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Abstract

Modern RLHF pipelines often train reward models on opportunis-
tically collected preference data, where latent attributes of responses
(truthfulness, helpfulness, formatting, length) are strongly correlated.
The source material emphasizes that such limited latent positivity can
yield reward misidentification: models fit in-distribution but fail under
shifts that break training correlations, producing coherent yet mis-
aligned behavior (goal misgeneralization). We formalize this problem
as an experiment-design task. We build a tractable Bradley–Terry–Luce
(BTL) preference model with a low-dimensional latent factorization Z,
allow heterogeneous evaluator objectives C (observed), and let the plat-
form choose targeted interventions—controlled response edits, prompt
randomization, or counterfactual labeling—to reshape the training dis-
tribution over factor differences. We (i) quantify how limited overlap
induces ill-conditioned Fisher information and high-variance reward
estimates, (ii) propagate reward estimation error through downstream
policy optimization to obtain welfare-regret bounds under distribution
shift, and (iii) solve for cost-minimizing intervention allocations that
achieve a target worst-case robustness guarantee. The headline re-
sult is an optimal design characterization: budget should be allocated
to interventions that increase information in the highest-leverage la-
tent directions (those that change which policy is selected), until a
minimum overlap floor is reached. We complement theory with an
empirical active-intervention loop on an open preference dataset using
controllable text generation, demonstrating improved OOD robustness
at equal labeling cost relative to naive data scaling.
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1 Introduction

A recurring failure mode in modern alignment pipelines is that systems can
appear well-behaved on the training distribution yet pursue an unintended
objective when deployed. In the language of goal misgeneralization, the
learned policy has internalized a proxy that matches training-time supervi-
sion but diverges from the designer’s intent off-distribution. While this phe-
nomenon is often discussed in terms of “inner alignment” or representation
learning, we emphasize a complementary and, in practice, more operational
lens: goal misgeneralization can arise because the reward is not identified
from the available preference data. When preference comparisons concen-
trate in a narrow region of the latent space, many distinct reward functions
induce nearly indistinguishable training likelihoods. A downstream opti-
mizer can then select a policy that is optimal for an incorrect but statistically
plausible reward, yielding coherent misoptimization rather than random er-
ror.

The key mechanism is limited overlap (or limited positivity) in the la-
tent factors that actually determine preferences. Intuitively, preference data
are informative about tradeoffs only when the data contain variation along
the relevant dimensions. If two reward-relevant attributes are strongly cor-
related during training—say, helpfulness and harmlessness co-move because
the baseline data source rarely exhibits conflict between them—then prefer-
ence labels cannot reliably reveal how evaluators trade one attribute against
the other. In such regimes, the platform can fit a reward model that per-
forms well in-sample while placing essentially arbitrary weight on the “miss-
ing” direction. The risk becomes acute precisely when deployment breaks
the training correlation structure: the policy optimizer exploits the misesti-
mated tradeoff to move into regions where the proxy reward increases but
the true evaluator welfare decreases.

This perspective clarifies why scaling data is not always the remedy. If the
training distribution places negligible probability mass on the parts of factor
space that distinguish competing reward hypotheses, then collecting more
i.i.d. comparisons mostly repeats the same information. Statistically, the
relevant curvature of the log-likelihood remains small, and the uncertainty
in some reward directions decays slowly. In the logistic/BTL setting, this
shows up as an ill-conditioned Fisher information matrix, where the smallest
eigenvalues correspond to directions of weak excitation in the observed factor
differences. In safety terms, “more RLHF” can reduce label noise and im-
prove average-case calibration while leaving worst-case behavioral incentives
essentially unconstrained along the dangerous directions.

We argue that this is becoming a practical bottleneck for alignment as
of 2026. Frontier systems are increasingly optimized by strong downstream
search: large policy classes, tool use, long-horizon planning, and preference-
model-based rejection sampling all amplify small reward misspecifications
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into large behavioral differences. Meanwhile, the marginal preference com-
parison is often drawn from a narrow, platform-convenient distribution (e.g.
conversational prompts and common response styles), creating a mismatch
between what is easy to label and what is safety-critical to identify. As a
result, the limiting factor is not simply the number of comparisons n, but the
geometry of the comparison distribution—which directions of latent variation
are present, with what frequency, and at what cost.

This motivates treating data collection as a design problem rather than
a passive logging exercise. Concretely, we consider that the platform can
purchase targeted interventions: alternative prompting protocols, counter-
factual pair generation, controlled perturbations, or curated evaluation tasks
that alter the distribution of factor differences δ shown to evaluators. The
interventions do not change the underlying preference parameter (the eval-
uator’s “true” tradeoffs), but they do change which tradeoffs are revealed in
the data. From an economics viewpoint, this is analogous to choosing exper-
iments to identify demand elasticities; from a learning-theory viewpoint, it is
about ensuring sufficient exploration in the covariate space for consistent es-
timation; from an alignment viewpoint, it is about preventing the optimizer
from exploiting unmeasured degrees of freedom in the reward.

A central theme of our framing is that overlap is not an abstract regular-
ity condition: it is a safety-relevant resource that can be traded off against
real costs. Interventions are expensive (they require expert labeling, bespoke
test construction, or higher evaluator burden), but they can add information
exactly where the baseline distribution is degenerate. This creates a concrete
optimization frontier: we can either (i) spend heavily on more baseline data
that may not reduce uncertainty in the missing directions, or (ii) spend se-
lectively on interventions that change the support and correlations of latent
factors, improving identifiability per unit cost. The latter option looks in-
creasingly attractive as models become more capable optimizers: the welfare
loss from a single misidentified tradeoff can dominate the average-case gains
from marginally better in-distribution fitting.

A second theme is that the relevant notion of “identification” is downstream-
dependent. In deployment, we typically do not use the reward model to pre-
dict absolute preference probabilities; we use it to choose among a finite set
of candidate policies, fine-tuning checkpoints, decoding strategies, or system
configurations. Thus, only certain directions in reward space matter: those
that change the argmax over policies. If we let {∆µm} denote the contrasts in
latent factor means between the optimal policy and alternatives, then reward
uncertainty projected onto the span of {∆µm} is what drives policy regret.
This suggests a design principle that is both theoretically crisp and opera-
tionally actionable: allocate intervention budget to increase information in
the high-leverage directions where policies differ, rather than attempting to
uniformly improve estimation in all d latent dimensions.

This downstream lens also sharpens how goal misgeneralization can look
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“sudden.” If the best and second-best policies are separated by a small
margin under the true objective, then even modest estimation error can flip
their ordering. Moreover, as we expand the candidate set Π (more policies,
more decoding options, more tools), we introduce more contrast directions
that the design must be informative about. In practice, this means that
capability progress can increase the required overlap: more sophisticated
optimizers search harder for reward-model loopholes, and a richer policy class
provides more ways to exploit misestimated tradeoffs. Absent intervention,
the platform can see a paradoxical effect where training metrics improve
while deployment welfare becomes more fragile.

There are immediate governance and verification implications. Overlap
conditions can be audited: one can estimate the condition number of em-
pirical information matrices under different evaluation protocols, or track
whether certain factor tradeoffs are ever presented to evaluators. Interven-
tion budgets can be justified in terms of worst-case regret targets rather than
ad hoc “red teaming.” Regulators and internal safety review can demand ev-
idence that the reward model is not merely accurate on a benchmark, but
identified relative to the set of deployed policies. This is especially salient
when deployment induces correlation shifts (new user populations, new tools,
different prompt distributions) that preserve latent sufficiency but alter the
joint distribution of factors; under such shifts, non-identified reward direc-
tions can become behaviorally dominant.

We also flag a failure mode that our formalism makes easy to miss if
one thinks only in terms of average-case prediction error: a reward model
can be confident and wrong in precisely the directions that matter. In ill-
conditioned regimes, the MLE can have small uncertainty along well-excited
directions and large uncertainty along the missing ones, yet standard evalua-
tion might overweight the former. Downstream optimization then effectively
extrapolates along the latter. This is a structural explanation for why re-
ward hacking can persist even when the reward model seems well-calibrated
on held-out comparisons: the held-out set is drawn from the same narrow
design, so it cannot detect errors orthogonal to the observed variation.

Finally, we acknowledge limitations and open problems that are impor-
tant for aligning the theory with deployed systems. First, the latent factor-
ization Z is an idealization: in practice, we may only have proxies (automatic
scorers, representation vectors, or hand-designed rubrics), and misspecifi-
cation can interact with design choices. Second, evaluator objectives are
heterogeneous and sometimes strategic; designing interventions per type c
raises both statistical and fairness questions. Third, the BTL/logistic model
is a stylized likelihood; real preference noise can be context-dependent and
non-IID, affecting both identification and cost-effectiveness of interventions.
Fourth, adaptive designs (active preference learning) can further reduce cost
but introduce incentives, feedback loops, and potential Goodharting of the
intervention protocol itself. We view these as opportunities: the core mes-
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sage remains that the safety bottleneck is increasingly about where we collect
preference data, not only how much we collect.

