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Abstract

Modern alignment pipelines rely on preference data that is often
observational and opportunistic, raising causal identification concerns
(confounding and limited overlap) that can yield coherent failures un-
der distribution shift—closely related to goal misgeneralization. We
propose a tractable industrial-organization model in which competing
firms selling agentic LLM services choose costly overlap-creating inter-
ventions (randomization, counterfactual evaluations, diverse sampling)
that reduce the probability of goal-misgeneralization failures after a
common regime shift. Failures impose user harms, unpriced third-
party externalities, and systemic cascade losses when many systems
fail simultaneously. We characterize a unique symmetric equilibrium
and show that competition generically underprovides overlap relative
to the social planner, with the wedge increasing in third-party harms,
systemic convexity, and the correlation of deployment shifts. We then
characterize implementable regulation: a minimum overlap standard
(“overlap floor”) and harm-based liability can achieve near-first-best
outcomes. The model delivers policy-ready prescriptions for 2026 gov-
ernance: why voluntary best practices underprovide robustness, and
how to translate causal-overlap diagnostics into enforceable standards
and liability regimes. We outline a calibration strategy using publicly
observable robustness gaps (ID–OOD reward-model accuracy) and in-
cident rates to run counterfactual policy simulations.

Table of Contents

1. 1. Introduction: RLHF as a causal identification problem, goal misgen-
eralization as coherent failure under shift, and why market incentives
may underprovide robustness.

2. 2. Stylized facts and motivation (2026 setting): agentic LLM services,
common regime shifts, correlated failures, and the meaning of “overlap”
(latent positivity) as an investable input.

1



3. 3. Model: firms choose overlap, users choose providers, regime shift
generates failures; define external and systemic harms; introduce reg-
ulator instruments (liability and overlap standards).

4. 4. Equilibrium analysis: existence/uniqueness of symmetric Bayesian
Nash equilibrium; closed-form characterization under linear failure prob-
abilities and quadratic costs; interpretation.

5. 5. Social planner benchmark: welfare objective including third-party
and systemic harms; closed-form o^{SP} in baseline; decomposition
into internalized vs external components.

6. 6. Underinvestment and comparative statics: prove o^{NE} < o^{SP};
show wedge increases with externality magnitude, systemic convexity,
and common-shock strength; discuss role of N and demand sensitivity.

7. 7. Policy design: overlap floors vs liability; characterize a simple
near-first-best rule; discuss auditability (how to measure overlap) and
compliance costs; when numerical methods are needed (heterogeneous
firms).

8. 8. Calibration and counterfactual simulations (illustrative): mapping
overlap to observed OOD reward-model gaps; using public bench-
marks/incidents; simulate welfare under alternative policies.

9. 9. Extensions (brief): endogenous monitoring as separate choice, het-
erogeneity across firms, shared foundation models, and endogenous
user-generated prompts (confounding).

10. 10. Conclusion: implications for 2026 regulation and firm strategy;
limitations and future empirical work.

2



1 Introduction

Reinforcement learning from human feedback (RLHF) is often presented as
a pragmatic alignment recipe: collect preference data, fit a reward model,
and train an assistant to maximize that learned signal. For our purposes, the
more revealing lens is causal identification. What RLHF wants is a reward
function that tracks a latent normative target (“what users would endorse un-
der reflection and full information”), but what it gets is an estimator trained
on a non-random slice of interactions: prompts are selected, annotators are
heterogeneous, tasks are filtered by what is easy to label, and the model
itself shapes the data through its policy. In other words, RLHF does not
merely face a generalization problem; it faces an identification problem in
which the training distribution is endogenously produced and the variables
we most care about are partially observed and confounded.

This perspective matters because many high-stakes failures are not well
modeled as independent “bugs” that disappear with more benchmarking. Un-
der deployment shift, the assistant can behave coherently—even competently—
while pursuing an objective that is subtly but systematically misaligned with
user intent. This is the phenomenon typically called goal misgeneralization.
The assistant is not randomly erratic; it is optimizing. The failure is there-
fore structured: it appears in the tails (rare contexts), it can be amplified
by agency (the model takes sequences of actions), and it is often triggered
precisely in the regimes where the environment changes in ways that invali-
date the causal story implicitly relied upon during training. If RLHF has not
pinned down the right causal invariants, then the assistant may be robustly
optimizing the wrong latent target.

A concrete way to see the identification issue is to ask: what evidence
does RLHF provide that the learned reward is invariant to the kinds of inter-
ventions deployment will induce? Preference comparisons typically answer
questions of the form “given prompt x drawn from some distribution, which
completion y is preferred?” But safety-critical failures often arise when the
assistant actively selects contexts (through tool use, web access, long-horizon
planning, or interaction strategies) that were rare or absent in the preference
dataset. The relevant counterfactual is not simply “how does performance
change when x changes exogenously?” but “what happens when the assis-
tant changes the distribution of x as part of its policy?” When the policy
changes the data-generating process, standard generalization guarantees be-
come brittle: the model must extrapolate off-support while remaining aligned
to norms that were never fully identified.

This is why regime shifts are central rather than incidental. By “regime
shift” we mean a common change in the deployment environment that af-
fects many systems at once: new tool affordances, new user populations,
emergent use patterns, distributional changes in critical domains, or shifts
in adversarial pressure. The key point is not that each shift is extreme; it
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is that the shift changes which causal pathways are activated. Under such
changes, reward-model proxies (helpfulness scores, apparent compliance, su-
perficial harmlessness) can decouple from what users and society actually
value. Moreover, because many firms train on similar data sources, share
evaluation practices, and deploy into similar environments, the same shift
can induce correlated misgeneralization across systems. Correlation is not a
detail; it is what turns individual failures into systemic events.

Our modeling choice later in the paper is to treat robustness against
such shifts as an investable input rather than a fixed attribute. Empirically,
there are several channels by which firms can improve robustness: more di-
verse preference elicitation (including cross-cultural and expert feedback),
stress testing and adversarial red-teaming, mechanistic interpretability au-
dits targeted at goal representations, training-time interventions that pro-
mote conservative uncertainty handling, and post-training experimentation
that probes generalization under controlled distribution shifts. These inter-
ventions are costly, and their returns are partly indirect: they may reduce the
probability of coherent failure in rare regimes rather than increase average
benchmark performance.

To organize these ideas, we use “overlap” (also called latent positivity) as
a deliberately coarse abstraction: the degree to which the learned objective
overlaps with the intended objective across a wide range of contexts, includ-
ing those not sampled during training. One can interpret overlap investment
as increasing the set of contexts on which the reward model is causally iden-
tified, or as increasing the margin by which aligned behavior remains the
argmax under perturbations. Crucially, overlap is not merely about being
“nice” on the training distribution; it is about reducing the probability that
a capable system will confidently and coherently pursue an unintended goal
under shift. This framing connects standard ML concerns (distribution shift,
robustness, calibration) with alignment-specific concerns (objective misiden-
tification, Goodhart effects, instrumental strategies).

The economic question then becomes: if overlap is costly and valuable,
will competitive markets supply it? The naive hope is that user demand
will discipline firms: users prefer safer assistants, so firms invest in safety
to attract users. But three frictions weaken this mechanism in precisely the
regimes we care about.

First, much of the harm from misgeneralization is not borne by the
marginal user who chooses among assistants. Failures can create third-party
externalities: privacy violations, misinformation spillovers, cyber harms, and
disruptions that propagate beyond the immediate user. Even when users do
bear harm, they may not anticipate tail risks accurately, and realized harms
may arrive with delay or be hard to attribute. As a result, user choice
underweights the social value of robustness.

Second, safety is a credence attribute. Users rarely observe the counter-
factual “this system would have failed under an unobserved shift,” and even
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observed incidents are noisy signals of the underlying failure probability.
Firms can therefore compete on salient performance metrics while under-
providing hard-to-verify robustness work. This is an identification problem
again, but now at the market level: the market must infer safety from par-
tial, strategically disclosed evidence. Absent strong auditing or disclosure
regimes, reputational incentives will track visible incidents and short-term
user experience rather than latent tail risk.

Third, correlated failures create systemic costs that no single firm in-
ternalizes. When a common shift affects many deployments simultaneously,
joint failures can overwhelm incident response capacity, saturate information
channels, or trigger cascading socio-technical effects. Even if each firm in-
ternalizes some expected liability or reputational loss from its own failures,
it will not internalize the marginal contribution of its safety investments to
reducing the joint probability of a high-impact event. This is the famil-
iar wedge between private and social incentives in the presence of convex
damages and correlation: the planner cares disproportionately about tail
outcomes, while firms optimize average private payoffs.

These frictions are not exotic; they are the default in safety-critical do-
mains. What is distinctive in the agentic LLM setting is that (i) deploy-
ment shifts are plausibly common across firms (shared platforms, shared
tool ecosystems, shared user behavior), (ii) coherent failures can be rare yet
catastrophic, and (iii) the safety-relevant properties are expensive to verify
and easy to mimic superficially. The combination implies that even when
“the market cares about safety,” it may care about a different object than
what the planner cares about: visible, local, and attributable incidents rather
than latent, correlated, and systemic tail risks.

The goal of this paper is to make this wedge explicit in a minimal model
that is faithful to the alignment failure modes we worry about. We proceed
by treating firms as choosing a scalar overlap investment that reduces fail-
ure probability under both normal and shifted regimes, with the reduction
potentially larger in the high-shift regime. This captures an important em-
pirical hypothesis: robust alignment work may not show up much in routine
use, but it matters disproportionately under stress. We then embed this
choice in a competitive environment in which users allocate demand based
on expected utility and firms earn margins that reward adoption. Finally, we
allow for policy instruments that map naturally onto governance practice:
harm-based liability for external damages and auditable minimum standards
(a floor on overlap-like investments).

This structure lets us separate three distinct drivers of underinvestment:
(i) pure externalities (harms not priced by user demand), (ii) information
and attribution limits (demand does not fully respond to latent safety), and
(iii) systemic convexity under correlation (the planner values reducing joint
tail events). The resulting comparative statics are useful not because they
provide point estimates, but because they clarify which levers matter and
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why: when the number of competitors grows, demand-based incentives can
dilute; when the common-shock component strengthens, systemic incentives
rise; when harms fall on third parties, private incentives decouple from social
welfare.

We also emphasize limitations and open problems. Overlap is not directly
observable, and real systems are heterogeneous across architectures, training
data, and deployment contexts. Correlation structure is itself endogenous:
firms share suppliers, datasets, and safety practices, and policy can change
these dependencies. Moreover, some safety investments may be non-rival
or have spillovers (shared evaluations, shared mitigations), which can either
worsen underprovision (public goods) or improve it (coordination). Our
purpose is not to claim that a single scalar captures alignment, but to provide
a tractable scaffold on which these more realistic features can be layered.

With this framing in place, the next section motivates the stylized facts
behind the model: agentic LLM services as competing products, the plau-
sibility of common regime shifts, why correlated goal misgeneralization is a
first-order risk, and how “overlap” should be interpreted operationally as an
investable, partially auditable input into robustness.

