery (a measurable proxy for ag — ag) without mate-
rially increasing immediate harm (a proxy for Ay — Apr). Language that is
both enforceable and model-aligned includes clauses such as: (i) minimum
coverage of explanatory refusals on risky prompts under an agreed classifier
(with dispute resolution for misclassification), (ii) minimum “actionability”
standards (refusals must cite policy category and provide safe alternatives,
not generic deflection), and (iii) reporting obligations on mitigation kinetics
(time-to-triage, time-to-fix, and post-fix regression performance). Impor-
tantly, buyers can allow the platform to be evasive in narrowly defined high-
leakage categories (where Ap is demonstrably large), which avoids turning
the model into a blanket pro-transparency slogan.

Audit design: estimating a-gaps and auditing the switching fron-
tier. Audits that only test one-period harmfulness miss the dynamic quan-
tity we care about: whether the system is learning from pressure. The opera-
tional audit target implied by the theory is the platform’s effective switching
behavior: do we observe explanatory refusals concentrated when residual
vulnerability is high (low Z;), and do those refusals actually accelerate miti-
gation (higher estimated «) rather than merely sounding better?

A practical audit protocol can be organized around three linked checks.
First, a measurement audit verifies the latent robustness index Z; (or a proxy)
is computed from a stable, versioned evaluation harness with documented
refresh procedures and severity weights; auditors should be able to reproduce
the index from logs and evaluation artifacts. Second, a causal policy audit
estimates the effect of explanatory intensity on (i) short-run misuse success
and (ii) downstream discovery yield, using randomized rollouts where feasible
or quasi-experimental designs otherwise; the output is an audited estimate
of (Ap — Ag,arp — ar) with uncertainty intervals. Third, an incentive-
compatibility audit checks whether the deployed policy is consistent with an
announced decision rule (explicit threshold, or an equivalent risk score rule)
and whether deviations are justified by documented changes in primitives
(e.g., a newly discovered leakage channel that increases Ag). This is the
governance analog of verifying that the system is following a stable Markov
policy rather than opportunistically shifting to evasiveness when scrutiny
rises.

Transparency requirements: increasing spillovers while bounding
leakage. Because the planner’s advantage comes from the spillover term
g(ap —ag)(1l —z), governance can act either by increasing g (making learn-
ing benefits more socialized) or by requiring the private actor to internalize
it (through liability, penalties, or mandated practices). Transparency is the
most direct way to increase g, but it must be targeted: indiscriminate pub-
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lication can also raise Ag by enabling faster attacker adaptation.

We therefore favor “structured transparency” requirements that separate
diagnostic information from procedural information. Examples include: (i)
publishing refusal taxonomies and high-level rationales (what category trig-
gered the refusal) without disclosing operational details that would help jail-
breaks; (ii) sharing de-identified aggregates on novel failure discovery and
mitigation timing; (iii) maintaining a secure disclosure channel for vetted re-
searchers, with time-bounded embargoes and standardized severity scoring;
and (iv) releasing red-team datasets in delayed or filtered form to reduce
immediate exploitability. The common theme is to turn refusal interactions
into auditable safety signals without turning them into attacker training
data. This is also where tooling matters: templating, constrained decoding,
and automatic redaction can reduce Ag while preserving the explanatory
content that drives ag.

Regulatory posture: performance standards plus process stan-
dards. If a regulator attempts to mandate a single refusal style, it will
fail in the corner cases our model already highlights: when explanatory con-
tent is unavoidably high-leakage, a strict explanation mandate can backfire.
Instead, the model motivates a hybrid regime. Performance standards cap
realized harm (bounding h(1 — x) + A, proxies), while process standards
require demonstrable learning dynamics: versioned evaluations, incident re-
porting, and evidence that risky-prompt handling contributes to mitigation
rather than simply suppressing outputs. In other words, we want to regulate
both the level of risk and the slope of risk reduction over time.

Limits of the tractable model. The affine one-dimensional state is do-
ing a lot of work. In deployment, vulnerability mass is multi-surface (bio,
cyber, fraud, persuasion), and actions are richer than {F, R}: platforms can
gate by user trust, throttle, rate-limit, watermark, route to tools, or request
verification. Moreover, the environment is strategic: attacker effort responds
to policy, which means w and even the effective arrival rate of risky prompts
are endogenous. Finally, partial observability is the norm: Z; is filtered with
noise, and the platform faces ambiguity about whether apparent improve-
ments are robust or merely benchmark overfitting.