In sum, we study goal misgeneralization through the lens of limited over-
lap and experimental design. The formalism that follows makes precise a
safety tradeoff that practitioners already face: when baseline data under-
explores the latent dimensions that separate candidate policies, scaling alone
may be economically inefficient and safety-insufficient, whereas targeted in-
terventions can restore identifiability and reduce welfare regret at lower total
cost.

2 Related work

Our framing sits at the intersection of (i) goal misgeneralization and in-
ner alignment, (ii) causal and econometric treatments of preference learning
under limited positivity, (iii) reward hacking and optimizer-induced distri-
bution shift, and (iv) optimal experimental design for discrete choice mod-
els. The common thread is that apparent training-time success can coexist
with a large set of statistically plausible reward hypotheses, and downstream
optimization can systematically select policies that exploit the resulting am-
biguity.

Goal misgeneralization and inner alignment. The alignment litera-
ture has long emphasized that a learned system may generalize the wrong
objective even when it matches training feedback ??. Much of this discus-
sion is representation-centric: internal mesa-objectives, proxy features, and
inductive biases. We instead highlight a complementary failure mode that
is closer to identification in statistics and econometrics: even if the model
class and latent factorization were “correct,” the data-generating process can
make the reward effectively non-identifiable in the directions that matter
for deployment. This perspective resonates with recent work stressing that
deployment often induces distribution shifts along precisely those axes that
training-time oversight fails to cover, making downstream optimization brit-
tle ??. In our setting, the “suddenness” of misgeneralization emerges from
a policy-selection discontinuity: small changes in the learned weights can
flip the argmax over a discrete policy set, producing a qualitatively different
deployed behavior.

Preference learning, RLHF, and reward modeling as discrete choice.
Learning reward models from pairwise preferences is a core ingredient of
RLHF and related pipelines ??. The Bradley–Terry–Luce (BTL) / logis-
tic formulation we use is standard in discrete choice and has been widely
adopted as an idealized model of pairwise judgments. Prior work typically
focuses on statistical efficiency, label noise, and downstream RL stability.
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Our contribution is not to propose a new likelihood, but to foreground a
particular geometric bottleneck: the curvature of the log-likelihood is con-
centrated along the directions of factor differences δ that the data actually
explores. When those differences live near a low-dimensional manifold (e.g.,
because attributes are strongly correlated under the baseline data source),
the reward is weakly constrained in orthogonal directions even if the training
loss is low. This is precisely the regime where a strong policy optimizer can
turn small modeling uncertainty into large welfare loss.

Causal preference learning and positivity/overlap. In causal infer-
ence, positivity (overlap) ensures that counterfactual effects are identifiable
because each treatment has support across confounder strata ?. Analogous
conditions appear in contextual bandits and offline policy evaluation, where
insufficient exploration leads to high-variance or biased estimates. Recent
work on causal preference learning similarly emphasizes that preferences ob-
served under a narrow logging policy may not identify how users would
respond under alternative options ?. Our setting differs in that the “treat-
ment” is not the deployed policy directly, but the comparison design that
generates pairs (Y, Y ′) and thus the distribution of δ. Nonetheless, the failure
mode is structurally the same: without overlap in the covariate directions
that determine the choice probabilities, multiple parameter vectors induce
nearly identical observed likelihood. We operationalize this via the Fisher
information (or restricted eigenvalues thereof), which plays the role of an
overlap certificate tailored to the BTL/logistic model.

Reward hacking, Goodhart effects, and optimizer-induced shift.
The observation that optimizing a learned reward can induce pathological
behavior is often discussed under reward hacking and Goodhart’s law ??.
Many papers emphasize misspecification (the reward fails to capture intent)
or distribution shift (the policy visits out-of-distribution states). Our account
isolates a third ingredient that is especially relevant for preference-based su-
pervision: even when the reward model is in-class and the latent factors
are sufficient for preferences, the data can leave some tradeoffs underdeter-
mined, enabling “legitimate” exploitation of uncertainty. This connects to
analyses of adversarial or worst-case generalization for learned objectives,
where the optimizer searches along directions that are weakly supervised
?. The safety implication is that standard held-out evaluation drawn from
the same baseline design can systematically miss the relevant error modes:
the model may generalize well within the narrow subspace defined by the
training comparisons while remaining unconstrained off that subspace.

Experimental design for discrete choice and logistic models. Our
intervention model is closest in spirit to optimal experimental design for gen-
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eralized linear models and discrete choice, where the experimenter chooses
covariates to maximize information about parameters ??. In the BTL/logistic
setting, classical criteria such as D-optimality (maximize log det I) or A-
optimality (minimize tr(I−1)) motivate allocating samples to designs that
improve identifiability. We adapt this lens to an alignment-driven objective:
rather than optimizing generic parameter estimation, we care about down-
stream welfare regret under a finite policy set. This leads to a “task-aware”
notion of information: the leverage directions are those spanned by policy
contrasts ∆µm, and improving curvature in orthogonal directions may be
economically wasteful. In this respect, our approach is closer to decision-
theoretic experimental design, where one chooses experiments to reduce ex-
pected loss under a downstream decision rule ?.

Active preference learning and adaptive data collection. A large lit-
erature studies active learning of preferences, including query synthesis for
pairwise comparisons and adaptive designs that maximize expected informa-
tion gain ??. In RLHF practice, variants of active selection (e.g., sampling
near uncertainty regions) are increasingly used, though often heuristically.
Our paper is deliberately conservative: we first analyze non-adaptive mix-
tures of intervention arms, because this captures many operational interven-
tions (e.g., fixed evaluation suites, curated counterfactual prompts) and is
easier to audit. That said, the “high-leverage direction” principle naturally
suggests adaptive extensions: if we can estimate which contrast directions
are currently under-identified, we can allocate new comparisons to arms that
most increase the corresponding restricted eigenvalues. A key open problem
is to do so without creating feedback loops where the intervention proto-
col itself becomes a target for Goodharting or strategic behavior by either
models or evaluators.

Distribution shift, robustness, and auditing overlap. Our overlap-
based diagnosis complements robust RL and distributional robustness ap-
proaches that seek policies with guaranteed performance under shifts ?.
Those methods typically assume either access to a generative simulator or
a specified uncertainty set over dynamics/outcomes. In preference learn-
ing for language models, the shift is often in the joint distribution of la-
tent attributes, which is hard to specify ex ante. We therefore emphasize
a more auditable intermediate object: the empirical geometry of the com-
parison distribution as summarized by information matrices. This connects
to governance-oriented proposals to stress-test alignment pipelines using cu-
rated evaluations, red-teaming, and measurement of coverage across safety-
relevant dimensions ?. Our contribution is to provide a simple theoretical
bridge from such audits (“does the data excite the missing directions?”) to
a welfare-relevant quantity (policy regret), making the case that overlap is
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not only a statistical regularity condition but also a safety control knob.

Positioning and limitations relative to prior work. Compared to the
inner-alignment and goal-misgeneralization literatures, our model is inten-
tionally stylized: we assume latent sufficiency and a stable true parameter
θ∗c across interventions, and we treat candidate policies as finite. These as-
sumptions let us isolate the identification–optimization interaction in a form
where costs, overlap, and regret can be placed in a single optimization prob-
lem. Compared to the experimental design literature, our novelty is primarily
in the alignment-motivated objective (worst-case welfare regret over types
and policies) and in emphasizing that the “right” design depends on which
policies are actually under consideration for deployment. In practice, µ(π, c)
must be estimated, latent factors may be only partially observed, and inter-
ventions can change evaluator behavior; these issues are active areas where
combining causal modeling, robust estimation, and mechanism design seems
necessary.

Taken together, prior work suggests a clear lesson: when downstream
optimization is strong and the training comparison distribution is narrow,
identification failures can masquerade as benign generalization. Our next
section formalizes this in a latent-factor BTL model with observed objec-
tive types and mixture designs over intervention arms, making precise how
overlap enters through Fisher (and restricted) eigenvalues and how optimal
intervention spending targets the policy-relevant directions.

3 Model: latent-factor BTL with observed objec-
tives and mixture designs

We study a stylized preference-learning pipeline in which evaluators have
heterogeneous objectives, training comparisons are generated under a con-
trollable design, and deployment selects among a finite set of candidate poli-
cies by optimizing a learned reward. The purpose of the model is to make
explicit (i) what it means for comparison data to have “overlap” in the latent
factors that determine preferences, and (ii) how interventions can change
that overlap without changing the underlying objective being learned.