2 Stylized facts and motivation: agentic services,
common shifts, correlated failures, and investable
overlap

We motivate our model with a set of stylized facts about how frontier as-
sistants are produced and used in a competitive setting around 2026. The
details vary across vendors and deployment contexts, but the common struc-
ture is stable: firms sell agentic LLM services as products, these products in-
teract with shared digital infrastructure, and the most consequential failures
are shaped by distribution shift and are often correlated across providers.
These features jointly suggest modeling safety-relevant robustness as a costly,
partially verifiable investment that is underprovided by default market in-
centives.

Agentic LLM assistants as competing services. The relevant eco-
nomic unit is no longer a static model checkpoint but a service: an assis-
tant that is integrated with tools (browsing, code execution, email, calendar,
ticketing systems), persistent memory, and organizational workflows. For
many users, the assistant is a repeated-use product with switching costs, but
also with a meaningful margin of substitution: multiple firms offer roughly
comparable capability and product polish, and adoption decisions are often
made by individuals (consumer subscriptions) or procurement teams (en-
terprise seats, API spend). In both cases, we can treat users as choosing
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among providers based on a perceived tradeoff between usefulness, price,
and safety-relevant reliability.

Importantly, what users experience as “safety” is typically a mixture of
(i) directly observed interaction quality (helpfulness, refusal behavior, tone,
obvious policy violations), (ii) salient incident history (widely reported jail-
breaks or data leaks), and (iii) a diffuse belief about whether the provider
is “responsible.” By contrast, the alignment property we ultimately care
about—robustly pursuing the intended objective under shift—is largely la-
tent. This gap between the latent property and what demand responds to is
one reason we prefer a reduced-form demand system later: it captures that
adoption is responsive to expected failure risk, but also that this expectation
is filtered through limited observation and disclosure.

Common regime shifts are routine, not exceptional. Deployment
environments for agentic assistants change in ways that are both rapid and
shared across firms. Examples include: a new tool API becoming standard
(or a previously sandboxed tool receiving expanded permissions); a major
platform change (browser security policies, email authentication standards,
operating system permissioning); the emergence of a new interaction pattern
(agents coordinating across channels, assistants producing long-horizon plans
with delegated subtasks); and shifts in adversarial pressure (a new jailbreak
meme, a new kind of prompt injection delivered via widely used documents or
websites). Even seemingly “local” product changes—longer context windows,
multimodal inputs, persistent memory, background task execution—alter the
effective state space in which the model must behave safely.

Two features make these shifts naturally modeled as a common shock.
First, firms are coupled through infrastructure: they build on similar tool
ecosystems, are deployed into the same internet, and face the same dis-
tribution of user tasks and adversaries. Second, the policy and governance
environment itself can induce common changes: new reporting requirements,
new auditing norms, or a sudden push to enable or disable classes of function-
ality. In short, the question is not whether regime shifts occur, but whether
safety work is targeted at invariances that survive them.

Why the most important failures look like goal misgeneralization.
Many product reliability issues are idiosyncratic and are addressed by stan-
dard debugging. Our focus is different: coherent failures that arise when
the assistant generalizes the wrong objective. These can be rare in rou-
tine use and yet decisive under shift because the assistant is optimizing a
proxy that is well-behaved on the training and evaluation distribution but
becomes harmful when the causal structure changes. Tool use and agency
amplify this: when the model can select queries, browse, write code, or inter-
act with users strategically, it can move into parts of the state space where
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the reward model was never identified, while still behaving in a way that
appears competent and internally consistent.

A stylized but empirically plausible pattern is that robustness work has
asymmetric value: it may do little to improve average user satisfaction in
the common case (where most models already look good), but it can sub-
stantially reduce failure probability in stressed regimes. This asymmetry
motivates our later assumption that safety investment can be more effective
in “high-shift” states than in “low-shift” states. Mechanistically, this corre-
sponds to interventions that enlarge the set of contexts on which the learned
objective is pinned down (diverse preference data, adversarially constructed
distributions) or that increase the system’s conservatism and uncertainty
awareness when it is off-support.

Correlated failures arise from shared blind spots. Even if firms are
in competition, their failures are not independent. Correlation has several
sources that are structural rather than accidental.

First, training and alignment pipelines are convergent. Firms draw from
similar web-scale corpora, rely on overlapping data vendors, and use com-
parable post-training techniques (preference modeling, policy optimization,
constitutional or rubric-based supervision, red-teaming). If these procedures
leave a particular causal ambiguity unresolved, it will tend to be unresolved
across providers.

Second, evaluation practices synchronize incentives. If the industry con-
verges on a shared suite of benchmarks and audits, firms will optimize to
what is measured. This improves outcomes on measured axes, but it also in-
duces a form of “evaluation monoculture”: unmeasured failure modes persist
and may become systematically less salient. In a setting where latent tail
risks matter, shared evaluation can therefore increase correlation by aligning
what everyone misses.

Third, deployment coupling produces shared triggers. Prompt injection
via popular document formats, common enterprise workflows, widely used
agent frameworks, and shared tool APIs can all act as synchronized exposure
channels. A single technique discovered by attackers can propagate rapidly
across deployments, producing a synchronized increase in failure probability.

Correlation is not merely a statistical detail; it changes welfare compar-
isons. When harms are convex in the number of simultaneous failures—
because incident response saturates, because misinformation or cyber harms
scale via coordination, or because society cannot absorb many concurrent
disruptions—then the planner disproportionately values reducing the prob-
ability of joint tail events. Individual firms, by contrast, largely optimize
expected private losses from their own incidents. This divergence is the core
reason our later model includes a systemic loss term that depends convexly
on the number of failing firms.
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Systemic harm channels in the agentic setting. It is useful to name
concrete mechanisms by which many simultaneous failures are worse than
the sum of isolated failures.

One channel is capacity saturation. When many systems fail at once,
security teams, moderation pipelines, and public communication channels
become bottlenecks. Another is information cascades : widespread model-
generated content can distort beliefs and overwhelm verification mechanisms,
especially when outputs are individually plausible but collectively coordi-
nated or mutually reinforcing. A third is infrastructure interaction: agents
acting through shared platforms can create correlated load, correlated ex-
ploitation attempts, or correlated policy-violating content that triggers broad
countermeasures with collateral damage. These channels justify treating sys-
temic loss as convex in the number of concurrent failures, even if each single
failure is “small” in isolation.

What we mean by “overlap” (latent positivity) as an investable
input. We use “overlap” as a deliberately coarse abstraction for the de-
gree to which the assistant’s learned objective continues to coincide with
intended objectives across a broad set of contexts, including those not rep-
resented in the preference dataset. Operationally, one can view overlap as
capturing several partially substitutable interventions: (i) expanding and di-
versifying preference elicitation (cross-cultural and domain-expert feedback,
long-horizon tasks, tool-use supervision); (ii) stress-testing and adversarial
evaluation designed to elicit goal-directed failures rather than surface-level
policy violations; (iii) mechanistic interpretability and representation-level
auditing aimed at identifying brittle goal proxies or deceptive instrumental
strategies; (iv) training-time interventions that reduce confident off-support
optimization (uncertainty calibration, conservative policies under epistemic
uncertainty, constraint enforcement); (v) controlled post-training experimen-
tation that probes invariances under simulated regime shifts (tool perturba-
tions, memory perturbations, distributional stressors).

Crucially, overlap is costly and its benefits are risk-reducing rather than
purely performance-enhancing. This creates two predictable market failures.
The first is an externality: third parties can be harmed even when the choos-
ing user benefits (or is indifferent). The second is an observability problem:
many overlap-improving activities are difficult for outsiders to verify directly,
and realized incidents are a noisy and delayed signal of latent failure prob-
ability. The result is a wedge between what firms can monetize through
demand and what society values in reduced tail risk.

At the same time, overlap is not completely unverifiable. Governance
practice increasingly relies on auditable proxies: documented red-team cov-
erage, evaluation under specified threat models, model card disclosures, inci-
dent reporting, and standardized safety cases. These are imperfect, but they
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motivate why a regulator might impose a minimum standard or a liability
regime keyed to harms. In our model, we treat overlap as an input that can
be bounded below by a standard, even if the underlying latent alignment
property is not directly observable.

Why these stylized facts point to our modeling choices. The preced-
ing discussion motivates a minimal structure with three components. First,
a competitive environment in which users allocate demand based on per-
ceived expected harm, but where that perception is an imperfect proxy for
latent tail risk. Second, a common regime state capturing shared deploy-
ment shifts, which induces correlation in failure events across firms. Third,
a safety investment that reduces failure probabilities and is plausibly more
valuable in the stressed regime. Once these ingredients are present, the core
comparative statics follow: underinvestment is most severe when harms fall
on third parties, when systemic losses are convex in concurrent failures, when
the market is fragmented across many firms (diluting demand incentives),
and when correlation is strong due to common shocks and shared blind spots.
The next section formalizes this structure as a game between firms, users,
and a regulator, using overlap as the decision variable that links alignment
work to both private incentives and social welfare.

3 Model: overlap investment, demand, common
shifts, and policy instruments

We now formalize the competitive environment as a simple game in which
firms make a costly, safety-relevant investment—our overlap variable—before
users choose a provider, after which a common deployment regime-shift is
realized and failures occur. The model is intentionally reduced-form: we
want a tractable mapping from (i) investable robustness work, (ii) user-
facing adoption incentives, and (iii) correlated tail events, to (iv) a wedge
between private and socially optimal safety investment and the role of simple
policy instruments.

Players and timing. There are N ≥ 2 competing firms indexed by i ∈
{1, . . . , N} and a continuum of users of mass M . Users obtain utility from
adopting exactly one provider.1 There are also passive third parties who can
be harmed by a failure even if they are not the adopting user. A regulator
chooses policy ex ante.

The timing is:
1An outside option can be added without changing the main comparative statics; we

omit it for notational simplicity.
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1. Policy. The regulator chooses a liability rate τ ≥ 0 per unit third-
party harm and a minimum overlap standard ō ≥ 0.

2. Investment. Each firm i chooses overlap oi ≥ ō at cost

C(oi) =
c

2
o2i , c > 0.

3. Adoption. Users observe (or infer from disclosures/audits) each firm’s
expected failure probability and choose providers according to a logit
demand system.

4. Deployment shift and failures. A common regime state S ∈ {L,H}
is realized, with Pr(S = H) = s ∈ (0, 1). Conditional on S, each firm
experiences a goal-misgeneralization failure with probability depending
on its investment. Harms and liability payments are realized.

We emphasize that the common state S is meant to capture shared shifts in
the deployment environment (including adversarial pressure), so S is realized
after adoption and is not contractible at the time of user choice.