These limitations matter for interpretation. Our threshold result should
be read as a qualitative organizing principle (single-crossing between immedi-
ate leakage risk and dynamic learning benefit), not as a claim that one scalar
index is sufficient for all safety decisions. The empirical program sketched
earlier is therefore not optional; it is what anchors the abstractions.

What requires numerical methods (and what to compute). The
moment we move beyond the affine single-state setting, closed forms largely
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disappear and we need numerical dynamic programming or simulation-based
methods. Three extensions are especially important. First, a multi-dimensional
state x € [0,1]% (by hazard category) with action-dependent cross-effects re-
quires solving a higher-dimensional Bellman equation; approximate dynamic
programming (e.g., fitted value iteration) or policy-gradient methods with
safety constraints become relevant. Second, stochastic discovery and rare
catastrophic events break the linear-quadratic intuition; we then want risk-
sensitive objectives (CVaR, worst-case robust control) and constraint-based
formulations, which typically require numerical solvers. Third, partial ob-
servability turns the problem into a POMDP: the sufficient statistic is a
belief over z, updated via the audited observation model. Here, particle fil-
ters plus belief-state planning (or certainty-equivalent approximations with
conservative margins) are the practical route.

From a governance perspective, the key point is that numerical methods
do not weaken the policy message; they sharpen it. Once the primitives
are estimated with uncertainty, the switching rule becomes a distributional
statement (e.g., explain when Pr(z < z*) is high enough), which is exactly
what audits and procurement should anticipate: decisions under uncertainty,
with documented risk margins and reproducible computation.

Taken together, procurement, audits, and transparency can be designed
to make the socially valuable part of explanatory refusal legible and con-
tractible, while bounding the leakage channels that would otherwise dom-
inate. This sets the stage for our conclusion: the central challenge is not
choosing between “helpful” and “safe,” but engineering refusal protocols and
governance mechanisms so that helpfulness contributes to cumulative robust-
ness rather than merely redistributing risk over time.

10 Conclusion

We set out to formalize a tension that practitioners routinely encounter but
rarely articulate in intertemporal terms: the same refusal that reduces imme-
diate misuse can either (i) accelerate the system’s discovery-and-mitigation
pipeline by producing structured signal, or (ii) starve that pipeline by with-
holding any actionable information. In our model, this is the distinction
between explanatory refusal E and evasive refusal R. The central contribu-
tion is to treat refusal style not as a static “tone choice,” but as a control
variable in a discounted dynamic optimization problem, where today’s refusal
affects tomorrow’s robustness through learning rates (ag, ar) and where the
environment continuously regenerates residual risk through obsolescence w.
Two qualitative results organize the analysis. First, under mild single-
crossing conditions—the incremental learning advantage of explanation shrinks
as robustness improves, and the immediate advantage of explanation does
not grow with x—the platform’s optimal policy has threshold structure: ex-
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plain when residual vulnerability is high (low x), and become more evasive
as the system approaches maturity (high ). This matters because it turns
an otherwise fuzzy governance debate (“should the model be more explana-
tory?”) into an auditable behavioral claim: the relevant object is the plat-
form’s switching frontier in state space. In particular, the model implies that
persistent, unconditional evasiveness is dynamically hard to justify whenever
explanatory refusals measurably increase discovery and the decision-maker
places nontrivial weight on future safety.

Second, when we add a spillover term capturing ecosystem learning—the
idea that diagnostic refusal content can improve safety beyond the deploying
platform (via shared benchmarks, external red-teaming, improved defender
playbooks, or simply reduced systemic risk)—we obtain a refusal externality.
The social planner values g(ag — agr)(1 — z) in addition to the platform’s
private payoff. This shifts the planner’s switching frontier outward: the
socially optimal region for explanation is (weakly) larger, 7, < 7, and
strictly so when the spillover is positive and the threshold is interior. The
practical interpretation is not that platforms “should always explain,” but
that private incentives predictably underprovide explanation in precisely the
regimes where marginal discovery is highest. This is the same structural
logic that motivates safety case requirements, incident reporting, and shared
vulnerability disclosure in other security domains: information production is
socially valuable and privately undersupplied.