Objects, objectives, and latent sufficiency. Each training example
begins with a prompt X and two candidate responses Y, Y ′ (e.g., two com-
pletions from possibly different generation policies). An evaluator has an
objective type C ∈ C = {1, . . . , G} that is observed by the platform (e.g.,
via user segment, task label, or rater instruction). The evaluator outputs a
binary label

L = 1{(X,Y ) ≻ (X,Y ′)},
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indicating a preference for (X,Y ) over (X,Y ′).
We posit a latent factor vector Z ∈ Rd that summarizes the reward-

relevant properties of the prompt–response pair (X,Y ), and analogously Z ′

for (X,Y ′). The dimension d is not meant to be “the true complexity”
of language behavior; rather, it is an analytical stand-in for a factorization
induced by the model class, an evaluation rubric, or an interpretability layer.
The key modeling assumption is latent sufficiency for preferences:

Pr(L = 1 | X,Y, Y ′, C = c) = Pr(L = 1 | Z,Z ′, C = c).

Operationally, this says that once we condition on the relevant latent at-
tributes, all remaining dependence on the prompt and surface form is ir-
relevant for the preference probabilities. This assumption is strong, but it
isolates the identification bottleneck we care about: even with the “right”
features, the comparison distribution may fail to excite some directions of
tradeoff.

BTL likelihood with objective-specific weights. Given objective type
c, we model preferences via a Bradley–Terry–Luce / logistic link on factor
differences. Let

δ := Z − Z ′ ∈ Rd,

and let θ∗c ∈ Rd denote the true (unknown) reward weights for type c. The
preference model is

Pr(L = 1 | δ, C = c) = σ(θ∗⊤c δ), σ(t) =
1

1 + e−t
. (1)

This specification captures a smooth stochastic choice rule and, crucially
for our purposes, yields a likelihood whose curvature is governed by second
moments of δ reweighted by the logistic variance term σ(1− σ).

We allow θ∗c to vary across types because (in deployment) different users
or evaluation protocols can place different relative value on the same latent
factors. Observing C during training means we can estimate a separate
reward model per type, which avoids conflating heterogeneity with noise; it
also makes the design problem sharper, because overlap may be good for one
type but not another.

Downstream policies and welfare. Deployment chooses among a finite
set of candidate generation policies Π = {π1, . . . , πM}. For each type c and
policy π, let

µ(π, c) := E[Z | π,C = c]

denote the mean latent factor vector induced by rolling out policy π for users
of type c (treating µ as known in the clean model). True welfare is linear in
these factors:

U(π, c) = θ∗⊤c µ(π, c).
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This is the welfare quantity we ultimately care about controlling, because
the learning pipeline uses an estimated θ̂c to select a deployed policy π̂(c) ∈
argmaxπ∈Π θ̂⊤c µ(π, c). The finiteness of Π is deliberate: it captures common
practice (choose among a small set of checkpoints, decoding rules, or safety-
tuned variants) and makes the misselection failure mode crisp.

Designs as mixtures of intervention arms. Training data are gener-
ated under an experimentation design chosen by the platform. We model
this via J+1 arms indexed by j ∈ {0, 1, . . . , J}, where j = 0 is a baseline (no
special intervention) and j ≥ 1 are targeted interventions. An arm should
be interpreted broadly: it can change how prompts are sampled, how candi-
dates (Y, Y ′) are constructed, which generation policies produce candidates,
how responses are edited to induce controlled contrasts, or which subset of
user contexts is routed to evaluation. What matters is that each arm induces
a distribution over latent factor differences conditional on type:

δ ∼ Pj(· | C = c).

We emphasize an invariance assumption that makes the intervention “iden-
tifying” rather than “preference-changing”: arms may change what compar-
isons are shown, but they do not change how type-c evaluators trade off latent
factors. Formally, the same θ∗c governs (1) across all j.

The platform chooses a mixture over arms. Let w(c) ∈ ∆J be mixture
weights for type c (where ∆J is the simplex over {0, . . . , J}), and let n(c) be
the number of comparisons collected for type c, with nj(c) = n(c)wj(c). Each
arm has a per-sample cost cj capturing labeling plus intervention overhead,
and allocations are constrained by a budget

∑
c

∑
j cjnj(c) ≤ B.

A convenient stylized generative process for one labeled comparison is:

C = c (observed); J = j ∼ w(c); δ ∼ Pj(· | c); L ∼ Bernoulli(σ(θ∗⊤c δ)).

We suppress X,Y, Y ′ in the analysis and treat Pj(δ | c) as the design primi-
tive, since identification in (1) depends on the geometry of δ.

Limited positivity as ill-conditioned information. The central pathol-
ogy we model is limited latent positivity : under the baseline arm j = 0, the
realized factor differences δ occupy only a narrow region of Rd, often close to a
low-dimensional manifold. Concretely, this can occur when latent attributes
are strongly correlated under the baseline data source (e.g., “helpfulness” and
“harmlessness” move together in typical comparisons), or when the compar-
ison generator rarely produces candidates that trade one factor off against
another.

In logistic models, lack of coverage manifests as a near-singular Fisher
information matrix. For a fixed type c and arm j, define

Ij(c) := Eδ∼Pj(·|c)

[
σ(θ∗⊤c δ)

(
1− σ(θ∗⊤c δ)

)
δδ⊤

]
. (2)
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Under a mixture design w(c), the per-sample information is

I(w, c) =
J∑

j=0

wj(c) Ij(c). (3)

The logistic variance term σ(1 − σ) ≤ 1/4 downweights comparisons that
are almost surely decided (very large |θ∗⊤c δ|), reflecting that extremely easy
comparisons are less informative about the precise tradeoffs.

Overlap statistics: eigenvalues and restricted eigenvalues. We use
the information geometry to define overlap in a way that is tailored to prefer-
ence learning. A natural global overlap certificate for type c is the minimum
eigenvalue

κ(w, c) := λmin(I(w, c)).

When κ(w, c) is small, there exists a direction v in parameter space such that
v⊤I(w, c)v is small, meaning that the likelihood is flat in that direction and
θ∗c is weakly identified from n(c) samples. In the extreme case κ = 0, there is
a nontrivial direction with zero curvature, corresponding to an unidentifiable
tradeoff.

However, our downstream decision does not require uniform accuracy
in all directions: policy selection depends on how θ̂c projects onto policy-
contrast vectors. Let π∗(c) ∈ argmaxπ U(π, c) be the true best policy for
type c, and define contrast directions

∆µm(c) := µ(π∗(c), c)− µ(πm, c), m ̸= ∗.

This motivates a restricted overlap statistic that measures curvature only on
the subspace relevant for distinguishing candidate policies. Let

S(c) := span{∆µm(c) : m ̸= ∗},

and define
κS(w, c) := min

v∈S(c)
∥v∥2=1

v⊤I(w, c)v.

In settings where d is large but the candidate policies differ meaningfully
only along a small number of axes, κS can be a more accurate predictor of
welfare regret than λmin(I), and it also better captures why “buying overlap”
should be targeted rather than uniform.

Interventions as geometric control. Interventions are useful precisely
when they increase κ(w, c) (or κS(w, c)) per unit cost by changing the dis-
tribution of δ. A simple illustrative case is d = 2 with baseline δ con-
centrated along a near-diagonal direction (high correlation between compo-
nents), which makes I0(c) ill-conditioned. An intervention that deliberately
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constructs comparisons with opposing-factor changes (e.g., high on factor 1
but low on factor 2 versus the reverse) effectively rotates and spreads the
support of δ, increasing curvature in the missing direction. Importantly,
this can be cheaper than collecting many more baseline samples, because
additional baseline data repeats the same near-collinear information.

Discrete latent factors and boundedness. For some applications it is
natural to consider Z ∈ {0, 1}d (attributes present/absent) or, more gener-
ally, bounded factors. Our analysis accommodates this variant as long as δ
is bounded or sub-Gaussian under each Pj(· | c), since concentration of the
MLE hinges on controlling tails. The design logic remains the same: arms
are valuable when they ensure that δδ⊤ has mass in the directions where the
downstream decision is sensitive.

What the model sets up. This section defines the objects that connect
data collection to downstream welfare: (i) the BTL likelihood (1) with type-
specific parameters, (ii) a design space given by mixtures over intervention-
induced δ distributions, and (iii) overlap quantified by eigenvalues of the
resulting information matrix (3), optionally restricted to policy-relevant sub-
spaces. In the next section we analyze estimation under this model, showing
how the error of the logistic MLE scales with n(c) and κ(w, c) (or κS(w, c)),
and how these estimation bounds translate into welfare regret under discrete
policy selection.