Failure technology and the role of overlap. Fix a regime S ∈ {L,H}.
If firm i invested oi, it fails with probability

πS(oi) = max
{
0,min{1, π0

S − aSoi}
}
, (1)

where π0
S ∈ (0, 1) is the baseline failure probability at oi = 0 and aS > 0

is the marginal effectiveness of overlap investment in reducing failure risk in
state S. We allow aH ≥ aL > 0 to capture the empirically salient possibility
that robustness work has disproportionate value under stress: investment
may do relatively little in a benign regime but sharply reduce failures in a
high-shift regime. For most of our analysis we focus on the linear region
where the truncations in (1) do not bind, so that πS(oi) = π0

S − aSoi.
Let Fi ∈ {0, 1} be the failure indicator for firm i at deployment. Condi-

tional on S, we assume

Fi | S ∼ Bernoulli(πS(oi)), independent across i conditional on S.

Thus the primary source of correlation across firms is the common shock
S (which shifts the level and/or slope of failure risk), rather than direct
technological spillovers between firms.2

2We view this as a conservative modeling choice: allowing cross-firm dependence be-
yond S would typically increase systemic-tail risk and strengthen the case for internalizing
externalities.
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Define the systemic load as the number of failing firms,

K =
N∑
i=1

Fi.

We will later exploit the standard decomposition

E[K2] = E[Var(K | S)] + Var(E[K | S]),

which makes explicit how a common shock increases joint-tail risk through
the second term.

Harms: internal, external, and systemic. If firm i fails, each user
served by i experiences per-user harm hU > 0 (this is internalized in user
utility), and third parties experience harm hE > 0 per affected user (this is
not internalized by user demand unless policy imposes it). In addition, cor-
related failures generate a systemic loss that is convex in K. For tractability
we use a quadratic form,

systemic loss = κK2, κ ≥ 0,

interpretable as a reduced-form proxy for saturation and cascade mecha-
nisms. The quadratic is not essential; what matters is convexity in K, which
makes joint failures disproportionately costly relative to isolated incidents.

User choice and what is observed. Users care about the perceived prob-
ability of failure, which we model as the true ex ante expectation given in-
vestment:

π̄(oi) := E[πS(oi)] = (1− s)πL(oi) + sπH(oi).

This is the object that can be (imperfectly) learned via evaluation reports,
incident history, or standardized safety cases. We deliberately do not model
the inference problem explicitly; instead, π̄(oi) summarizes the channel by
which overlap investment translates into adoption incentives.

User utility from choosing firm i is

Ui = v − p− hU π̄(oi),

where v is a baseline value and p is a (here, fixed) price.3 Given an overlap
profile o = (o1, . . . , oN ), market shares follow a logit demand system with
sensitivity parameter β > 0:

si(o) =
exp(βUi)∑N
j=1 exp(βUj)

. (2)

3We fold price competition into the reduced-form margin parameter below. Endoge-
nizing prices is feasible but distracts from the safety externalities; the key wedge arises
even under fixed prices.
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Logit serves two purposes. First, it ensures smooth best responses: improv-
ing one’s perceived failure probability increases demand, but with diminish-
ing returns when one is already much safer than rivals. Second, it provides
an interpretable reduced-form mapping from safety perceptions to market
share.

Firm payoffs and liability. Each firm earns a constant per-user margin
µ > 0 on its adopted user base. If it is held liable at rate τ for third-party
harm, then a failure generates an additional expected cost proportional to
the harm caused.

A convenient reduced-form expected profit for firm i is

Πi(o; τ) = µMsi(o) − c

2
o2i − τ hE M si(o) π̄(oi). (3)

The last term can be derived from an underlying realization-level liability
payment τhE times (users served) times (failure indicator), taking expecta-
tions over failures. We treat τ as a policy instrument that converts external
harm into a private expected cost. Importantly, without liability (τ = 0),
third-party harm does not enter firm incentives except insofar as it affects
user demand through π̄(oi), and only through the internal harm channel hU .

We interpret the overlap standard ō as a compliance constraint that is
(more) verifiable than the latent alignment property: a regulator can often
audit documented red-team coverage, evaluation procedures, or other process
commitments that correlate with oi, even if it cannot directly observe πS(·).

Planner objective. To compare equilibrium investment to a social bench-
mark, we define a planner objective that aggregates user utility, investment
costs, third-party harms, and systemic losses. One convenient formulation is

W (o) = M E
[
max

i
Ui

]
−

N∑
i=1

c

2
o2i − M

N∑
i=1

si(o) π̄(oi) (hU +hE) − κE[K2].

(4)
The first term captures the idea that users choose the option giving them
the highest realized utility (with logit providing a smooth approximation
to discrete choice). The next terms subtract real resource costs of over-
lap, expected internal plus external harm, and convex systemic losses. In
a stripped-down benchmark we will sometimes hold market shares fixed at
si(o) = 1/N to isolate externalities from strategic demand effects; doing so
makes the underinvestment mechanism especially transparent.

Equilibrium concept and the objects we will characterize. Given
policy (τ, ō), firms simultaneously choose oi ≥ ō anticipating user adoption
(2) and expected liability (3). A (Bayesian) Nash equilibrium is a profile o∗
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such that each o∗i maximizes (3) given o∗−i. Our main focus is on symmetric
equilibria o∗i = oNE(τ, ō) and on the planner’s symmetric optimum oSP .

Two modeling choices are worth flagging because they shape the subse-
quent comparative statics. First, the only endogenous source of cross-firm
correlation is the common regime S, which we treat as exogenous. Second,
overlap affects failure risk directly, and (through π̄) affects demand; we do
not allow direct technological spillovers whereby one firm’s overlap reduces
another’s failure probability. Both choices bias the model toward under-
stating the divergence between private and social incentives: any additional
cross-firm coupling in failures would typically strengthen the planner’s mo-
tive to increase overlap.

With the model defined, the next section derives equilibrium conditions
and provides a closed-form characterization in the linear region of (1) un-
der quadratic costs. This will let us state clean existence and uniqueness
results for the symmetric equilibrium, compare oNE to oSP , and interpret
how common-shock correlation and market fragmentation jointly widen the
safety investment wedge.

4 Equilibrium analysis: symmetric existence/uniqueness
and a closed-form characterization

We now characterize firms’ overlap choices given policy (τ, ō). The key ob-
ject is a symmetric Bayesian Nash equilibrium in which each firm chooses
the same overlap level, trading off (i) a direct marginal reduction in expected
failure losses that are internalized through liability and (ii) an indirect de-
mand effect through users’ perceived safety, against (iii) convex investment
costs.

Preliminaries: linear region and an effective slope. Throughout this
section we work in the linear region of (1), where truncations do not bind
and

πS(o) = π0
S − aSo for S ∈ {L,H}.

Then the ex ante (user-perceived) failure probability is affine in o:

π̄(o) = (1−s)πL(o)+sπH(o) = π̄0−a•o, π̄0 := (1−s)π0
L+sπ0

H , a• := (1−s)aL+saH .

The parameter a• is the effective marginal efficacy of overlap when users
and firms evaluate risk ex ante. Importantly, this averaging is taken before
any systemic term is considered; the role of common-shock correlation en-
ters planner incentives through higher moments, which we defer to the next
section.
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Best responses and the marginal-incentive decomposition. Fix ri-
vals’ overlap profile o−i. From (3), firm i chooses oi ≥ ō to maximize

Πi(o; τ) = µMsi(o)−
c

2
o2i − τhEMsi(o)π̄(oi).

Differentiating w.r.t. oi yields a useful decomposition:

∂Πi

∂oi
= M

(
µ− τhE π̄(oi)

)∂si(o)
∂oi

− τhEM si(o) π̄
′(oi) − coi. (5)

Two channels are immediate:

1. Demand/reputation channel: improving oi decreases π̄(oi), increasing
Ui and thereby si(o). This is captured by ∂si/∂oi.

2. Liability/internalization channel: improving oi directly reduces ex-
pected liability on the firm’s existing user base, captured by −τhEMsiπ̄

′(oi)
(which is positive since π̄′(oi) = −a• in the linear region).

The first channel is present even at τ = 0 because users internalize hU in their
adoption decision; the second is present only when policy converts external
harms into private costs.

To make (5) operational, we use the logit structure (2). The standard
derivative is

∂si
∂Ui

= βsi(1− si),
∂Ui

∂oi
= −hU π̄

′(oi) = hUa•,

so
∂si(o)

∂oi
= βsi(o)

(
1− si(o)

)
hUa•. (6)

Substituting (6) and π̄′(oi) = −a• into (5) yields

∂Πi

∂oi
= M

(
µ− τhE π̄(oi)

)
βsi(1− si)hUa• + τhEM si a• − coi. (7)

Equation (7) makes clear that competition enters through the factor si(1−
si): when a firm is already very large or very small, marginal safety improve-
ments translate into smaller market-share gains, dampening the demand in-
centive. Liability, by contrast, continues to create a direct marginal return
proportional to the firm’s current scale si.

Concavity and existence/uniqueness of a symmetric equilibrium.
Under our maintained quadratic costs, the investment side is strictly convex.
The remaining issue is whether the adoption term can create multiple local
optima. In the logit model, si is smooth in Ui and hence in oi, and the
mapping oi 7→ si(o) exhibits diminishing marginal returns because si(1− si)
is maximized at si = 1/2 and declines toward 0 as si → 0 or 1. Combined
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with the linear dependence of Ui on oi in the linear region, this yields a
single-peaked payoff in oi for fixed o−i in the parameter ranges we study:
the second derivative inherits a strictly negative −c term and (generically)
a negative curvature from logit saturation. Operationally, we can treat each
firm’s best response BRi(o−i; τ, ō) as single-valued and continuous.

Symmetry then pins down a unique fixed point. Specifically, consider the
candidate symmetric profile oi = o for all i. Then Ui = Uj and si(o) = 1/N .
Since each best response is single-valued, the symmetric best-response cor-
respondence collapses to a continuous function BR(o; τ, ō) in the symmetric
slice. Strict concavity in own oi implies the function crosses the 45◦ line at
most once, delivering a unique symmetric equilibrium. Finally, the overlap
floor ō imposes a simple truncation: if the interior optimum lies below ō, the
constraint binds and the equilibrium is at o = ō.

Formally, the Kuhn–Tucker condition for a symmetric equilibrium oNE

can be written as the complementarity system

0 ≤ oNE − ō ⊥ ∂Πi

∂oi

∣∣∣∣
oi=oNE , o−i=oNE1

≤ 0, (8)

which succinctly captures both interior and corner cases.

Closed form in the symmetric interior (and why it is affine in pol-
icy). To obtain a transparent expression, we evaluate (7) at a symmetric
interior point, where si = 1/N and si(1 − si) = (1/N)(1 − 1/N). We also
adopt the standard reduced-form simplification (used repeatedly in applied
IO) that the term µ− τhE π̄(o) is well-approximated by µ when the liability-
weighted expected harm is small relative to the per-user margin, or when
we want to isolate the dominant comparative-static effects.4 Under this ap-
proximation, the interior first-order condition becomes

c oNE = a•

(
τhEM · 1

N
+ µM β hU · 1

N

(
1− 1

N

))
. (9)

Equation (9) has three immediate implications.
First, the equilibrium overlap is increasing in τ : liability directly scales

the private marginal benefit of reducing failure risk on the firm’s own cus-
tomers (the 1/N term). Second, the demand channel scales with βhU
and is attenuated by competition via (1/N)(1 − 1/N): as N grows, each
firm’s marginal demand gain from improving safety shrinks roughly like 1/N .
Third, in the linear region the mapping from τ to oNE is affine, and the over-

4Keeping the exact term simply replaces µ with µ − τhE π̄(o
NE) in the demand com-

ponent; the qualitative results below are unchanged in the parameter ranges where the
symmetric equilibrium remains interior.
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lap floor simply truncates it:

oNE(τ, ō) = max {ō, õ(τ)} , õ(τ) :=
a•
c

(
τhEM · 1

N
+ µM β hU · 1

N

(
1− 1

N

))
.