The policy relevance of the formalism is therefore less about advocat-
ing a particular refusal template and more about identifying what must be
made legible to align incentives. The switching rule depends on a small set
of primitives: the immediate net effect of explanation on harm and util-
ity, (bg — br) — k(Ag — AR); the dynamic effect on robustness, scaled by
(ag—ap); the pace of obsolescence w; and the effective discount factor § (in-
cluding any institutional analogs, such as long-term contracts, reputational
capital, or liability regimes). Governance interventions map cleanly onto
these objects: procurement can increase the private return to non-evasiveness
(raising bp — bgr) while bounding leakage (lowering Ap — Ag); auditing can
estimate a-gaps and verify that the deployed policy responds to measured
risk; and transparency and disclosure can increase the spillover value g or,
alternatively, internalize it through mandated practices and penalties.

At the same time, the model highlights a concrete failure mode for naive
mandates. If explanation carries substantial incremental leakage risk in some
prompt classes (large Ag), then forcing F uniformly can reduce welfare even
when F is beneficial on average. This points toward conditional governance:
require platforms to implement and justify state- or category-dependent re-
fusal protocols, rather than enforcing a single global stance. In our terms, the
objective is not to pick E or R once-and-for-all, but to (i) define a defensible
robustness index (or vector of indices) that approximates x, (ii) estimate
how refusal style affects both short-run misuse and downstream discovery,

31



and (iii) commit to a switching behavior with documented updates when
primitives shift.

We should also be explicit about what our tractable structure leaves
out, because those omissions are precisely where the empirical and engineer-
ing work concentrates. The one-dimensional state x collapses heterogeneous
hazard surfaces into a scalar, yet real systems face category-specific risk and
mitigation channels with cross-effects (e.g., a refusal protocol that improves
cyber robustness may teach adversarial prompting strategies that increase
fraud). Our affine dynamics treat obsolescence as exogenous, whereas ad-
versaries respond strategically to policy, making w and even the distribution
of risky prompts endogenous. We assume perfect observability of x, but
deployed platforms operate with noisy, delayed, and sometimes gamed mea-
surements. Each of these extensions can break closed forms and complicate
comparative statics, but they do not negate the organizing principle: refusal
behavior trades off immediate exposure against the production of safety-
relevant information, and that tradeoff is inherently dynamic.

These limitations suggest a concrete research agenda that is both tech-
nical and governance-facing. On the technical side, we need methods that
(i) estimate learning rates from operational data (how much does a refusal
interaction contribute to identifying, reproducing, and patching a vulnera-
bility?), (ii) separate “explanatory content” from “exploit-enabling content”
to reduce Ag while preserving ag, and (iii) plan under partial observability
and distribution shift, where the sufficient statistic is a belief over robustness
rather than x itself. On the governance side, we need verifiable commitments:
machine-verifiable logs, evaluation harnesses with versioning and refresh pro-
cedures, and audit protocols that can detect when a platform is substituting
surface compliance (high refusal rate) for genuine learning (high effective ).
In the language of our model, the goal is to prevent a platform from opti-
mizing the wrong objective by hiding in the R region while claiming safety
improvements that are not reflected in mitigation kinetics.

A final takeaway is conceptual. Many discussions frame the “helpfulness
versus safety” tradeoff as a static Pareto frontier. Our results replace that
picture with a dynamic one: helpful-safe refusal can be an investment that
shifts the frontier outward over time by increasing robustness, but only if
explanation is engineered to be diagnostic rather than exploitative and only
if institutions reward the resulting spillovers. Conversely, evasiveness can be
a form of short-run risk suppression that leaves the underlying vulnerability
mass intact, increasing the chance that risk reappears elsewhere or later. In
practice, the right question is not “should we refuse more?” but “are our
refusals generating the information needed to reduce future harm, and are
we measuring that reduction in a way that can be audited and contracted
upon?”’

If we have succeeded, the value of the model is not that it fully captures
deployment reality, but that it isolates a small number of measurable quan-
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tities and makes a falsifiable prediction about policy shape. This is the point
at which alignment theory can meet governance: once refusal style is treated
as a dynamic safety lever with a predictable externality, it becomes possible
to design institutions—procurement, audits, transparency, and liability—
that push private behavior toward socially efficient learning without naively
demanding disclosure that increases exploitation. The remaining work is to
build the measurement infrastructure, engineering mitigations, and verifica-
tion mechanisms that let these abstract primitives be estimated and acted
upon in real systems.
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