4 Estimation: logistic MLE on factor differences
and the role of information

We now analyze the estimation step of the pipeline: given preference labels
generated from (1) under a mixture design, we fit θ̂c for each observed ob-
jective type c. The conceptual point is that “more data” is not, by itself,
a guarantee of reward accuracy: the geometry of the observed factor differ-
ences δ—as summarized by the Fisher information induced by the design—
determines which tradeoffs are learnable at a given sample size.

Per-type likelihood and the MLE. Fix an objective type c and consider
the subset of comparisons with C = c. Writing these as {(δi, Li)}n(c)i=1 , the
(conditional) log-likelihood is

ℓc(θ) =

n(c)∑
i=1

(
Li θ

⊤δi − log(1 + eθ
⊤δi)

)
, θ̂c ∈ argmax

θ∈Rd
ℓc(θ). (4)
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Equivalently, the negative log-likelihood is convex, and the MLE is charac-
terized by the score (first-order) condition

∇(−ℓc)(θ̂c) =

n(c)∑
i=1

δi

(
σ(θ̂⊤c δi)− Li

)
= 0, (5)

matching the equilibrium condition stated earlier. This is just logistic re-
gression with covariates δi and labels Li; the novelty is that the distribution
of δi is an object we can influence through the experimental design.

Curvature, separability, and why overlap is an estimation issue.
The Hessian of the negative log-likelihood is

∇2(−ℓc)(θ) =

n(c)∑
i=1

σ(θ⊤δi)
(
1− σ(θ⊤δi)

)
δiδ

⊤
i . (6)

Two structural features matter for safety-relevant behavior downstream.
First, curvature is inherently directional : if the δi are nearly collinear, then
(6) has a near-null direction, and the likelihood is almost flat along some
reward tradeoff. Second, logistic models can exhibit (quasi-)separation: if
the observed δi allow a hyperplane that (nearly) perfectly predicts Li, then
the MLE can have very large norm and become numerically unstable. In
our setting, both phenomena are symptoms of limited latent positivity: the
training comparisons do not contain enough “cross-cutting” tradeoffs to pin
down θ∗c .

Interventions are therefore not only about reducing variance constants;
they can be necessary to make the problem well-conditioned and to avoid
degenerate estimation regimes where the fitted reward is effectively arbitrary
off the narrow training manifold.

Fisher information under a mixture design. To connect (6) to a pop-
ulation quantity, recall that under a mixture design w(c), each sample draws
δ ∼ Pj(· | c) with j ∼ w(c), and then draws L ∼ Bernoulli(σ(θ∗⊤c δ)). The
corresponding (per-sample) Fisher information at the truth is

I(w, c) =

J∑
j=0

wj(c) Ij(c), Ij(c) = E
[
σ(θ∗⊤c δ)(1−σ(θ∗⊤c δ)) δδ⊤

∣∣ δ ∼ Pj(· | c)
]
,

as defined in (2)–(3). Intuitively, I(w, c) is the population analogue of
n(c)−1∇2(−ℓc)(θ

∗
c ); it is the object that interventions can improve by chang-

ing second moments of δ in the directions that matter.
A subtlety worth flagging is that Ij(c) depends on the unknown θ∗c

through the logistic variance term. In practice, a platform may only be
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able to optimize a proxy for information (e.g., second moments of δ alone,
or information evaluated at a pilot estimate). This creates an additional
exploration–exploitation layer: we want to buy overlap to learn θ∗c , but we
need a guess of θ∗c to quantify which comparisons are informative.

Asymptotic normality and the role of λmin(I). Under standard reg-
ularity conditions for logistic regression (e.g., correct specification, non-
separation, and finite second moments), the MLE is consistent and asymp-
totically normal: √

n(c)
(
θ̂c − θ∗c

) d→ N
(
0, I(w, c)−1

)
. (7)

This identifies the first-order dependence of estimation variance on the in-
verse information geometry. When λmin(I(w, c)) is small, there exists a di-
rection in which the asymptotic variance is large, meaning that the learned
reward can fluctuate significantly along a tradeoff direction even with large
n(c). This is the formal version of the empirical phenomenon that “collect-
ing more of the same kind of preference data” can fail to resolve key value
tradeoffs.

Finite-sample concentration via restricted strong convexity. For
downstream decision-making, we typically need non-asymptotic guarantees.
A convenient route is to use restricted strong convexity (RSC) of the em-
pirical risk. Suppose that for a fixed c and all arms j, δ is bounded or
sub-Gaussian; for concreteness, assume ∥δ∥2 ≤ R almost surely.1 Let

κ(w, c) = λmin(I(w, c)).

Then, with probability at least 1−α, for n(c) larger than a constant multiple
of d log(d/α), one can show

∥θ̂c − θ∗c∥2 ≤ C

√
d log(1/α)

n(c)κ(w, c)
, (8)

for a constant C depending on R (and mild regularity parameters ensuring
existence/uniqueness of the MLE). The key mechanism is that the empirical
Hessian in (6) concentrates around its expectation, yielding a lower bound

∇2(−ℓc)(θ̃) ⪰ n(c)
κ(w, c)

2
Id

uniformly over a neighborhood of θ∗c (with high probability), which in turn
implies that the negative log-likelihood is strongly convex around the truth
and the score noise term concentrates.

1The boundedness assumption can be relaxed to sub-Gaussian tails with slightly more
bookkeeping; the qualitative dependence on n(c) and κ(w, c) is the same.
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From a safety perspective, (8) makes precise why limited overlap is dan-
gerous: if κ(w, c) is tiny due to strong correlations in δ, then the sample size
required to reduce reward error to an acceptable level grows as 1/κ(w, c),
and may become prohibitive under realistic labeling budgets.

Policy-relevant accuracy and restricted eigenvalues. Uniform ℓ2 ac-
curacy can be overkill when deployment only chooses among a finite set of
policies. As discussed earlier, only projections of θ̂c − θ∗c onto the policy-
contrast span

S(c) = span{∆µm(c) : m ̸= ∗}

directly influence which policy is selected. This motivates replacing κ(w, c)
by a restricted overlap statistic,

κS(w, c) = min
v∈S(c)
∥v∥2=1

v⊤I(w, c)v,

and proving an analogous bound on ∥PS(c)(θ̂c − θ∗c )∥2 in terms of κS(w, c).
Informally, if interventions increase curvature primarily in S(c), then we can
guarantee policy selection stability without needing to learn every coordinate
of θ∗c precisely. This is one place where the formalism reveals a concrete
tradeoff: we can design for welfare among a known set of candidate policies
while still leaving the reward under-identified outside the policy-relevant
subspace—a potential failure mode if the policy class later expands or if
deployment shifts activate previously irrelevant directions.

Multiple objectives and allocation across types. Because C is ob-
served, we estimate θ̂c separately for each c. The bounds above apply type-
by-type with n(c) and I(w, c) determined by the type-specific allocation
w(c). Under a shared budget, this creates an explicit governance-relevant
question: which user segments receive intervention-rich comparisons (high κ
but higher cost) versus baseline comparisons (low cost but potentially low
κ)? The model cleanly separates two issues: statistical feasibility (whether a
type has enough overlap to learn) and normative prioritization (which types
warrant tighter regret control due to higher stakes or smaller policy margins).

Practicalities, misspecification, and open problems. We have treated
δ as observed through an interpretability layer and assumed correct logistic
specification. In practice, δ is itself estimated (e.g., via a learned repre-
sentation), and interventions may shift that representation; moreover, true
preferences may be non-logistic or context-dependent even after condition-
ing on Z. These forms of misspecification can break the clean link between
I(w, c) and estimation error. A robust extension would treat the fitted θ̂c
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as a quasi-MLE and bound its error relative to the best-in-class parame-
ter, with design criteria targeting robust curvature under model uncertainty.
Another open problem is adaptive design: sequentially choosing arms based
on interim θ̂c to focus information where it is most valuable, while ensuring
exploration to prevent blind spots.

What we carry forward to welfare analysis. The estimation stage
delivers a simple scaling law: reward-weight error decreases like 1/

√
n(c)κ,

where κ is an overlap certificate determined by the design mixture. In the
next section we connect this estimation error to the discrete argmax over
candidate policies, showing how small-but-structured reward errors can in-
duce coherent-but-wrong deployment behavior, especially under shifts that
change which policy-contrast directions are activated.