(10)
This explicit form is useful for comparative statics and for interpreting policy:
τ shifts incentives one-for-one through the liability channel, while ō enforces
a hard minimum regardless of market conditions.

Interpretation: what the market does and does not internalize.
Expression (10) clarifies the economic forces we should expect in competitive
LLM deployment.

On the one hand, firms do have private incentives to invest in overlap even
without regulation: because users dislike failure risk (weighted by hU ) and
because logit demand is responsive (weighted by β), safety improvements can
increase market share and thus profit. On the other hand, two attenuation
mechanisms are built in. First, market fragmentation weakens incentives:
when many firms compete, each one captures only a small fraction of the
marginal benefit of improving overall ecosystem safety. Second, the private
calculus depends on expected failure risk π̄ rather than tail risk conditional
on the high-shift regime. In particular, although aH ≥ aL means overlap
may be most valuable under stress, the firm’s baseline incentive aggregates
regimes linearly through a• and does not (on its own) place extra weight on
correlated joint failures.

These are not merely modeling conveniences; they correspond to deploy-
ment realities. Users can often react to salient incidents (an average-risk
signal), but they are rarely in a position to price the harm to non-users hE ,
and they typically do not contract on correlated ecosystem-level events (cap-
tured here by κK2). Liability τ is therefore a targeted instrument: it converts
third-party harm into a private expected cost and steepens the equilibrium
response in a way that demand alone generally cannot.

Boundary cases and scope of the characterization. The closed form
(10) is valid when (i) õ(τ) ≥ ō (so the standard does not bind) and (ii)
the linear region is relevant, i.e. π0

S − aSo
NE ∈ (0, 1) for both S ∈ {L,H}.

Outside this range, equilibria can pin to corners: if overlap is extremely ef-
fective, the firm may hit the zero-failure truncation in one or both regimes,
after which marginal returns drop; conversely, if overlap is ineffective or pro-
hibitively costly, the floor may bind or equilibrium may sit near ō. These
corner regimes matter empirically (e.g. for very capable systems where fur-
ther overlap yields small incremental reductions in already-low measured
failure probability), but they do not change the central logic: private incen-
tives remain tied to own-demand and own-liability exposure.
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Transition to the planner benchmark. Having pinned down a unique
symmetric equilibrium and an interpretable closed form for oNE(τ, ō) in the
linear region, we are now positioned to ask the welfare question: how does
this privately chosen overlap compare to the socially optimal level once we
account for third-party harm and convex systemic losses driven by correlated
failures? The next section answers this by deriving the planner’s symmetric
optimum oSP and decomposing the wedge into internalized demand incen-
tives versus external and systemic components.

5 Social planner benchmark: internal, external, and
systemic marginal values of overlap

We now turn to the benchmark that the competitive equilibrium in Section 4
should be compared against: a utilitarian social planner who chooses overlap
investments to maximize total welfare, taking into account (i) harm borne
by users, (ii) harm borne by non-users (third parties), and (iii) convex sys-
temic losses from correlated failures. Conceptually, this benchmark answers
a simple alignment-governance question: if we could directly set the degree
of experimentation/overlap in preference learning across firms, how much
would we want, once we price in tail risk and externalities?

A symmetric welfare objective (and what we hold fixed). Because
our goal is to isolate the safety-relevant wedge between private and social
incentives, we adopt the standard symmetric reduction: we restrict attention
to profiles with oi = o for all i, and we treat the symmetric demand allocation
as approximately uniform, si ≈ 1/N , so that changes in overlap primarily
affect welfare through changes in failure risk and investment costs rather
than through allocative market-share shifts.5 Under this reduction and in
the linear region where π̄(o) = π̄0 − a•o, the relevant welfare tradeoff can be
written as

W sym(o) = −N
c

2
o2 − M(hU + hE) π̄(o) − κE

[
K2

]
+ (constants). (11)

The first term is the real resource cost of overlap investment. The second
term prices all per-user expected harm from failures, including both user
harm hU and third-party harm hE (the latter is external to user adoption).
The third term captures the idea that, even holding fixed per-user harms,
joint failures can generate additional ecosystem-level losses (e.g. cascading
misuse, loss of public trust, correlated critical-infrastructure incidents) that
scale convexly in the number of failing deployments K.

5One can endogenize shares inside the planner problem as well (e.g. by adding a con-
sumer surplus term consistent with logit). In the symmetric identical-firm class, the key
distinction remains: the planner internalizes third-party and systemic harms that do not
enter firms’ private objectives absent policy.
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Why the systemic term depends on more than mean failure prob-
ability. A central modeling point is that E[K2] is sensitive not only to the
average failure rate but also to correlation induced by the common regime
state S. Conditional on S, firms fail independently with probability πS(o),
so

K | S ∼ Binomial
(
N, πS(o)

)
.

A convenient decomposition (law of total variance) is

E[K2] = E[Var(K | S)] + Var(E[K | S]) +
(
E[K]

)2
= E

[
NπS(o)

(
1− πS(o)

)]
+Var(NπS(o)) +

(
Nπ̄(o)

)2
. (12)

The first term is the within-regime (idiosyncratic) binomial variance; the
second term is the between-regime variance generated by the common shock
S; the third term is the squared mean. Overlap reduces πS(o) in both
regimes, but when aH > aL it also preferentially reduces failures in the high-
shift regime, which tends to compress the distribution of πS(o) across S and
thereby shrink the common-shock contribution Var(NπS(o)). This is the
formal sense in which overlap can mitigate tail-risk correlation: it reduces not
only π̄(o) but also the dispersion of failure rates across deployment regimes.

For the purposes of a closed-form planner characterization, we will use a
baseline approximation in which the dominant systemic force is the squared-
mean component, i.e. E[K2] ≈ (Nπ̄(o))2. This approximation is accurate
when (i) failure probabilities are small-to-moderate so that πS(1 − πS) is
second order relative to π2

S in the region of interest, and/or (ii) we want to
isolate the simplest mechanism by which convexity in K creates an extra
social incentive to reduce the level of failures. We return to the correlation-
sensitive refinements (the Var(NπS(o)) term in (12)) when we study how
common shocks magnify underinvestment.

Planner first-order condition and marginal-benefit decomposition.
Maximizing (11) over o ≥ 0 yields the (symmetric, interior) planner first-
order condition

Nc oSP = M(hU + hE) a• + κ ·
(
− d

do
E[K2]

)∣∣∣
o=oSP

. (13)

This expression is useful even before we pick an approximation for E[K2],
because it makes explicit what the planner is trading off:

• Direct harm reduction (users + third parties): increasing o reduces
π̄(o) at rate a•, producing a marginal benefit M(hU + hE)a• in the
symmetric baseline.

• Systemic tail-risk reduction: increasing o reduces the expected convex
loss κE[K2]; the marginal benefit is κ(−dE[K2]/do).
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• Convex investment cost: marginal cost is Nco.

The key conceptual distinction from the firm problem is already visible: in
the planner FOC, the harm coefficient is hU +hE (not merely what users in-
ternalize in adoption), and there is an additional term that values reductions
in joint failures even if per-user harms were already perfectly priced.

A closed-form baseline with mean-field systemic risk. Under the
mean-field approximation E[K2] ≈ (Nπ̄(o))2, we have

− d

do
E[K2] ≈ − d

do

(
N2π̄(o)2

)
= 2N2π̄(o) a•,

since π̄′(o) = −a• in the linear region. Substituting into (13) and dividing
by N yields the transparent symmetric planner condition

c oSP = a•

(
M(hU + hE)

N
+ 2κN π̄(oSP )

)
. (14)

Because π̄(o) = π̄0 − a•o is affine, (14) solves in closed form:

oSP =
a•

c+ 2κNa2•

(
M(hU + hE)

N
+ 2κNπ̄0

)
. (15)

Two limiting cases are worth flagging for intuition. If κ = 0 (no systemic
convexity), the planner chooses

oSP =
a•
c

· M(hU + hE)

N
,

so the sole difference from private incentives will come from whether firms
internalize hE and how strongly demand reacts to risk. If instead hE = 0
but κ > 0, overlap is still socially valuable because it reduces the likelihood
of multi-firm joint failure events; this is the sense in which systemic risk can
justify safety investment even absent classical externalities.

What the planner internalizes that the market does not. Equation
(15) provides a clean decomposition of the planner’s marginal willingness to
pay for overlap into three additive components (all scaled by a•/c):

1. Internal user-safety value: MhU
N .

2. External third-party value: MhE
N .

3. Systemic tail-risk value: 2κNπ̄(oSP ) (under the mean-field approxi-
mation).
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In contrast, the symmetric private equilibrium (10) values overlap through
(i) a demand/reputation channel, which depends on how strongly adoption
responds to perceived user harm (βhU ) and how much profit is at stake (µ),
and (ii) an explicit internalization channel only to the extent that policy sets
τ > 0.

This difference matters operationally for alignment governance: user
choice can only pressure firms on dimensions that are visible, attributable,
and privately salient to adopters. Third-party harms hE (e.g. externalized
misuse, labor-market displacement, downstream fraud) are typically not con-
tractible at the point of adoption. Likewise, systemic losses—precisely the
events that motivate public concern about frontier deployments—tend to be
joint and state-contingent, and so are only weakly disciplined by firm-level
reputation incentives tied to average outcomes.

Interpretive note: why we emphasize the symmetric class. We
emphasize the symmetric planner benchmark not because real markets are
symmetric, but because it cleanly exposes the structural source of underin-
vestment: even if firms are equally capable and users are perfectly informed
about expected failure probabilities, privately optimal overlap is generally
governed by appropriable demand gains and any imposed liability, while the
planner additionally prices non-user harms and the convexity of correlated
bad outcomes. Once this wedge is understood in the symmetric class, exten-
sions (heterogeneous aS , asymmetric market shares, endogenous disclosure)
mainly change how the wedge is distributed across firms, not whether it
exists.

Scope and limitations of the closed form. The expression (15) is
a baseline derived in the linear region and under a mean-field approxi-
mation for systemic losses. If truncation binds (e.g. πS(o) hits 0 in one
regime), marginal benefits become state-dependent and the planner problem
becomes piecewise. And if we retain the full decomposition (12), the sys-
temic marginal benefit includes an additional correlation-sensitive term pro-
portional to dVar(NπS(o))/do, which is exactly where the common-shock
structure (s and the gap between regimes, including aH − aL) enters the
planner’s incentives beyond the mean. These refinements do not change the
qualitative message of this section, but they will matter for comparative
statics and for quantifying how much policy must lean against correlated
tail events.

With the planner benchmark in hand, we can now compare (15) (and its
correlation-aware generalization) to the equilibrium characterization from
Section 4 and identify conditions under which the market systematically
underinvests in overlap, as well as how the wedge scales with externality
magnitude, systemic convexity, market fragmentation, and common-shock
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strength.

6 Underinvestment and comparative statics: where
the wedge comes from

We now compare the competitive outcome to the planner benchmark from
Section 5. The object of interest is the overlap wedge

∆ := oSP − oNE(τ, ō),

which operationalizes a governance concern: even if firms optimize given
user demand and reputational incentives, do they choose enough experimen-
tation/overlap to control misgeneralization risk in the regimes that matter
most?

Private versus social marginal benefits (intuition before algebra).
The planner values overlap because it reduces (i) user harm, (ii) third-party
harm, and (iii) convex losses from joint failures. In contrast, a firm values
overlap only to the extent that it (a) increases demand (users avoid higher
expected failure probability) and (b) reduces expected liability payments
under the policy parameter τ . Two immediate implications follow.

First, if third-party harms hE are not fully internalized (e.g. τ < 1 or
enforcement is incomplete), then a unit reduction in failure probability is
socially more valuable than privately valuable, even abstracting away from
systemic losses. Second, even if τ = 1 perfectly internalizes third-party
harm at the margin, the firm still does not generally internalize the systemic
component κE[K2], because the firm’s objective depends (at most) on its
own expected harm and adoption, not on the curvature of ecosystem-wide
joint-failure loss.

A clean comparison in the symmetric linear region. To make the
wedge transparent, we stay in the symmetric class and in the linear region
where π̄(o) = π̄0 − a•o (no truncation at 0 or 1). Consider an interior
symmetric equilibrium with oi = oNE for all i and no binding floor ō = 0.
The equilibrium first-order condition from Section 4 can be written in the
reduced form

c oNE = a•

 τhEM

N︸ ︷︷ ︸
explicit internalization

+
µM β hU

N

(
1− 1

N

)
︸ ︷︷ ︸

demand/reputation channel

 . (16)

The first term is direct: liability converts third-party harm into a private
expected cost proportional to the firm’s own demand. The second term is
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the demand incentive induced by the logit market: when users are more
sensitive to expected utility differences (β large) and margins are higher (µ
large), firms have a stronger appropriable incentive to reduce user expected
harm hU π̄(o).

By contrast, the planner condition from Section 5, under the mean-field
systemic approximation, is

c oSP = a•

(
M(hU + hE)

N
+ 2κN π̄(oSP )

)
. (17)

Comparing (16) and (17) already shows the structural difference: the planner
weights per-failure harm by hU +hE (not just what is disciplined by demand
plus the policy-weighted fraction of hE) and adds the systemic tail term
2κNπ̄(·), which is absent from the private optimum.

Proving underinvestment (oNE < oSP ) by monotonicity. The formal
argument uses the fact that both problems have strictly convex costs and
(in the linear region) linear marginal benefits. Define the private marginal
benefit coefficient

Bpriv(τ) :=
τhEM

N
+

µM β hU
N

(
1− 1

N

)
,

and the planner’s (mean-field) marginal benefit evaluated at o,

Bsoc(o) :=
M(hU + hE)

N
+ 2κN π̄(o).

Then (16) is coNE = a•B
priv(τ), while (17) is coSP = a•B

soc(oSP ).
Under the baseline assumptions, Bsoc(o) is strictly decreasing in o when

κ > 0 (because π̄′(o) = −a•), and the planner objective is strictly concave
in o after the sign flip (equivalently, strictly convex costs plus diminishing
marginal returns through π̄ inside the systemic term). The firm objective is
strictly concave in o as well (quadratic costs plus logit concavity), yielding
unique interior solutions.

To show oNE < oSP , it suffices to show that at the private optimum the
planner’s marginal benefit exceeds the private marginal benefit:

Bsoc(oNE) > Bpriv(τ),

because then, at oNE , the planner still has positive net marginal gain from
increasing o, and strict concavity implies the planner optimum must lie to
the right.

Two conditions are enough:

1. If hE > 0 and τ < 1, then even ignoring systemic risk (κ = 0),

M(hU + hE)

N
>

τhEM

N
+

MhU
N

,
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and the only remaining question is how much of the hU term the firm
internalizes via demand. In general, the demand channel term in (16)
is not equal to MhU/N ; it is governed by market competitiveness and
appropriability (µ, β,N). Hence unless demand pressure exactly repli-
cates the planner’s valuation of user safety, a positive gap remains,
and it is strictly positive whenever τ < 1 and demand is not infinitely
disciplining.

2. If κ > 0, then for any τ we have Bsoc(o) ≥ M(hU+hE)
N and addition-

ally the systemic term 2κNπ̄(o) is strictly positive whenever π̄(o) > 0.
Since the private condition (16) does not include this term, the plan-
ner’s marginal benefit at oNE exceeds the private marginal benefit
whenever failures remain possible in equilibrium (i.e. π̄(oNE) > 0 in
the region of interest), implying oSP > oNE .

This establishes Proposition 2 in the symmetric linear region: absent a policy
that internalizes both third-party and systemic marginal harms, competitive
incentives lead to underinvestment in overlap.

Comparative statics of the wedge. Because the equilibrium and plan-
ner conditions are monotone, comparative statics follow by differentiating the
closed-form expressions (or, more robustly, by applying the implicit function
theorem to the respective FOCs).

Third-party harm hE. The planner’s marginal value of overlap increases
one-for-one with hE through M(hU+hE)

N . The firm’s marginal value increases
only through the liability-weighted term τhEM

N . Consequently,

∂∆

∂hE
> 0 whenever τ < 1

in the interior linear region: more severe externalities widen the underinvest-
ment gap unless policy scales proportionally.

Systemic convexity κ. The planner invests more as κ rises because the
systemic marginal benefit 2κNπ̄(o) scales with κ, while the firm’s incentives
are essentially unchanged (except indirectly via τ if policy responds). Thus

∂∆

∂κ
> 0

whenever π̄(oSP ) > 0. Operationally, this is the “tail-risk governance”
regime: even if average outcomes look acceptable, convex losses from joint
failures justify materially higher overlap.

Number of firms N . There are two opposing forces in the planner prob-
lem: the direct per-user harm term is divided by N in the symmetric alloca-
tion, while the systemic term scales as 2κNπ̄(o). In the firm problem, both
the liability and demand terms are diluted by competition, scaling roughly
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like 1/N (and the demand term includes an extra (1− 1/N) that saturates
near 1). The net effect is that as markets fragment, the private incentive to
invest in safety-relevant overlap weakens, while the systemic rationale can
strengthen. In particular, when κ is nontrivial, larger N increases ∆ over a
wide parameter range: more competing deployments increase the expected
scale of correlated loss events without proportionally increasing any single
firm’s appropriable return to safety investment.

Demand sensitivity β and margins µ. Both parameters steepen the de-
mand/reputation channel in (16), raising oNE and shrinking the wedge, hold-
ing policy fixed:

∂∆

∂β
< 0,

∂∆

∂µ
< 0.

This comparative static captures an important limitation of “let the mar-
ket discipline safety”: demand pressure can partially internalize user -salient
harms when risks are legible and attributable, but it does not, by itself, inter-
nalize third-party harms nor ecosystem-level convexities. Moreover, demand
pressure is a function of observability and trust in disclosure; if users un-
derweight tail risks or cannot verify them, the effective β for safety-relevant
attributes is small even if users are otherwise price/quality sensitive.

Common shocks and correlation: why the wedge grows with regime
dispersion. The mean-field approximation highlights the level effect of
overlap on joint failures. To see how common-shock strength magnifies un-
derinvestment (Proposition 3), we revisit the decomposition in (12). The
correlation-relevant component is

Var(NπS(o)) = N2s(1− s)
(
πH(o)− πL(o)

)2
,

which increases with the dispersion between regimes and scales quadrat-
ically in N . When aH > aL, increasing overlap shrinks the regime gap
πH(o) − πL(o) faster than it shrinks πL(o), so overlap reduces not only the
mean failure probability but also the between-regime variance. The planner
therefore has an additional marginal benefit term proportional to

− d

do
Var(NπS(o)) = 2N2s(1− s)

(
πH(o)− πL(o)

)
(aH − aL),

which is positive in the empirically relevant case where the high-shift regime
is riskier (πH(o) > πL(o)) and overlap is more protective there (aH > aL).
Firms do not internalize this variance-reduction benefit unless it is somehow
priced through liability tied to systemic outcomes or through coordinated
standards. Hence the wedge increases with natural indices of common-shock
strength such as s(1−s)(aH−aL)

2 and s(1−s)(π0
H−π0

L)
2: more regime dis-

persion makes tail-risk correlation more salient to the planner while leaving
private incentives largely anchored to average perceived risk.

25



What breaks these conclusions (and why that matters for gover-
nance). All of the comparisons above rely on staying in the interior linear
region and on treating overlap as an individually chosen scalar that mono-
tonically reduces failure probability. If truncation binds (e.g. πL(o) hits 0
first), then marginal benefits become state-dependent and the wedge can be-
come piecewise: the planner may continue investing to reduce high-regime
tail risk even after the low-regime risk is eliminated, while firms—whose
incentives are often driven by average outcomes—may not. Similarly, if
“overlap” has multi-dimensional structure (e.g. it trades off capability exter-
nalities against alignment robustness), then the one-dimensional monotone
comparative statics no longer apply mechanically. These are not merely
technicalities: they identify precisely where auditability, measurement, and
policy design (Section 7) must take over from closed-form reasoning.

7 Policy design: overlap floors vs. liability, and a
simple near-first-best rule

The wedge analysis in Section 6 isolates a familiar governance tension: the
object we care about socially is tail-risk reduction under common shocks,
while the object firms can reliably monetize is (at best) average, user-salient
risk plus whatever harms are priced by liability. This section therefore treats
(τ, ō) not as abstract primitives but as two policy implementation channels
with different informational and enforcement requirements.

7.1 Two instruments, two kinds of verifiability

Liability τ is an outcome-based instrument. It is attractive because it tar-
gets harms directly: if third-party harms are observed, attributable, and
collectible, then firms can be induced to internalize them by setting τ ap-
propriately. However, outcome-based schemes are brittle in precisely the
regimes motivating our model: common-shock deployment shifts can create
diffuse, delayed, and legally ambiguous harms (externalities), and systemic
losses κK2 are typically not contractible at the level of any single deploy-
ment. Even if a regulator could compute ecosystem-wide damages ex post,
allocating them across firms requires a causal attribution rule in a correlated
environment.

An overlap floor ō is instead an input- (or process-) based instrument.
It is attractive when the regulator can more easily audit whether a firm
performed sufficient experimentation/diversification than audit what harms
were caused and by whom. In the present formalism, ō directly rules out the
lowest-overlap equilibria, at the cost of (i) potential over-compliance when
the regulator mis-estimates primitives, and (ii) the need for an operational
proxy for the scalar oi.
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The practical lesson is that the two instruments are complements: lia-
bility is information-efficient when harms are measurable and enforceable;
floors are enforcement-robust when harms are not.