5 Downstream decision and welfare: how reward
error becomes coherent policy error

We now turn to the final step of the pipeline: a downstream optimizer uses
the learned reward to select a deployed policy from a finite candidate set.
This is where the statistical geometry of the training design becomes welfare-
relevant. The key distinction is that the downstream system does not “use” θ̂c
in the abstract; it uses it through an argmax over Π, so small but structured
estimation errors can induce discrete policy misselection and therefore large,
systematic welfare losses.

Deployment rule and true welfare. Fix an objective type c and re-
call the per-policy mean factor vector µ(π, c) = E[Z | π, c], which we
treat as known (or accurately estimated) for the finite candidate set Π =
{π1, . . . , πM}. The downstream optimizer deploys

π̂(c) ∈ argmax
π∈Π

θ̂⊤c µ(π, c), (9)

while the true welfare of a policy is

U(π, c) = θ∗⊤c µ(π, c). (10)

Let π∗(c) ∈ argmaxπ∈Π U(π, c) denote an optimal candidate under the true
objective. The per-type welfare regret of deployment is

R(w, n; c) = U(π∗(c), c)− E
[
U(π̂(c), c)

]
, (11)

where the expectation is over the training data (and therefore over θ̂c and
the induced random choice π̂(c)).
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Regret is driven by policy contrasts. Because welfare is linear in θ∗c ,
regret under misselection can be expressed in terms of a policy contrast vector.
For each m ̸= ∗, define

∆µm(c) := µ(π∗(c), c)− µ(πm, c).

If the learned optimizer chooses π̂(c) = πm, then the realized welfare gap is
exactly

U(π∗(c), c)− U(πm, c) = θ∗⊤c ∆µm(c). (12)

Thus, welfare loss is controlled not by uniform accuracy of θ̂c in every coordi-
nate, but by whether θ̂c ranks the finite set of inner products {θ̂⊤c µ(πm, c)}Mm=1

in the same order as {θ∗⊤c µ(πm, c)}Mm=1.

A margin condition for correct selection. A standard way to formalize
stability of an argmax under perturbations is via a policy margin. Define

∆(c) := min
m̸=∗

θ∗⊤c ∆µm(c), (13)

the smallest true welfare advantage of π∗(c) over the remaining candidates.
If ∆(c) is large, then the best policy is robustly optimal; if it is small, then
even slight reward error can flip the selection.

To connect this to estimation error, note that for any m ̸= ∗,

θ̂⊤c µ(π
m, c) ≥ θ̂⊤c µ(π

∗(c), c) ⇒ (θ∗c − θ̂c)
⊤∆µm(c) ≥ θ∗⊤c ∆µm(c).

(14)

By Cauchy–Schwarz,

(θ∗c − θ̂c)
⊤∆µm(c) ≤ ∥θ̂c − θ∗c∥2 ∥∆µm(c)∥2.

Therefore a sufficient condition for no policy flip is

∥θ̂c − θ∗c∥2 <
∆(c)

maxm̸=∗ ∥∆µm(c)∥2
. (15)

When (15) holds, we have π̂(c) = π∗(c) and regret is zero (within the candi-
date class).

A Lipschitz regret bound under misselection. When (15) fails, we
can still bound regret linearly in the estimation error. If π̂(c) = πm, then
using (12),

U(π∗(c), c)− U(π̂(c), c) = θ∗⊤c ∆µm(c).

Add and subtract θ̂c and use that π̂(c) maximizes θ̂⊤c µ(π, c):

θ∗⊤c ∆µm(c) =
(
θ∗c − θ̂c

)⊤
∆µm(c) + θ̂⊤c ∆µm(c)

≤ ∥θ̂c − θ∗c∥2 ∥∆µm(c)∥2 + 0, (16)
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since θ̂⊤c µ(π
m, c) ≥ θ̂⊤c µ(π

∗(c), c) implies θ̂⊤c ∆µm(c) ≤ 0. Taking the worst
case over m ̸= ∗ yields the deterministic bound

U(π∗(c), c)− U(π̂(c), c) ≤
(
max
m̸=∗

∥∆µm(c)∥2
)
∥θ̂c − θ∗c∥2. (17)

Combining (17) with an estimation bound such as (8) immediately gives a
high-probability regret rate of order

R(w, n; c) ≲ max
m̸=∗

∥∆µm(c)∥2

√
d

n(c)κ(w, c)
,

up to logarithmic factors and problem-dependent constants. This makes the
causal chain explicit: design → information geometry → reward error →
policy misselection → welfare loss.

Policy-relevant subspaces and restricted overlap. The bound (17) is
conservative when θ̂c − θ∗c is large in directions orthogonal to all contrasts.
Define the policy-relevant subspace

S(c) := span{∆µm(c) : m ̸= ∗},

and let PS(c) denote the orthogonal projector. Since regret only depends on
inner products with ∆µm(c), we can refine (17) to

U(π∗(c), c)− U(π̂(c), c) ≤
(
max
m̸=∗

∥∆µm(c)∥2
)
∥PS(c)(θ̂c − θ∗c )∥2. (18)

This motivates designing for a restricted eigenvalue

κS(w, c) := min
v∈S(c)
∥v∥2=1

v⊤I(w, c)v,

rather than for λmin(I(w, c)) over all of Rd. Operationally, we can often
achieve large welfare gains by buying overlap in just the span of policy
contrasts—but this comes with a safety caveat: if the policy class expands
later (new capabilities, new prompts, or new post-training methods) then the
relevant contrast directions may change, and previously “irrelevant” reward
ambiguity can become decision-critical.

Coherent-but-wrong behavior as geometric exploitation. The phe-
nomenon we ultimately care about is not merely random misclassification
among policies, but systematic selection of a policy that is predictably bad
under the true objective. In our setting, this happens when (i) the training
design makes some direction u weakly identified, so u⊤I(w, c)u is small, and
(ii) the candidate set contains policies whose contrasts have substantial pro-
jection onto u. Then estimation error can be large in the u direction, and the
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optimizer in (9) can select a policy whose apparent advantage comes almost
entirely from that poorly identified tradeoff.

This is “coherent” because the downstream optimizer is correctly maxi-
mizing the learned reward; it is “wrong” because the learned reward is un-
constrained off the training manifold. In fact, if baseline data make δ nearly
collinear, then many θ vectors produce nearly identical likelihood; the MLE
(or its regularized variant) picks one, and the policy optimizer reliably pushes
in the direction that looks best under that arbitrary choice. Interventions
matter here because they change which tradeoffs are actually observed during
training, shrinking the set of θ that fit the data and preventing the optimizer
from exploiting ambiguity.

Deployment shift: when missing directions become activated. A
particularly safety-relevant failure mode arises under shifts between training-
time and deployment-time factor geometry. Even if Z remains a sufficient
latent summary for preferences (so θ∗c is stable), deployment can change the
set of available policies and therefore change the contrast vectors ∆µm(c).
Moreover, the mapping from policy to factor means can shift: a new model
version, a new inference-time steering mechanism, or a new content domain
can alter µ(π, c) and effectively rotate the policy-relevant subspace S(c) to-
ward directions that were weakly identified during training.

Under such a shift, a design that was adequate for the original S(c)
can fail catastrophically: κS(w, c) for the new contrast span can be small,
so the learned reward extrapolates in precisely the directions the optimizer
now uses. This formalizes a common governance concern: passing offline
preference benchmarks does not certify safe optimization under distribution
shift if the benchmark does not cover the high-leverage tradeoffs induced by
future deployments.

Implications for auditing and conservative deployment. The above
suggests two complementary mitigations. First, we can audit overlap ge-
ometrically: given an estimated information matrix Î(w, c) (or even just
empirical second moments of δ), we can evaluate whether the design is infor-
mative along currently relevant contrast directions and along plausible future
directions (stress tests). Second, we can make deployment conservative when
margins are small. For example, if the estimated policy margin

∆̂(c) := θ̂⊤c µ(π̂(c), c)− max
π ̸=π̂(c)

θ̂⊤c µ(π, c)

is tiny relative to an uncertainty radius for PS(c)(θ̂c − θ∗c ), then the system
can defer, randomize, or choose a robust alternative that maximizes worst-
case utility over a confidence set for θ∗c . We treat such gating and robust
optimization mechanisms as extensions, but the core point remains: the
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welfare impact of preference learning is mediated by discrete downstream
choices, so we must reason about information geometry and policy margins
together, not in isolation.

6 Optimal intervention allocation: cost-minimizing
designs for a regret target

Having related welfare regret to the information geometry induced by the
training design, we can now ask the natural systems question: given a
menu of intervention arms with known per-sample costs, how should we
allocate our finite budget to achieve a specified regret guarantee at mini-
mum cost? The answer is an optimal experimental design problem, but with
a deployment-driven objective: we do not seek “uniformly good” estimation
of θ∗c ; we seek to buy information in the few directions that can flip the
downstream argmax over candidate policies.