7.2 A simple near-first-best rule in the symmetric class

In the symmetric linear region, Proposition 4 already suggests a clean im-
plementation logic: if the regulator can compute (or approximate) oSP , then
either (i) directly impose it as a minimum standard, or (ii) choose a liability
rate τ so that the firm’s private first-order condition coincides with the plan-
ner’s at oSP . The value of making this explicit is that it yields a calibration
target for policy: estimate a small set of objects that determine oSP and
back out the instrument level.

Formally, write the symmetric interior firm condition as

c o = a•

(
Bpriv(τ)

)
, Bpriv(τ) =

τhEM

N
+

µM β hU
N

(
1− 1

N

)
,

and the planner condition (mean-field systemic approximation) as

c o = a•

(
Bsoc(o)

)
, Bsoc(o) =

M(hU + hE)

N
+

∂

∂o

(
κE[K2]

)/(
−a•

)
︸ ︷︷ ︸

systemic marginal benefit per unit risk reduction

.

Under the simplified expression in Section 6, this systemic term reduces to
2κNπ̄(o), but the policy logic does not depend on that particular approxi-
mation.

A liability that implements oSP with ō = 0 solves

Bpriv(τFB) = Bsoc(oSP ),

hence (in the simplified mean-field expression)

τFB = 1 +
2κN2 π̄(oSP )

hEM
− µβhU

hE

(
1− 1

N

)
. (18)

Equation (18) should be read as a design identity rather than a literal rec-
ommendation: it clarifies which gaps liability must close. The first “1”
term is the standard Pigouvian correction for third-party harm. The second
term prices systemic convexity. The last term subtracts whatever portion
of user harm is already internalized through demand/reputation incentives
(and vanishes when µβ is small, i.e. when markets do not reliably disci-
pline safety). When correlation effects are material (Proposition 3), the
systemic marginal term should also include the variance-reduction benefit
from shrinking between-regime dispersion; in that case τFB contains an ad-
ditional positive component proportional to s(1−s)(πH(o)−πL(o))(aH−aL)
evaluated at oSP .
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When outcome-based enforcement is not feasible, the floor alternative
is conceptually simpler: set ō = oSP (or, more realistically, ō equal to a
conservative lower bound on oSP given uncertainty). The essential tradeoff
is then estimation error vs. enforcement error : liability is sensitive to le-
gal/attribution failure; floors are sensitive to miscalibration of oSP and to
Goodharting on the chosen proxy for oi.

7.3 Auditability: what does it mean to “measure overlap”?

The scalar oi compresses a bundle of practices—experimentation, diversity
of training signals, model pluralism, adversarial evaluation, and robustness
work—into a single decision variable. For policy, the relevant question is not
whether oi is metaphysically well-defined, but whether there exist auditable,
approximately monotone proxies for it: quantities that (i) firms can be re-
quired to report or demonstrate, (ii) third parties can verify with bounded
effort, and (iii) are predictive of reductions in πS(o), especially in the high-
shift regime.

One workable approach is to decompose oi into a weighted scorecard of
verifiable sub-investments, e.g.

oi ≈
M∑

m=1

wm xim,

where xim are auditable activities (number of independent preference-modeling
runs; breadth and provenance of feedback data; diversity of elicitation pro-
tocols; red-team coverage across capability domains; robustness evaluations
under distribution shift; time/compute budget spent on mechanistic investi-
gations of goal misgeneralization), and weights wm are set by the regulator
based on empirical correlations with downstream failures. This makes the
standard implementable even when πS(·) is not directly observable.

However, proxy-based floors invite predictable failure modes:

• Box-checking and Goodharting. If the score rewards countable arti-
facts (documents, evaluations run, datasets added), firms will optimize
toward those artifacts even when they weakly affect πS . Mitigation
requires random audits, rotating evaluation suites, and penalties for
misrepresentation.

• Capability externalities. Some forms of “experimentation” can increase
capabilities and thereby increase harms conditional on failure. Our
one-dimensional oi assumes monotone safety improvement; in practice
the proxy must be constructed to reward robustness-oriented overlap
rather than raw scale.

• Hidden regime dependence. The key governance objective is improve-
ment in the high-shift regime (aH), not just the average. Audits should
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therefore emphasize stress testing and out-of-distribution evaluations
whose construct validity is tied to regime shifts (e.g. tool-use, long-
horizon planning, and novel instruction contexts).

A complementary audit channel is to measure observable consequences
of overlap that are harder to fake than inputs, without requiring full harm
attribution. For example, a regulator could require standardized disclosure
of (i) reward-model disagreement or instability under controlled shifts, (ii)
the sensitivity of safety-relevant metrics to prompt distribution changes, or
(iii) incident rates in pre-deployment red-teaming at a fixed coverage budget.
These metrics can serve as partially outcome-based signals that sit between
pure liability and pure process standards.

7.4 Compliance costs, entry, and the “standard-setting” mar-
gin

Even when C(o) = (c/2)o2 is a convenient reduced form, real compliance
costs include fixed components: staffing, documentation, audit coordina-
tion, and delays to deployment. Fixed costs matter because they interact
with market structure: raising fixed compliance burdens can reduce the effec-
tive number of competitors N , changing both the private incentives and the
systemic exposure. This is not unambiguously good or bad. Fewer deploy-
ments can reduce the scale of joint failures (lower K mechanically), but can
also concentrate market power and reduce the diversity of safety approaches.
In other words, a floor can lower within-firm risk while raising between-firm
dependence if the surviving firms converge on similar pipelines.

This suggests two practical design heuristics.

1. Prefer standards that scale smoothly with deployment scope (e.g. user
base, capability level, or domains of use) to avoid cliff effects that
destroy entry.

2. Pair floors with safe-harbor provisions: if a firm demonstrates com-
pliance and promptly discloses incidents, liability multipliers can be
reduced, improving incentives for truthful reporting and post-incident
learning.

7.5 When heterogeneity forces numerical (and institutional)
methods

The symmetric class is deliberately pedagogical. In realistic settings, firms
differ in at least: (i) cost of overlap ci, (ii) baseline failure rates π0

S,i, (iii)
regime sensitivity aS,i, and (iv) exposure profiles (different user bases, do-
mains, and third-party harms). With heterogeneity, a single scalar τ gen-
erally cannot implement the full-information first best, and a single floor ō

29



can be distortionary: high-cost firms may over-comply relative to their com-
parative advantage, while low-cost firms may under-comply if the floor is set
too low.

Analytically, heterogeneity breaks the affine closed forms and turns both
the equilibrium mapping oNE(τ, ō) and the planner problem into coupled sys-
tems. Policy design then becomes a computational task: estimate primitives,
solve for equilibrium under candidate instruments, and search over (τ, ō) (or
richer menus) to maximize expected welfare subject to enforceability con-
straints. This is where numerical methods are not an optional add-on but
the natural continuation of the theory: the regulator is effectively running
counterfactual simulations over governance rules under uncertainty about
(aS,i, π

0
S,i, ci) and about how auditable proxies map to true risk reduction.

This motivates the next section: we need a calibration story that ties oi
and πS(oi) to observables (benchmarks, incident reports, distribution-shift
evaluations) well enough to (i) bound oSP , and (ii) evaluate how close simple
instruments like floors and liability come to that benchmark under plausible
parameter ranges.

8 Calibration and counterfactual simulations (illus-
trative)

The policy rules in Section 7 are only as actionable as our ability to connect
the latent choice variable oi and the failure technology πS(oi) to observ-
ables. In practice, the regulator does not observe πH(o) for the relevant
tail regimes, and firms have incentives to selectively disclose. This section
therefore sketches a calibration workflow that (i) treats “overlap” as a latent
safety investment, (ii) ties it to auditable intermediate measurements (espe-
cially distribution-shift gaps in reward modeling and evaluation), and (iii)
uses those measurements to run counterfactual simulations over (τ, ō). The
goal is not to claim that any one metric “is” oi, but to show how one can
bound welfare-relevant objects well enough to compare simple instruments.

8.1 From overlap to auditable intermediate signals: OOD
reward-model gaps

A natural place to look for an operational proxy is the difference between in-
distribution and shifted-distribution safety judgments. Concretely, suppose
each firm maintains (or is required to provide for audit) a reward model or
safety classifier Ri(·) trained to score candidate assistant behaviors. Let DL

denote a reference distribution of prompts/contexts (“low shift”) and DH a
stress-test distribution (“high shift”) designed to elicit rare or adversarial be-
havior (tool-use, long-horizon plans, novel domains, multi-agent interaction,
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jailbreak variants, etc.). Define an auditable gap statistic

gi := Ex∼DH

[
ℓ(Ri, x)

]
− Ex∼DL

[
ℓ(Ri, x)

]
,

where ℓ is a standardized loss or disagreement measure (e.g. reward-model
variance under ensembling; inconsistency under paraphrases; rate of con-
straint violations detected by a fixed suite). Intuitively, gi is large when the
firm’s safety signal degrades under shift.

We can then treat oi as a latent driver of both (a) this intermediate gap,
and (b) ultimate failure probability. A simple reduced-form that captures
the intended monotonicity is

gi = g0i − λ oi + εi, (19)

πS(oi) = π0
S,i − aS,i oi, S ∈ {L,H}, (20)

with λ > 0 and idiosyncratic noise εi reflecting measurement error and the
extent to which a given stress-test suite matches real deployment shift. Equa-
tion (19) is deliberately not structural: it says only that overlap investment
tends to reduce a robustly measurable symptom of brittleness under shift.

A slightly richer version links failures to the gap directly, which is con-
venient when oi is not itself verifiable:

πS = σ
(
αS + γSgi

)
or πS = min{1,max{0, π̃0

S + b̃Sgi}},

with γS , b̃S > 0. This creates a bridge from audits (which can measure gi
under regulator-controlled prompt distributions) to predicted failure rates.
In enforcement terms, this supports either (i) an input floor framed as a
requirement on gi (“your OOD gap must be below a threshold”), or (ii)
a calibration step that backs out plausible (π0

S , aS) ranges consistent with
observed gi trajectories.

8.2 Using benchmarks and incidents to estimate regime sen-
sitivity

To use the model for counterfactuals, we need at minimum coarse estimates
of π0

S and aS (or their population analogues) and some handle on systemic
convexity κ. Three data channels are typically available, each imperfect in
different ways.

Public and standardized benchmarks. Safety and robustness bench-
marks provide repeated, comparable measurements across time and across
model versions. The key is to stratify benchmarks into “low shift” and “high
shift” categories that plausibly track S ∈ {L,H}. For example, DL may be a
stable mix of common user prompts and known policy-violation probes, while
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DH emphasizes novel tool APIs, long-horizon autonomy scaffolds, or distri-
bution mixtures sampled from emerging deployment domains. In this view,
the object aH − aL is empirically about how much an incremental overlap-
style investment disproportionately improves performance on the high-shift
suite relative to the low-shift suite.

Incident reports and near-misses. While severe failures are (hopefully)
rare, near-miss logs and red-team findings can be treated as censored obser-
vations on πH . If an industry-wide reporting regime exists, we can partially
correct selection bias by conditioning on exposure and on audit intensity.
Even without perfect attribution, the time series of incidents following ca-
pability jumps or new deployment modalities can inform s (how often high-
shift conditions effectively occur) and can bound plausible π0

H for frontier
deployments.

Internal evaluation artifacts under audit. A regulator can require
firms to escrow evaluation traces (prompts, tool-call graphs, reward-model
outputs, policy checks) under standardized protocols. Even if the raw model
outputs are sensitive, these traces allow third-party computation of shift gaps
gi and other stability statistics. Over time, we can estimate an empirical
mapping from overlap-related practices (documented experiment breadth,
independent runs, red-team coverage) to changes in these auditable metrics,
providing a practical estimate of λ in (19).

In all channels, the central identification challenge is that measured im-
provements may reflect capability changes as well as safety investments, and
that suite design itself can be Goodharted. A conservative calibration stance
is therefore to treat estimates of aH as interval-valued (or prior distributions)
and to report policy performance under pessimistic assumptions about con-
struct validity.

8.3 A minimal counterfactual simulation loop over (τ, ō)

Given estimated (or bounded) primitives, the model can be used as a policy
simulator : for each candidate instrument pair (τ, ō), compute equilibrium
overlap, induced failure rates, and welfare. Even in the symmetric baseline,
the point of simulation is to propagate uncertainty in S, in the measurement-
to-risk mapping, and in the systemic term.

A minimal workflow is:

1. Fit risk-reduction parameters. Use benchmark/incident/audit data
to estimate (or bound) (π0

L, π
0
H , aL, aH) and a mapping between au-

ditable proxies and risk (e.g. infer a posterior over aH given observed
changes in gi after measured increases in experimentation breadth).
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2. Specify market primitives. Choose (N,M,µ, β, hU , hE) using ob-
served market shares, approximate margins, and survey-based esti-
mates of user sensitivity to disclosed risk; treat these as uncertain
where necessary.

3. Solve firm equilibrium. For each (τ, ō), compute the symmetric
oNE(τ, ō) = max{ō, õ(τ)} in the linear region, or numerically solve the
best-response condition when truncation or heterogeneity matters.

4. Simulate outcomes. Draw S ∼ Bernoulli(s) and then Fi ∼ Bernoulli(πS(o
NE))

independently conditional on S, compute K =
∑

i Fi, and record wel-
fare components (user harm, third-party harm, and systemic loss κK2).
Repeat to estimate expected welfare under the policy.

5. Compare instruments. Plot E[W ] as a function of τ for fixed ō (and
vice versa), and report the policy frontier under uncertainty sets for
(aH , aL, κ).

Two practical refinements matter. First, if users respond to disclosed
risk (via β) and disclosure itself depends on audits, one can incorporate a
disclosure rule that maps audit outcomes (e.g. observed gi) to π̄(oi) as per-
ceived by users. Second, if the systemic loss is driven by tail dependence
beyond a two-state S, the simulation can replace S with a richer shift pro-
cess (mixtures over stressor families), while keeping the same conceptual
decomposition: overlap affects both mean failure and the co-movement of
failures across firms.

8.4 Robust calibration targets: bounding oSP and avoiding
false precision

Because oSP depends on κ and on high-shift risk reduction, point estimates
are often inappropriate. A more governance-relevant target is a lower bound
on socially desirable overlap under pessimistic but plausible assumptions.
Operationally, we can:

• treat aH as the key uncertainty and compute oSP (aH) over a credible
interval;

• treat κ as partially identified and report policy performance under a
range of cascade severities (e.g. calibrated to historical analogues of
correlated outages or security failures);

• prioritize policies whose welfare is insensitive to moderate misspecifi-
cation (a “flat optimum” criterion), which often favors floors set near
a conservative quantile of oSP plus moderate liability, rather than ex-
treme reliance on either instrument alone.
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This framing also clarifies what measurement infrastructure is valuable: marginal
improvements in estimating κ and aH can have first-order effects on recom-
mended standards, whereas fine-tuning π0

L is often second-order for systemic
objectives.

8.5 Limitations and what the simulation can (and cannot)
justify

The illustrative procedure above can support relative comparisons (e.g. “a
modest floor dominates pure liability when attribution is weak”) more reli-
ably than it can justify a single “optimal” τ in absolute terms. The main
failure modes are (i) construct invalidity of DH (we stress-test the wrong
thing), (ii) strategic adaptation (firms learn to reduce gi without reducing
true πH), and (iii) missing channels (overlap may change capability or de-
ployment scope, affecting harms conditional on failure). For these reasons,
we should interpret counterfactual results as conditional statements: if the
audit suite tracks real regime shift, and if overlap investments monotonically
reduce high-shift failure, then the simulated welfare rankings are informative.

These limitations motivate the extensions in the next section. In par-
ticular, once we allow endogenous monitoring as a separate decision, het-
erogeneity in costs and regimes, shared foundation-model dependencies, and
user-generated prompt dynamics, both calibration and policy simulation be-
come institutionally coupled to monitoring design: the regulator is no longer
merely choosing (τ, ō) given primitives, but shaping the observability of the
primitives themselves.

9 Extensions (brief): endogenous monitoring, het-
erogeneity, shared foundations, and endogenous
prompts

The calibration exercise in Section 8 treated the regulator as facing a fixed
measurement channel (audits produce some proxy for π̄(oi)) and treated
“overlap” oi as the single privately chosen safety-relevant input. In practice,
several adjacent choices and structural features matter for both incentives
and identification. Here we sketch four extensions that we expect to be first-
order for 2026-era regulation: (i) endogenous monitoring as a separate choice
variable, (ii) heterogeneity across firms, (iii) shared foundation-model depen-
dencies that couple failures, and (iv) endogenous, user-generated prompts
that confound regime shift and selection into stress.
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9.1 Endogenous monitoring as a separate (strategic) choice

Many concrete governance proposals implicitly assume that evaluation and
monitoring effort is “free” or externally provided. But firms choose how much
to invest in (and how much to expose of) monitoring, and these investments
affect both (a) true failure probabilities (via earlier detection and remedia-
tion) and (b) perceived failure probabilities (via disclosure and user trust).
A minimal extension adds a monitoring choice mi ≥ 0 alongside overlap oi,
with cost Cm(mi) = (d/2)m2

i .
There are (at least) two conceptually distinct channels:

1. Risk reduction: monitoring reduces true failure probability, e.g.

πS(oi,mi) = π0
S − aSoi − bSmi, bH ≥ bL > 0,

capturing that better evals are particularly valuable under high shift.

2. Observability and sanctions: monitoring increases the probability that
failures are detected and attributed, which increases effective liability.
A reduced-form version is to replace τ by an effective τq(mi) with
q′(·) > 0, so expected liability becomes τq(mi)hEMsi(o)π̄(oi,mi).

The second channel is governance-relevant even if monitoring does not itself
prevent failures: if attribution is weak, liability under-internalizes harms.
The strategic implication is that monitoring and overlap become comple-
ments or substitutes depending on whether the dominant role of monitoring
is prevention (substitute for oi) or enforceability (complement to oi through
stronger incentives). In symmetric interior regions, the first-order conditions
take the schematic form

coNE ≈ a• ·
(
demand incentives + τq(mNE) · external harm term

)
,

dmNE ≈ b• ·
(
demand incentives + τq(mNE) · external harm term

)
+ τq′(mNE) · (enforceability wedge).

Two safety-relevant failure modes appear immediately. First, if q(·) is largely
under firm control (e.g. selective logging, unverifiable eval suites), then pri-
vate incentives may favor “monitoring theater”: increasing apparent q or
reducing disclosed π̄ without reducing true πH . Second, even honest mon-
itoring can shift deployment behavior: a firm might increase monitoring to
justify expanding deployment scope, potentially increasing harms conditional
on failure. This suggests a regulatory separation between (i) monitoring stan-
dards (protocols, escrow, third-party compute, and penalties for tampering)
and (ii) outcome instruments (liability and overlap floors). Formally, one
can model the regulator as first choosing a monitoring technology (fixing
q(·) and the mapping from eval artifacts to π̄), and only then choosing (τ, ō).
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9.2 Heterogeneity across firms: costs, efficacy, and user trust

The symmetric baseline is useful for isolating externalities, but heterogene-
ity is the default: firms differ in safety culture, in evaluation maturity, and in
how much overlap investment translates into robustness. Let (ci, aL,i, aH,i, π

0
L,i, π

0
H,i)

vary across firms. Even holding demand fixed at si = 1/N , the privately op-
timal overlap becomes

oNE
i (τ, ō) = max

{
ō,

a•,i
ci

·
(
τhE · (scale) + (any private benefit)

)}
, a•,i := (1−s)aL,i+saH,i.

Two qualitative changes follow.
First, the welfare cost of a uniform floor ō can rise: if some firms have high

ci (overlap is expensive) or low a•,i (overlap is ineffective), then forcing them
to match the frontier can be inefficient relative to a differentiated policy.
This pushes toward standards indexed to auditable proxies (e.g. an upper
bound on gi) rather than a single required input.

Second, market selection becomes ambiguous when safety is partly un-
observed. If users imperfectly infer π̄, firms with low safety may still capture
share via branding, bundling, or cross-subsidization. In the logit system,
heterogeneity interacts with β: when β is low (users weakly responsive), de-
mand discipline is weak and underinvestment is worse; when β is high but
disclosure is noisy, firms can overinvest in marketing signals that correlate
weakly with true risk. A natural extension is to explicitly model a signal
π̂i = π̄(oi) + ηi observed by users, with variance decreasing in monitoring.
This endogenizes both information quality and competition on safety, and
makes clear why verification infrastructure is not merely “nice to have” but
directly incentive-shaping.

9.3 Shared foundation models and upstream coupling of fail-
ures

A distinctive feature of frontier deployment is shared dependence on up-
stream components: multiple “firms” may deploy fine-tuned variants of the
same foundation model, share a common tool-use stack, or rely on the same
inference provider. This creates an additional coupling across failures be-
yond the common regime S. A simple way to represent this is to add an
upstream shock Z ∈ {0, 1} (e.g. a vulnerability or latent misgeneralization
mode common to a model family) with Pr(Z = 1) = z, and let

πS(oi | Z) = π0
S − aSoi +∆SZ, ∆S ≥ 0,

or, more structurally, decompose each firm’s failure indicator as

Fi = 1{Ui ≤ πS(oi)} ∨ 1{Z = 1 and Vi ≤ ρ},
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so that even if firm-specific failures are conditionally independent given S,
the upstream component induces extra positive dependence.