From regret targets to information constraints. Fix an objective
type c and suppress c in notation. Let the intervention mixture be w ∈ ∆J

over arms j ∈ {0, . . . , J}, with per-sample costs cj > 0 and arm-specific
Fisher information matrices {Ij}Jj=0. Under a mixture w, the per-sample
information is

I(w) =
J∑

j=0

wjIj ,

and with n total comparisons the information scales as nI(w). The key ob-
servation is that many regret proxies can be expressed as monotone functions
of the quadratic forms

∆µ⊤
mI(w)∆µm, m ̸= ∗,

where ∆µm = µ(π∗)− µ(πm) are the policy contrast directions. Intuitively,
if we only become very certain about θ along those directions, the policy
ranking becomes stable even if θ remains ambiguous elsewhere.

One convenient large-sample proxy comes from approximating the MLE
as Gaussian,

θ̂ ≈ N
(
θ∗, (nI(w))−1

)
,

and then bounding the probability that a suboptimal policy πm overtakes π∗

under θ̂. A standard large-deviation calculation yields a proxy of the form

R(w, n) ≲
∑
m̸=∗

(
θ∗⊤∆µm

)
exp

{
−n

2
∆µ⊤

mI(w)∆µm

}
, (19)

up to constants that depend on the logistic curvature term and boundedness
of δ. While (19) is not a theorem as stated, it captures the correct design
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dependence: regret decays exponentially in n times an information quantity
computed only along the contrast directions.

Alternatively, if we use the more conservative Lipschitz-style bound R ≲
maxm ∥∆µm∥2 ∥θ̂ − θ∗∥2 together with a concentration bound ∥θ̂ − θ∗∥2 ≲√
d/(nκ), we obtain the simpler sufficient condition

nκS(w) ≳
d

R2
target

, κS(w) := min
v∈S

∥v∥2=1

v⊤I(w)v, (20)

where S = span{∆µm : m ̸= ∗}. This formulation makes explicit the safety
tradeoff: if we under-invest in overlap in S, the optimizer can reliably exploit
the resulting ambiguity.

A convex program for cost-minimizing designs. Let c̄(w) :=
∑J

j=0 cjwj

denote the expected per-sample cost under mixture w. The total expected
data-collection cost is n c̄(w). A regret target can be enforced either via the
proxy (19) (exponential constraints) or via the sufficient eigenvalue condition
(20). Both yield tractable optimization problems.

A particularly transparent convex formulation comes from enforcing per-
contrast information lower bounds. Choose a required information level τ >
0 (which can be backed out from Rtarget via either (19) or (20)) and solve

min
w∈∆J , n≥0

n c̄(w) (21)

s.t. n∆µ⊤
mI(w)∆µm ≥ τ, ∀m ̸= ∗.

Because ∆µ⊤
mI(w)∆µm =

∑
j wj qmj with qmj := ∆µ⊤

mIj∆µm, the con-
straints in (21) are linear in w once n is fixed (and jointly convex in (w, n)
after standard transformations). In fact, eliminating n gives an equivalent
fractional program

min
w∈∆J

c̄(w)

minm̸=∗
∑J

j=0wjqmj

, (22)

and then setting n = τ
/
minm̸=∗

∑
j wjqmj . Introducing an auxiliary variable

t for the minimum, we obtain a convex (indeed, linear) reformulation:

max
w∈∆J , t≥0

t

c̄(w)
(23)

s.t.
J∑

j=0

wjqmj ≥ t, ∀m ̸= ∗.

This is a design principle we can interpret operationally: we buy a mixture
w that maximizes the worst-case contrast information per unit cost.
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When we instead want to target the restricted eigenvalue in (20) directly,
we can work with a semidefinite program over the contrast span. Let S ∈
Rd×r be an orthonormal basis for S (with r = dim(S) ≤ M − 1). Then

κS(w) = λmin

(
S⊤I(w)S

)
.

Maximizing κS(w) per unit cost is equivalent to

max
w∈∆J , κ≥0

κ (24)

s.t. S⊤
( J∑

j=0

wjIj

)
S ⪰ κIr,

c̄(w) ≤ 1.

The constraint is linear matrix inequality (LMI), so (24) is convex. This
formulation is attractive when M is large and we prefer to summarize policy
relevance by a subspace rather than enumerate all contrasts.

Closed-form in the simplest case: d = 2 and a single contrast. The
design problem admits a particularly clean characterization when there is
only one decision-critical direction. Concretely, suppose d = 2 and M = 2,
so there is a unique contrast vector ∆µ ∈ R2 (up to scaling). Then the
relevant information under arm j is the scalar

qj := ∆µ⊤Ij∆µ,

and under mixture w it is
∑

j wjqj . In this one-dimensional reduction, (22)
becomes

min
w∈∆J

∑
j cjwj∑
j qjwj

.

Because the objective is a ratio of two linear functions over a simplex, an
optimum is achieved at an extreme point: we place all mass on a single arm

j∗ ∈ arg max
j∈{0,...,J}

qj
cj

= argmax
j

∆µ⊤Ij∆µ

cj
. (25)

The minimum-cost way to reach a target information τ is then to sample
exclusively from j∗ with

n =
τ

qj∗
, total cost =

τ cj∗

qj∗
.

This clarifies the logic behind targeted interventions: if the baseline arm has
poor overlap in the contrast direction (small q0 because δ is nearly collinear),
then q0/c0 can be dominated by an intervention that changes the geometry
even if it is more expensive per sample.
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Two contrast directions in d = 2: when mixing becomes necessary.
The next nontrivial regime is still d = 2 but with M ≥ 3 such that S is two-
dimensional and at least two contrasts matter. In that case, concentrating on
a single arm may be suboptimal because an arm can be informative along one
contrast while remaining weak along another. In the linear-constraint form
(23), we must satisfy multiple inequalities

∑
j wjqmj ≥ t simultaneously; the

optimum may require mixing arms to balance the weakest contrast. Geo-
metrically, we are seeking a mixture that makes all relevant quadratic forms
large enough, and the optimum often lies at a mixture of at most two arms
(by standard results on linear programs over simplices), though which two
depends on the full matrix of qmj and costs.

This regime is also where safety intuitions become sharper: if we opti-
mize only for a single “headline” tradeoff, we may leave other policy contrasts
under-identified, enabling coherent-but-wrong selection among a richer can-
didate set. In practice, expanding Π (new model variants, new steering
knobs) tends to increase the number of active contrasts, pushing us away
from single-arm closed forms and toward systematic numerical optimization.

When we need numerical methods (and what can go wrong). Out-
side these low-dimensional special cases, two factors force us into computa-
tion rather than closed form. First, for d > 2 the restricted eigenvalue ob-
jective in (24) is genuinely matrix-valued, and designs that look good along
each individual ∆µm can still yield a poorly conditioned S⊤I(w)S (e.g., in-
formation concentrated in a narrow cone within S). Second, for large M the
set of contrasts can be large or even time-varying as the product evolves; it
is then more stable to solve subspace SDPs or to optimize a smooth surro-
gate such as log det(S⊤I(w)S) (a D-optimal criterion on the policy-relevant
subspace), which remains convex in w.

There is also an estimation layer we cannot ignore: Ij and even ∆µm are
rarely known exactly. Empirically, we must estimate qmj from pilot data or
from intervention metadata, and then solve a robust variant of (21) that ac-
counts for uncertainty (e.g., qmj lying in confidence intervals). This is more
than a statistical nicety: if we overestimate an intervention’s informative-
ness, we may under-collect data in exactly the missing direction, leading to
overconfident policy optimization. Robust design is convex in many practical
uncertainty sets (boxes or ellipsoids), but it increases cost; the governance-
relevant question is how much robustness margin we should require before
deploying optimization that can amplify any remaining misspecification.

Finally, when we scale to multiple objective types c ∈ C, the platform
faces a coupled allocation problem across types under a shared budget. The
same convex structure persists (we solve (21) per type and then allocate
n(c) across c), but the safety stakes rise: types with smaller margins or
more severe downside risk may warrant disproportionate intervention spend.
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This makes explicit a tension that often remains implicit in practice: cost-
efficient preference learning is not just about collecting more labels, but
about deciding which counterfactual tradeoffs we are willing to pay to observe
so that downstream optimization remains well-grounded.

6.1 Empirical demonstration: controllable interventions via
attribute editing

We now outline an empirical demonstration that mirrors the design logic
above while staying close to what an RLHF pipeline can actually implement
today: we take an open preference dataset, construct several controllable in-
tervention arms by editing responses to manipulate specific attributes, and
then measure (i) the induced overlap/conditioning in the latent difference
distribution, (ii) the resulting estimation variance of a BTL reward model,
and (iii) downstream out-of-distribution (OOD) policy-selection errors when
a learned reward is used to choose among a finite menu of candidate policies.
The goal is not to claim that attribute editing perfectly instantiates a causal
intervention on ground-truth latent factors, but to test the concrete predic-
tion of our formalism: when baseline data exhibits strong factor correlations
(limited positivity), equal-cost naive scaling yields much smaller gains than
targeted interventions that improve information geometry in policy-relevant
directions.

Dataset and factorization. We begin with a public pairwise preference
dataset such as Anthropic hh-rlhf or Stanford SHP, which provides tuples
(X,Y, Y ′, L) where L indicates which response is preferred. To connect to
the latent-factor model, we require a map from prompt-response pairs to
factor vectors Z ∈ Rd. In practice we implement this in one of two ways.
First, we can use a small set of interpretable, evaluator-facing attributes
(e.g., helpfulness, harmlessness, verbosity, refusal style, factuality) and train
lightweight attribute predictors on a small annotated subset; Z is then the
vector of predicted attribute scores. Second, we can use a representation-
based factorization (e.g., principal components of a frozen encoder embed-
ding of (X,Y )) and treat the resulting coordinates as latent factors. The
first approach offers clearer safety interpretation (we know what direction
we are buying overlap in), while the second reduces reliance on potentially
noisy attribute labels; we recommend running both as a robustness check.

Given Z and Z ′ we compute δ = Z − Z ′ for each comparison. Base-
line limited overlap typically shows up immediately: some components of δ
have very low variance, and more importantly, δ concentrates near a low-
dimensional subspace due to correlations (e.g., responses that are more help-
ful are also more verbose, or refusals are also more harmless). This is the
empirical analogue of an ill-conditioned Fisher information matrix.
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Constructing intervention arms via controlled edits. We define arms
j ∈ {0, 1, . . . , J} where j = 0 is the unmodified dataset distribution and j > 0
are attribute-edited distributions. Each intervention sample is constructed
by taking an existing (X,Y ) and producing an edited response Ỹ that aims
to shift one attribute while minimally perturbing others. Concretely, we
implement edits using a separate instruction-following model (an “editor”)
with prompts such as: “Rewrite the response to be equally helpful but more
concise” or “Rewrite to preserve content but change tone to be more polite.”
This yields counterfactual pairs (Y, Ỹ ) (or (Ỹ , Y ′)) which we then send to
the same preference labeling process as the baseline (or, in an offline study,
we use the dataset’s labels only for baseline and collect new labels for edited
pairs).

We operationalize several arm templates that are designed to change
the geometry of δ: (i) single-attribute toggles (increase/decrease one at-
tribute while constraining others), intended to add mass along a coordinate
direction; (ii) decorrelation edits (e.g., “increase helpfulness but keep ver-
bosity fixed”), intended to break observed baseline correlations; (iii) contrast-
amplifying edits targeted to estimated policy contrasts ∆µm (e.g., edit re-
sponses specifically along the direction that distinguishes two candidate poli-
cies). Each arm has an estimated per-sample cost cj equal to labeling cost
plus editing overhead (editor inference, filtering, and quality control).

Because edits can fail (changing multiple attributes or degrading coher-
ence), we include automated and manual filters: we reject edited responses
that violate basic constraints (toxicity, nonsensicality) and we estimate real-
ized attribute shifts ∆̂Z = Z(X, Ỹ )−Z(X,Y ) to verify that an arm actually
moves the intended factor distribution. Importantly, these checks also serve
as a safety diagnostic: interventions that systematically induce unintended
attribute changes are precisely the ones that can mislead downstream opti-
mization.

Measuring induced overlap and information geometry. For each
arm j, we estimate an empirical Fisher information matrix using the logistic
curvature weights. Given a fitted parameter θ̄ (e.g., from a pilot model
trained on a small balanced mixture), define

Îj :=
1

nj

∑
i∈Dj

σ(θ̄⊤δi)
(
1− σ(θ̄⊤δi)

)
δiδ

⊤
i ,

and for any mixture w, Î(w) =
∑

j wj Îj . We then report (a) λmin(Î(w)) as
a global conditioning proxy and (b) the policy-relevant restricted eigenvalue
κ̂S(w) = λmin(S

⊤Î(w)S) for S spanning S = span{∆µm}. The core empir-
ical prediction is that certain edits dramatically increase κ̂S(w) at modest
additional cost, especially in regimes where the baseline Î0 is nearly rank-
deficient.
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To make this diagnostic interpretable to practitioners, we also visualize
the projected δ clouds onto the top two eigenvectors of Î0 and onto key
contrast directions ∆µm, showing directly whether interventions populate
previously empty regions. This “overlap plot” is the empirical analogue of
checking positivity in causal inference, and it can be audited without trusting
the full reward model.

Estimation variance under equal cost. Next, we compare reward-
model estimation quality under (i) baseline-only scaling and (ii) mixtures
that include interventions, holding total expected cost fixed. For each de-
sign we train a BTL/logistic reward model θ̂ and estimate uncertainty via the
plug-in covariance (nÎ(w))−1 and via nonparametric bootstrap over compar-
isons. We then evaluate two quantities: the global parameter error ∥θ̂−θ̂ref∥2
relative to a high-data reference fit θ̂ref , and, more importantly, the contrast-
direction error

max
m̸=∗

∣∣(θ̂ − θ̂ref)
⊤∆µm

∣∣
∥∆µm∥2

,

which directly proxies the probability of flipping the argmax over policies.
The predicted pattern is that intervention mixtures reduce contrast-direction
variance much faster than baseline scaling, even if the overall ℓ2 error im-
proves only modestly.

Downstream OOD policy-selection errors. To test the deployment-
relevant failure mode (coherent-but-wrong optimization), we instantiate a
finite candidate set Π = {π1, . . . , πM} using either (a) different decod-
ing/steering settings of a fixed generator (temperature, system prompt, re-
fusal threshold) or (b) different checkpoints/variants. For each πm we esti-
mate µ(πm, c) by rolling out on a prompt set and computing average factors
Z. We then select π̂ = argmaxm θ̂⊤µ(πm, c).

We evaluate regret and misselection on two test distributions: an in-
distribution (ID) holdout from the dataset and an OOD shift constructed to
change factor correlations while keeping attributes meaningful (e.g., prompts
requiring terse factual answers; prompts eliciting refusals; or a filtered subset
where verbosity and helpfulness decouple). Because true welfare U(π, c) =
θ∗⊤µ(π, c) is not directly observable, we approximate it using a held-out
panel of preference labels between policy rollouts (treating the panel ag-
gregate as ground truth for evaluation) or using an expensive, high-quality
evaluator model calibrated on human data. We then report: (i) the frequency
with which π̂ differs from the best policy under the evaluation labels, and
(ii) the realized welfare gap. The key comparison is whether intervention-
designed training reduces OOD misselection at the same cost.
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Equal-cost baselines and what would falsify the story. The central
comparison is a cost curve: for a grid of budgets B, compare baseline-only
training (all mass on j = 0) against a design that allocates some weight to
targeted edits. The formalism predicts a regime of diminishing returns for
baseline scaling when κ̂S(w) is small: additional baseline samples mostly re-
duce uncertainty in already-identified directions. Conversely, if interventions
do not improve κ̂S , we should not expect downstream gains; indeed, a clean
falsification is that edited arms fail to increase restricted eigenvalues yet still
reduce OOD misselection, which would suggest our overlap-based proxy is
missing the relevant mechanism. Another falsification is that interventions
increase overlap metrics but worsen OOD behavior, indicating that editing
changes the effective objective (violating the assumption that θ∗ is invariant)
or introduces systematic label noise.

Safety and governance takeaways from the empirical protocol. Even
as a research prototype, this demonstration produces auditable artifacts that
map cleanly onto governance needs: a documented menu of intervention
arms, their realized attribute shifts, per-arm costs, and measured overlap
floors κ̂S . The main safety implication is that we can turn a vague re-
quirement (“collect diverse preference data”) into a measurable control target
(“achieve a minimum policy-relevant overlap floor at a stated confidence”),
and we can check whether a proposed intervention genuinely improves iden-
tifiability rather than merely adding more labels. At the same time, the
experiment highlights an open problem: attribute editing is only a proxy
intervention, and ensuring invariance of the underlying preference parame-
ter is nontrivial. In practice, the same tools used for overlap improvement
must be paired with invariance tests (e.g., checking for systematic shifts in
pairwise preferences on anchor comparisons) before we allow the downstream
optimizer to treat the learned reward as authoritative.