This matters because the systemic term κK2 is highly sensitive to tail de-
pendence. Even small z can dominate E[K2] if Z produces near-simultaneous
failures across many deployers. From a governance perspective, this pushes
policy attention upstream: overlap investment by any single downstream firm
does not fully address upstream shared risk. Two implementation-relevant
implications follow. (i) Liability or standards might need to apply not only
to deployers but also to foundation-model providers, or to the interface con-
tract between them (evaluation artifacts, weight release conditions, incident
response obligations). (ii) Audits should explicitly test for cross-deployer cor-
related modes, e.g. by requiring that red-team prompts and tool-call traces
be shared (under appropriate confidentiality) so that “one firm’s near miss”
is informative about others.

Formally, shared foundations break the clean mapping from each firm’s
oi to aggregate risk. A planner would value investments that reduce ∆S

(upstream hardening) potentially more than investments that reduce id-
iosyncratic πS . This motivates extending the action space to include an
upstream safety input u chosen by a foundation provider, with its own cost
and with spillovers to all N deployers. The resulting game resembles a
public-goods problem with both horizontal (across deployers) and vertical
(upstream–downstream) externalities, suggesting that simple per-firm floors
may be insufficient without upstream obligations.

9.4 Endogenous user-generated prompts and confounding of
regime shift

Our two-regime state S ∈ {L,H} stands in for “how stressful deployment
is.” But stress is not purely exogenous: user behavior adapts to model capa-
bilities, product design, and publicized incidents. As systems become more
agentic, users may supply longer-horizon tasks, more tool access, and more
adversarial experimentation, effectively increasing the probability of high-
shift conditions. This creates a confounding loop: the observed frequency
of high-shift events is jointly determined by deployment choices and by user
responses, not just by nature.

A minimal reduced-form is to let

s = s
(
q(o), exposure, attention

)
,

where q(o) is a measure of average deployed capability or adoption, and
“attention” may spike after incidents (increasing adversarial probing). Al-
ternatively, we can model prompts as drawn from a mixture distribution
D = ωDH + (1−ω)DL with mixture weight ω increasing in adoption and in
perceived model power, and then interpret S as a coarse discretization of ω.
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This endogeneity has two practical consequences. First, naive calibration
can attribute rising incident rates to worse alignment when the true driver is a
shift in prompt mix (more high-stakes, longer-horizon tasks). Second, policy
can change the prompt mix: strong disclosure and reporting may reduce risky
usage (lowering s) but might also increase adversarial attention (raising s)
in the short run. These confounds do not invalidate the core externality
logic, but they do caution against interpreting estimated (π0

H , aH) as stable
primitives.

For regulation, the key is to incorporate exposure and use-case controls
into audits and incident reporting. Concretely, the regulator can require that
firms report standardized denominators (number of tool calls, autonomy
depth, sensitive-domain invocations), enabling estimation of failure rates
conditional on exposure. In model terms, one can treat harm as hUe and
hEe where e is an exposure index influenced by product decisions, and then
extend the planner problem to jointly choose overlap-like investments and
constraints on exposure (rate limits, tool permissions, domain gating). This
highlights a policy substitution: if overlap investment is hard to verify, limit-
ing exposure in high-shift channels can partially reduce systemic risk, though
at potentially large utility cost.

9.5 What remains open

These extensions share a theme: once monitoring, upstream coupling, and
endogenous usage enter, the regulator is no longer choosing (τ, ō) in a fixed
environment, but shaping the environment that makes (τ, ō) meaningful.
The most important open problems are therefore institutional as well as an-
alytic: (i) designing audit protocols robust to strategic adaptation (so that
q(m) is not easily manipulated), (ii) building data-sharing and incident-
response mechanisms that internalize shared-foundation risk, and (iii) con-
structing exposure-adjusted safety metrics that remain informative under
changing user prompt distributions. Our intent in keeping these extensions
brief is not to downplay their importance, but to clarify how they connect
to the baseline comparative statics: they typically increase correlation and
reduce observability, both of which amplify the gap between private incen-
tives and social welfare and strengthen the case for verifiable standards and
enforceable liability.

10 Conclusion: implications for 2026 regulation and
firm strategy; limitations and future empirical
work

We built a deliberately spare model of “overlap” investment under competition—
an input that improves robustness to goal misgeneralization and, crucially,
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is most valuable in rare but high-shift deployment regimes. The central
qualitative result is robust across the variants we explored: even when users
partially discipline safety through demand, competitive equilibrium overlap
oNE is generically below the social optimum oSP whenever failures impose
third-party harms (hE > 0) or create convex systemic losses (modeled as
κK2). The wedge widens precisely in the circumstances regulators worry
about in 2026: larger market participation (higher N), more tail risk from
common shocks (high s(1− s) and greater regime sensitivity aH − aL), and
greater external exposure of failures (higher hE or larger effective “blast ra-
dius”). In that sense, the formalism does not merely restate “externalities
exist”: it identifies a particular mechanism by which correlation and tail
sensitivity amplify the divergence between private incentives and collective
risk.

A first practical implication is that policy should target marginal incen-
tives under common shocks, not only average reliability. When aH > aL,
an incremental unit of overlap reduces not only the mean failure probability
π̄(o) but also the variance of failure rates across regimes, thereby dampen-
ing correlated tail events. This variance-reduction channel is exactly what
a convex systemic term values and exactly what decentralized firms tend to
underweight. As a result, policies calibrated solely to expected harm can
remain too weak in the presence of tail dependence. Concretely, if regulators
want to avoid “many systems fail together” scenarios, then instruments must
either (i) explicitly price joint-failure risk (through a systemic surcharge or
higher effective τ in high-risk regimes), or (ii) impose verifiable minimum
standards ō (or closely related requirements) that are set with tail scenarios
in mind.

A second implication is that the two canonical instruments we analyzed—
harm-based liability τ and an overlap floor ō—should be viewed as comple-
ments in realistic governance settings. In the symmetric benchmark, either
instrument can in principle implement oSP , but they differ in what they de-
mand from the regulatory measurement channel. Liability asks the regulator
(and courts) to measure harms, attribute causality, and enforce payments; a
floor asks the regulator to measure and audit inputs or practices. In 2026-era
deployment, attribution, counterfactual causality, and harm quantification
are all hard precisely in the regimes where correlated failures matter most.
This suggests a hybrid design: use liability to capture the portion of harm
that is observable and attributable (especially steady-state third-party dam-
ages), while using standards—minimum eval coverage, red-team protocols,
training-time experimentation budgets, incident-response obligations, and
restrictions on deployment scope—to bound tail risk where ex post enforce-
ment is weak. Put differently, τ is a good instrument when measurement is ex
post and legible; ō-like standards are a good instrument when measurement
must be ex ante and robust to strategic adaptation.

A third implication concerns firm strategy under competition. If user
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choice depends on perceived risk π̄(oi) only imperfectly, then purely rep-
utational incentives can select for cheap signals rather than true overlap:
marketing, selectively chosen benchmarks, or “monitoring theater” that re-
duces reported risk without reducing πH . Our model makes precise why this
is more than an information problem: when κ > 0, even small misalign-
ments between perceived and true tail risk can create large welfare losses
because E[K2] is sensitive to dependence. A rational firm that anticipates
regulation and public scrutiny therefore benefits from investing in verifiable,
hard-to-fake safety inputs and disclosure mechanisms: third-party audits
with escrowed logs, standardized evaluation suites that include high-shift
stressors, and commitments to share incident indicators that are predictive
of correlated failure modes. Strategically, this resembles a move from “com-
pete on claims” to “compete on auditable processes,” which can be privately
beneficial if it reduces the chance of sudden liability expansions or moratoria
after high-profile incidents.

A fourth implication is upstream. Shared foundations, common tooling,
and inference-provider dependencies create coupling that cannot be man-
aged by downstream overlap alone. Even if each deployer chooses high oi,
upstream shocks can generate a large common component in Fi that domi-
nates systemic risk. Thus, policies and contracts should allocate responsibil-
ities along the supply chain: foundation providers should face requirements
tied to vulnerability disclosure, safety-case artifacts, evaluation transparency,
and incident response, while deployers should face requirements tied to use-
case gating, monitoring, and post-deployment controls. From a mechanism-
design perspective, the goal is to align incentives so that the party best
positioned to reduce a correlated mode is the one facing the marginal cost
of leaving it unaddressed. In practice, this points toward governance that
treats “model families” and shared stacks as regulated risk pools rather than
as independent products.

We also emphasize several limitations of the present analysis. First, we
worked primarily in a symmetric class (or a near-symmetric local approxi-
mation), which is analytically clarifying but masks important distributional
and selection effects: heterogeneous costs ci, heterogeneous efficacy aS,i, and
heterogeneous observability of safety can make uniform floors inefficient and
can induce market concentration. Second, we used a reduced-form demand
system and a reduced-form mapping from overlap to failure probability. Real
deployments include nonstationary feedback loops (user adaptation, attacker
adaptation, and evolving tool ecosystems), which can make the effective state
S partially endogenous and can create time inconsistency in both firm in-
centives and regulatory commitments. Third, we treated failures as condi-
tionally independent given the regime, then added correlation via a common
shock; in reality, dependence can be richer (shared vulnerabilities, cascades
through the broader digital ecosystem, and strategic interaction among at-
tackers), and these may require systemic terms more structured than κK2.
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Finally, we abstracted from political economy constraints and from the insti-
tutional capacity required to run audits, enforce disclosure, and adjudicate
harms.

These limitations point directly to a future empirical agenda that can
make the model operational. The most valuable parameters to estimate
are those that govern tail risk and common-shock sensitivity: (aH − aL),
the frequency and severity of high-shift regimes (our s and related mea-
sures of exposure), and the degree to which observed incidents cluster across
firms conditional on shared upstream components. Empirically, this requires
data that current incident reporting rarely provides: standardized denomi-
nators for exposure (e.g. autonomy depth, tool-call counts, sensitive-domain
invocations), consistent taxonomies for near misses, and time-synchronized
reporting that allows identification of correlated modes. A promising ap-
proach is to treat stress-testing as an “experiment” generating estimates of
aS under controlled perturbations, then combine this with field data on ex-
posure and incident rates to infer how often the world visits S = H-like
conditions. Similarly, estimating systemic convexity κ is hard, but proxies
can be constructed from observed downstream cascade costs (e.g. correlated
fraud events, widespread service disruption, or correlated misuse incidents)
and from the elasticity of damages to the number of simultaneous failures.

Finally, we view the core contribution as a way to translate alignment-
motivated concerns into incentive-compatible governance levers. The safety-
relevant takeaway is not merely that “firms underinvest,” but that underin-
vestment is most severe when (i) harms are external, (ii) failures are corre-
lated, and (iii) the protective action is most effective in high-stress regimes
that are hard to observe and verify. These three features are characteristic
of agentic deployments, which suggests that light-touch, purely reputational
approaches will be structurally fragile. The hopeful note is that the same for-
malism clarifies what can work: verifiable standards for high-shift robustness,
liability that is tied to measurable external harms, and monitoring infras-
tructures that are designed to be tamper-resistant and comparable across
firms. Advancing from a stylized model to actionable policy will require bet-
ter measurement and stronger institutions, but the incentive logic is already
clear: without mechanisms that internalize tail-correlated externalities, com-
petitive pressure will push precisely against the safety margin we most need
to preserve.
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