6.2 Extensions and implications: heterogeneity, costs, multi-
objective rewards, and adaptive design

The clean story above treated a single objective type c with a fixed factoriza-
tion Z and a one-shot (non-adaptive) design mixture w. In practice, RLHF
systems deviate from each of these assumptions in ways that matter for
safety: evaluators are heterogeneous, some measurements are expensive or
privacy-sensitive, reward is intrinsically multi-objective, and platforms can
(and often should) run multi-round data collection. Our main claim in this
section is that these complications do not invalidate the overlap-first per-
spective; rather, they sharpen it. When we account for realistic constraints,
the object we want to control becomes a family of policy-relevant overlap
floors, together with explicit tests for invariance and robustness.

28



Heterogeneity in evaluator objectives C. If we observe objective la-
bels c (e.g., annotator group, jurisdiction, or user segment), the natural
extension is to treat each type as its own BTL problem with parameter θ∗c
and design mixture w(c). The platform then faces an allocation problem
across types under a shared budget:

min
{nj(c)}

∑
c∈C

J∑
j=0

cj nj(c) s.t. sup
c∈C

R(w, n; c) ≤ Rtarget.

Two deployment-relevant regimes are worth separating. In an average-welfare
regime, the platform cares about

∑
c p(c)E[U(π̂(c), c)] and will rationally

spend less on rare types. In a worst-case or rights-based regime (common
in safety and governance discussions), we instead enforce the constraint for
every c (or every protected subset of types). The overlap framing makes
the tradeoff explicit: if some types have smaller margins ∆(c) or more
severe baseline correlations (smaller κ(w, c)), they dominate the required
n(c)κ(w, c) and thus dominate cost. This is not merely an estimation is-
sue; it is a fairness and safety issue, because the downstream optimizer can
be reliably correct for the majority while being systematically wrong for a
minority type.

If c is unobserved (or only partially observed), we can still use the same
geometry but at a price: the effective design must ensure overlap for a mix-
ture distribution, and the reward model becomes either a single pooled θ∗

(which is misspecified under heterogeneity) or a latent-mixture model. The
failure mode here is familiar: pooling can yield a reward that is accurate
on average but wrong in precisely the regions of Z that distinguish types.
A pragmatic mitigation is to define a conservative policy-relevant subspace
S that includes contrasts across both candidate policies and suspected type
differences, and require a minimum restricted eigenvalue on that enlarged
subspace. This turns “unknown heterogeneity” into an auditable coverage
requirement rather than a vague concern.

Privacy and measurement costs as design constraints. Our em-
pirical protocol implicitly assumed that we can compute Z (or a proxy)
cheaply and store it for overlap diagnostics. In deployed systems, however,
factor measurement may be privacy-sensitive (e.g., attributes inferred from
user data), or expensive (e.g., high-quality model-based evaluators used to
score factuality). There are two distinct costs: (i) the per-sample interven-
tion/labeling cost cj that already appears in the budget, and (ii) a mea-
surement cost for producing the factorization itself (or for producing reliable
proxies used in design and auditing).

One extension is to treat the factor pipeline as another arm choice: for
each comparison we may choose a measurement mode m (cheap proxy vs.
expensive audit-grade scoring), which changes both the observed covariates
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δ̃ and the implied information matrix. If measurement noise satisfies a clas-
sical errors-in-variables model, then naively plugging in δ̃ can understate
uncertainty and inflate κ̂, creating a dangerous false sense of overlap. The
design implication is that overlap floors must be certified with respect to a
measurement process whose error is bounded, ideally by occasionally paying
for “gold” measurements to calibrate proxies. The governance implication is
that an overlap audit should report not only κ̂S but also the measurement
procedure and its calibration error bars.

Privacy adds another layer. If we must use differentially private (DP)
estimates of Z or of Î(w), then the overlap floor itself becomes a random
quantity with privacy-induced noise. This does not make overlap auditing
impossible, but it shifts the question: we should require that the lower confi-
dence bound on κS(w) (accounting for both sampling and DP noise) exceeds
a threshold. Put differently, DP does not eliminate the need for overlap; it
forces us to budget for a larger safety margin.

Multi-objective reward models and policy menus. Many RLHF de-
ployments are intrinsically multi-objective: helpfulness, harmlessness, truth-
fulness, style, and user satisfaction are not cleanly reducible to a single scalar
without normative choices. In our notation, this corresponds to either (i)
multiple types c with different θ∗c (a normative pluralism view), or (ii) a
single deployment objective that is a function of several latent components
(a constrained optimization view). Both can be handled by expanding the
policy-relevant subspace.

For example, suppose deployment selects a policy subject to safety con-
straints, such as maximizing helpfulness while keeping expected harm below
a bound. If we model constraints as additional linear functionals of µ(π),
then the relevant directions are not only the unconstrained contrasts ∆µm,
but also the gradients of the active constraints. The design target becomes
a restricted eigenvalue over the span of those directions. Similarly, if we de-
ploy via a scalarization that varies across contexts (effectively randomizing
over θ), then worst-case regret involves a supremum over a set of plausible
θ vectors, and the design must provide overlap in a larger cone rather than
a single direction. The core safety message is that “more objectives” typi-
cally means “more high-leverage directions”; without interventions, baseline
correlations can silently delete some of them.

Adaptive (multi-round) intervention design. A one-shot mixture w
is attractive analytically, but platforms can often run multi-round collection:
gather a pilot dataset, fit θ̂, estimate Îj , then allocate the remaining budget
toward the most informative arms. This is essentially an experimental design
or bandit problem with a safety twist: exploration is costly and may expose
evaluators to unusual outputs, yet insufficient exploration risks coherent-but-
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wrong optimization.
A simple adaptive template is:

w(t+1) ∈ arg max
w∈∆J

min
v∈V

v⊤Î(t)(w) v − λ
∑
j

cjwj ,

where V is a set of unit vectors spanning the policy-relevant subspace (e.g.,
normalized ∆µm and any constraint directions), and Î(t)(w) =

∑
j wj Î

(t)
j

is the plug-in information estimate after round t. One can add optimism
bonuses (upper confidence bounds on Îj) to avoid prematurely collapsing
onto a seemingly good arm when estimates are noisy. The technical open
problem is to obtain regret guarantees that compose (estimation error →
policy error) under adaptive data collection, since classical MLE asymp-
totics can fail under heavy adaptivity. The practical recommendation is
more modest: adaptivity should be used to target missing directions iden-
tified by overlap diagnostics, and the resulting design should be re-audited
after each round to ensure that the realized δ distribution actually improved
conditioning.

Practical recommendations: overlap floors as pipeline controls and
audit artifacts. We can distill the above into implementable controls for
RLHF pipelines.

First, define a policy-relevant subspace S before large-scale training.
Concretely, compute (or bound) ∆µm for the finite policy menu under con-
sideration (including foreseeable variants such as different refusal thresholds
or decoding settings), and set S = span{∆µm}m̸=∗ (optionally augmented
with constraint directions and suspected heterogeneity directions).

Second, enforce an overlap floor requirement:

κS(w, c) := λmin

(
S⊤I(w, c)S

)
≥ κ,

where S is an orthonormal basis for S. In practice we certify this with a
lower confidence bound on κ̂S using bootstrap (and, if applicable, DP noise
accounting). The threshold κ should be set by a welfare regret target via
the bound in Proposition 2, i.e., by requiring n(c)κ large enough given the
observed policy margins.

Third, couple overlap improvements with invariance checks. Any inter-
vention that changes the effective preference parameter (violating the as-
sumption that θ∗ is invariant across arms) can create a misleadingly well-
conditioned design that optimizes the wrong thing. A lightweight invariance
test is to include a fixed set of “anchor comparisons” drawn from baseline
and periodically re-label them; systematic shifts in predicted vs. observed
preferences by arm are a red flag. This is also the right place to incor-
porate governance requirements: an auditor can demand documented arm
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definitions, realized attribute shifts, anchor-comparison stability, and certi-
fied overlap floors, rather than relying on informal claims of “data diversity.”

Finally, adopt a conservative deployment rule: if the certified overlap
floor on S is not met for a protected type c, then either (i) defer deployment
for that type, (ii) restrict the policy menu to a smaller set with larger mar-
gins, or (iii) allocate additional budget to targeted interventions. This makes
the safety tradeoff explicit: we either pay to restore identifiability where it
matters, or we constrain optimization to avoid confident errors.

These extensions emphasize a broader point. In realistic RLHF systems,
the main risk is not that we lack data in aggregate, but that we lack geometric
coverage in the directions that determine downstream decisions. Interven-
tions, measurement choices, and adaptive design are all levers for controlling
that coverage; overlap floors are the mechanism by which we can make those
levers auditable and enforceable.
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